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Abstract

Motivation: DNA N6-methyladenine (6mA) is associated with a wide range of biological processes.

Since the distribution of 6mA site in the genome is non-random, accurate identification of 6mA

sites is crucial for understanding its biological functions. Although experimental methods have

been proposed for this regard, they are still cost-ineffective for detecting 6mA site in genome-wide

scope. Therefore, it is desirable to develop computational methods to facilitate the identification of

6mA site.

Results: In this study, a computational method called i6mA-Pred was developed to identify 6mA

sites in the rice genome, in which the optimal nucleotide chemical properties obtained by the using

feature selection technique were used to encode the DNA sequences. It was observed that the

i6mA-Pred yielded an accuracy of 83.13% in the jackknife test. Meanwhile, the performance of

i6mA-Pred was also superior to other methods.

Availability and implementation: A user-friendly web-server, i6mA-Pred is freely accessible at

http://lin-group.cn/server/i6mA-Pred.

Contact: chenweiimu@gmail.com or hlin@uestc.edu.cn

1 Introduction

As a non-canonical DNA modification, DNA N6-methyladenine

(6mA) has been identified in three kingdoms of life (O’Brown and

Greer, 2016). Recent studies have demonstrated that 6mA modifica-

tion is closely correlated with a series of biological processes, such

as DNA replication (Campbell and Kleckner, 1990), transcription

(Robbins-Manke et al., 2005) and repair (Pukkila et al., 1983). The

non-uniform distribution of 6mA sites across the genome implies

that, for better understanding its biological functions, it is indispens-

able to characterize its position in the genome.

In the past several years, several experimental methods have

been proposed to detect 6mA site, such as methylated DNA immu-

noprecipitation sequencing (Pomraning et al., 2009), capillary elec-

trophoresis and laser-induced fluorescence (Krais et al., 2010) and

single-molecule real-time sequencing (SMRT-seq) (Flusberg et al., 2010).

Recently, by performing mass spectrometry analysis and 6mA

immunoprecipitation followed by sequencing, Zhou et al. (2018)

obtained the 6mA profile of the rice genome.

Although experimental methods indeed yielded encouraging

results, the drawbacks of experimental methods preclude the

genome-wide identification of 6 mA. Fortunately, the experimental

data give us an unprecedented opportunity to develop computation-

al models for identifying the 6mA site. Therefore, in this study, we

proposed a support vector machine (SVM)-based method to identify

the 6mA sites in the rice genome, in which nucleotide chemical prop-

erties and nucleotide frequency were used to formulate the DNA

sequences. In the jackknife cross-validation, the proposed model

obtained an overall accuracy of 83.13% for identifying 6mA sites.

Moreover, a freely accessible online web-server for i6mA-Pred was

established.
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2 Materials and methods

2.1 Construction of benchmark dataset
The positive samples (6mA site containing sequences) were

obtained from NCBI Gene Expression Omnibus (https://www.

ncbi.nlm.nih.gov/geo/) under the accession number GSE103145,

which were yielded from the SMRT-seq (Zhou et al., 2018). All

the sequences are 41 bp long with the 6mA site in the center. In

order to construct a high-quality benchmark dataset, the follow-

ing two procedures were performed. First, according to the

Methylome Analysis Technical Note, a score of 30 is the default

threshold for calling a nucleotide as modified. Hence, the sites

with a modification score of <30 were filtered out. Second, a

dataset containing many redundant samples with high similarity

has the low statistical representativeness. A computational model,

if trained and tested by such a biased benchmark dataset, might

yield overestimated accuracy. To get rid of redundancy and min-

imize the bias, the CD-HIT software (Fu et al., 2012) with the cut-

off threshold of 60% was used to remove those sequences with

high sequence similarity. After following these two procedures,

we obtained 880 positive samples. Preliminary tests indicated that

the best predictive results were achieved when the sequence length

is 41 bp.

The negative samples (non-6mA site containing sequences)

were obtained according to the following rules. As indicated in a

recent study (Zhou et al., 2018), the 6mA occurs most frequently

at GAGG motifs, and are less enriched in coding sequences

(CDSs). Thus, we fetched the negative samples from the CDSs.

By searching the sub-sequences containing GAGG motifs in

CDSs of the rice genome, we got 880 non-6mA site containing

sequences with the sequence identity <60%. All these negative

samples are also 41 bp long with the non-methylated adenosine at

the center.

Finally, we obtained a benchmark dataset including 880 6mA

site containing sequences and 880 non-6mA site containing

sequences, which is available at http://lin-group.cn/server/

i6mAPred/data.

2.2 Sequence representation
In order to transfer the DNA sequences into vectors that can be

handled by machine-learning methods, the nucleotide chemical

properties and nucleotide frequency were used to describe the DNA

sequences, which has been widely used in DNA modification site

recognitions (Chen et al., 2017). A brief description of this se-

quence-encoding method is introduced as follows.

2.2.1 Nucleotide chemical property

The four nucleic acids have different chemical properties. In terms

of ring structures, A and G are purines containing two rings,

whereas C and T are pyrimidines containing one ring. When forming

secondary structures, C and G form strong hydrogen bonds,

whereas A and T form weak hydrogen bonds. In terms of amino/keto

bases, A and C belong to the amino group, whereas G and T to the

keto group.

In order to employ these properties, three coordinates (x, y, z)

were used to represent the chemical properties of the four nucleoti-

des and the value of 0 or 1 was assigned to the coordinates. If x, y

and z coordinates respectively stand for the ring structure, the

hydrogen bond, and the amino/keto bases, the four nucleotides can

be represented in the Cartesian coordinate system as shown in

Figure 1. Therefore, the coordinates for A, C, G and T are (1, 1, 1),

(0, 0, 1), (1, 0, 0) and (0, 1, 0), respectively.

2.2.2 Nucleotide frequency

The density di of nucleotide nj at position i was defined as follows:

di ¼
1

jNij
Xl

j¼1

f ðnjÞ; f ðnjÞ ¼
1 if nj ¼ ni

0 if nj 6¼ ni

�
(1)

where l is the sequence length, jNij is the length of the ith prefix

string {n1, n2,. . ., ni} in the sequence, and ni2 {A, C, G, T}.

By integrating nucleotide chemical properties and nucleotide fre-

quency, each nucleotide will be converted into a 4D vector, where

the first three elements represent its chemical properties and the

fourth one is the accumulated frequency. Accordingly, an l-bp long

sequence will be encoded by a (4� l)-dimensional vector.

2.3 Support vector machine
SVM is a powerful and popular method for pattern recognition and

has been widely used in computational genomics (Feng et al., 2013;

Su et al., 2018; Zhang et al., 2018; Zhu et al., 2018). Its basic idea is

to transform the input data into a high-dimensional feature space

and then determine the optimal separating hyperplane. The imple-

mentation of SVM was carried out by using the LibSVM package

3.18, which is available at http://www.csie.ntu.edu.tw/�cjlin/

libsvm/. The radial basis kernel function was used to obtain the clas-

sification hyperplane. The probability score obtained from SVM

was used to make predictions. If the probability is >0.5, an adenine

will be predicted as a 6mA site, otherwise, a non-6mA site.

2.4 Feature selection
If the sequences are represented by features including redundant or

irrelevant information, it will lead to over-fitting problems and

reducing the generalization capacity of the model. Fortunately, this

problem can be avoided by means of the feature selection method.

In order to alleviate irrelevant features, a series of effective feature

selection techniques have been proposed, such as analysis of vari-

ance (Feng et al., 2018), binomial distribution (Su et al., 2018), min-

imal redundancy maximal relevance (Peng et al., 2005) and

diffusion maps (Coifman et al., 2005).

Fig. 1. Representation of the four nucleotides in the Cartesian coordinate sys-

tem. The x, y and z coordinates stand for the ring structure, the hydrogen

bond and the amino/keto bases, respectively
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In this study, the maximum relevance maximum distance

(MRMD) method (Chen et al., 2018; Zou et al., 2016) was used to

alleviate the irrelevant features. The main idea of MRMD is search-

ing a kind of features ranking metric which contains two aspects:

one is the relevance between sub-feature set and target class, and

the other is redundancy of sub-feature set. More details about

the algorithm of MRMD were introduced in the literature (Zou

et al., 2016).

2.5 Performance evaluation
In statistical prediction, three cross-validation methods, namely in-

dependent dataset test, sub-sampling (or n-fold cross-validation) test

and jackknife test, are often used to evaluate the anticipated success

rate of a predictor (He et al., 2018; Manavalan and Lee, 2017;

Manavalan et al., 2018). Among the three cross-validation methods,

the jackknife test is deemed the least arbitrary one (Chou, 2011).

Accordingly, the jackknife test was used to examine the performance

of the model proposed in this study. In the jackknife test, each sam-

ple in the training dataset is in turn singled out as an independent

test sample and all the properties are calculated without including

the one being identified.

The performance of the proposed method was evaluated by

using the following four metrics, namely sensitivity (Sn), specificity

(Sp), accuracy (Acc) and Mathew’s correlation coefficient (MCC),

which are expressed as (Dao et al., 2018; Li et al., 2018; Song et al.,

2018a,b)

Sn ¼ 1�Nþ�
Nþ

0� Sn�1

Sp ¼ 1�
N�þ
N�

0�Sn�1

Acc ¼ 1�Nþ� þN�þ
Nþ þN�

0�Acc�1

MCC ¼
1� Nþ� þN�þ

Nþ þN�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þN�þ �Nþ�
Nþ

� �
1þNþ� �N�þ

Nþ

� �s �1�MCC�1

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(2)

where Nþ represents the total number of positive samples investi-

gated, whereas Nþ �is the number of positive samples incorrectly

predicted to be of negative one; N� the total number of negative

samples investigated, whereas N�þ the number of the negative

samples incorrectly predicted to be of positive one.

The receiver operating characteristic (ROC) curve was also used

to evaluate the performance of this method. The area under the

ROC curve (auROC) is a key indicator of the performance quality

of a binary classifier, i.e. the value 0.5 of auROC is equivalent to

random prediction while 1 of auROC represents a perfect one

(Hanley and McNeil, 1982).

3 Results and discussion

3.1 Nucleotide composition analysis
In order to investigate the nucleotide composition difference be-

tween 6mA site containing sequences and non-6mA site containing

sequences, the Two Sample Logos (Crooks et al., 2004) was used to

determine the statistically significant nucleotide differences between

the 6mA site and non-6mA site containing sequences. As shown in

Figure 2, the adenosine and thymine were significantly enriched in

the 6mA site containing sequences (P<0.05), whereas the non-6mA

site containing sequences demonstrate a significant preference to

cytosine and guanine (P<0.05). This result suggests that it is rea-

sonable to develop a computational method for identifying 6 mA

site by using sequence information.

3.2 Identification of 6mA sites
According to the scheme described in Section 2.2, each of the sam-

ples in the benchmark dataset was converted to a 164D vector and

used as the input of SVM to build a computational model. By exam-

ining the performance of the model via the 10-fold cross-validation

test, we obtained an accuracy of 83.35%. Although the performance

is satisfying, the original feature set unavoidably includes redundant

features. Hence, it is necessary to choose the optimal number of fea-

tures to build a robust and efficient predictive model.

Therefore, we used the MRMD together with the incremental

feature selection (IFS) strategy to select the optimal feature set. For

this end, the 164 kinds of features were firstly ranked by using the

MRMD algorithm. The ranked features were then added one by one

according to their scores yielded by MRMD. The feature subset

started from the feature with the highest score. Then, a new feature

subset was produced when the second feature with the second high-

est score was added. This procedure was repeated 164 times, and for

each time a SVM model with default parameters (i.e. regularization

parameter C and kernel parameter c of SVM) was built. Their per-

formances were investigated by using the 10-fold cross-validation

test. The most optimal features can be obtained when the accuracy

reaches its maximum. The IFS was used to determine the optimal

number of features. The corresponding IFS curve was plotted in

Figure 3. As shown in Figure 3, when the top ranked 126 features

Fig. 2. The nucleotide composition preferences of 6mA site and non-6mA site

containing sequences. The top panel is the compositional preferences of

6mA site containing sequences, while the down panel is the compositional

preferences of non-6mA site containing sequences

Fig. 3. The IFS curve for identifying 6mA sites. An IFS peak of 83.52% was

obtained when using the optimal 126 optimal features
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were used to encode the samples, the accuracy reaches its maximum

of 83.52%. Therefore, the 126 optimal features were used to build

the computational model.

To demonstrate the superiority of using SVM for identifying

6mA site, we compared its performance with that of other classi-

fiers, such as Native Bayes, BaysesNet, Random Forest, LogitBoost

and J48, which were implemented in WEKA (Meyer et al., 2012)

with their default parameters. All these classifiers were based on the

126 optimal features. Their 10-fold cross-validation test results for

identifying 6mA sites in the benchmark dataset were reported in

Table 1. It was found that the performances of SVM are superior to

those of other classifiers, respectively. Therefore, the SVM was used

to build computational models in the followings.

By using the grid search approach, the two parameters C and c
of SVM were optimized in the spaces [2�5, 215] and [2�15, 2�5] with

the step of 2 and 2�1, respectively. It was found that the optimal val-

ues for C and c were 32 and 0.00048828125, respectively.

Accordingly, a computational model called i6mA-Pred, was built to

identify 6mA site in the rice genome. Subsequently, the rigorous

jackknife test was used to evaluate the performance of i6mA-Pred.

The i6mA-Pred obtained an accuracy of 83.13% for identifying

6mA site in the benchmark dataset. To further demonstrate its per-

formance, the ROC curve of the proposed method was plotted in

Figure 4.

3.3 Comparison with other sequence-encoding

schemes
To the best of our knowledge, the computational method for identify-

ing 6mA sites in the rice genome has not been reported so far. Hence,

we could not provide a direct comparison between the i6mA-Pred and

other existing methods. To demonstrate the effectiveness of the nu-

cleotide chemical property based method for 6mA site identification,

we compared it with the PseDNC-based method that has been used

for identifying DNA 5mC modifications (Feng et al., 2016).

The basic idea of PseDNC is to convert genomic sequences into

dimension-fixed digital vectors covering both local and global se-

quence pattern information. For a brief formulation of PseDNC and

how it works, see the recent articles (Chen et al., 2014, 2015).

In this study, the PseKNC-General package (Chen et al., 2015)

was employed to calculate the PseDNC and six DNA physical–

chemical properties (i.e. shift, slide, rise, twist, tilt and roll) that

have been successfully used in computational genomics were incor-

porated. The two parameters of PseDNC, namely the number of the

total pseudo components (k) and the weight factor (w), were deter-

mined by an optimization procedure in the 10-fold cross-validation

test. It was found that the optimal values for k and w are 9 and 0.5,

respectively. The jackknife test result of the PseDNC-based method

in identifying 6mA site by using the same benchmark dataset were

reported in Table 2. The accuracy of the PseDNC-based method is

only 64.55%, which is �19% lower than that of i6mA-Pred. This

comparison demonstrates the superiority of the i6mA-Pred and the

effectiveness of nucleotide chemical properties and nucleotide com-

position for 6mA site identification.

3.4 Web-server
Since user-friendly web-servers represent the future direction for

developing useful predictors, the public accessible web-server for

i6mA-Pred were established. Moreover, to maximize user’s conveni-

ence, a step-by-step guide is given below.

Step 1. Open the web-server at http://lin-group.cn/server/i6mA-

Pred and the top-page of i6mA-Pred will be shown as in Figure 5.

Step 2. Either type or copy/paste the query DNA sequences into

the input box at the center of Figure 5 in FASTA format.

Step 3. Click on the Submit button to see the predicted result.

Table 1. Comparison of different classifiers for identifying 6mA

sites

Classifier Sn (%) Sp (%) Acc (%) MCC auROC

Native Bayes 84.66 77.84 81.25 0.63 0.868

BaysesNet 79.43 80.23 79.83 0.60 0.853

Random Forest 82.95 81.36 82.16 0.64 0.875

LogitBoost 81.02 78.75 79.89 0.60 0.861

J48 77.73 75.23 76.48 0.53 0.742

SVM 83.41 83.64 83.52 0.67 0.909

Fig. 4. A graphical illustration to show the performance of the model by

means of the ROC curves obtained from the jackknife test

Table 2. Comparison of different methods for identifying 6mA sites

in rice

Method Sn (%) Sp (%) Acc (%) MCC auROC

6mA-Pred 82.95 83.30 83.13 0.66 0.886

PseDNC 63.52 65.57 64.55 0.29 0.636

Fig.5. A semi-screenshot for the top-page of the i6mA-Pred web-server
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4 Conclusions

Although N6-methyladenine (6mA) is closely associated with a series

of biological processes, its biological functions are still unclear.

Therefore, the identification of 6mA may facilitate our knowledge

on its regulatory roles. In this work, by analyzing the SMRT-seq

data, a benchmark dataset of 6mA was constructed. By encoding the

samples in benchmark dataset using nucleotide chemical properties

and nucleotide frequency, we developed a computational model

called i6mA-Pred for identifying 6mA sites in the rice genome.

Results of a series of comparisons demonstrated that i6mA-Pred

superior to other methods, which demonstrates the effectiveness of

sequence-encoding method and feature selection scheme. In conclu-

sion, it is anticipated that i6mA-Pred will become a useful computa-

tional tool for identifying 6mA sites in the rice genome.

It has not escaped our notice that the deep learning method has

exhibit its merits in the realm of bioinformatics (Cao et al., 2016,

2017; Long et al., 2017; Patel et al., 2017; Peng et al., 2018;

Stephenson et al., 2018). Therefore, we will also employ the deep

learning method to improve the performance for identifying the

6mA site in the future work.
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