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Abstract

Motivation: Protein quality assessment (QA) is a crucial element of protein structure prediction, a

fundamental and yet open problem in structural bioinformatics. QA aims at ranking predicted pro-

tein models to select the best candidates. The assessment can be performed based either on a sin-

gle model or on a consensus derived from an ensemble of models. The latter strategy can yield

very high performance but substantially depends on the pool of available candidate models, which

limits its applicability. Hence, single-model QA methods remain an important research target, also

because they can assist the sampling of candidate models.

Results: We present a novel single-model QA method called SBROD. The SBROD (Smooth

Backbone-Reliant Orientation-Dependent) method uses only the backbone protein conformation,

and hence it can be applied to scoring coarse-grained protein models. The proposed method dedu-

ces its scoring function from a training set of protein models. The SBROD scoring function is com-

posed of four terms related to different structural features: residue–residue orientations, contacts

between backbone atoms, hydrogen bonding and solvent–solute interactions. It is smooth with re-

spect to atomic coordinates and thus is potentially applicable to continuous gradient-based opti-

mization of protein conformations. Furthermore, it can also be used for coarse-grained protein

modeling and computational protein design. SBROD proved to achieve similar performance to

state-of-the-art single-model QA methods on diverse datasets (CASP11, CASP12 and MOULDER).

Availability and implementation: The standalone application implemented in Cþþ and Python is

freely available at https://gitlab.inria.fr/grudinin/sbrod and supported on Linux, MacOS and

Windows.

Contact: sergei.grudinin@inria.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins play an important role in fundamental biological processes

such as biological transport, formation of new molecules, or cellular

protection through binding to specific foreign particles such as

viruses. This importance has triggered an extensive research of their

function and mechanisms involved in these processes. In particular,

investigation of protein folding, which plays an essential functional

role in living cells, requires costly experiments that can be potential-

ly replaced by cheaper and faster computational methods for model-

ing undiscovered protein structures (Kmiecik et al., 2016).

A lot of progress has been recently made in protein structure pre-

diction, a computational problem of determining the target protein
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structure given its amino acid sequence. Most of the methods pro-

posed for protein structure prediction first generate a pool of plaus-

ible protein conformations (protein models) and then rank them

using a certain QA method to select the top-ranked candidates.

Therefore, being aimed at ranking protein models by their quality,

QA methods constitute a crucial part of pipelines for protein struc-

ture prediction. Usually, these QA methods are based on scoring

functions that predict similarity between protein models and the tar-

get structures in terms of such similarity measures as RMSD, GDT-

TS and TM-score (Zemla, 2003). In particular, RMSD measures the

average distance between the atoms of two superimposed protein

conformations. GDT-TS and TM-score are designed to assess the

quality of protein models being protein size independent and robust

to local structural errors (Zemla, 2003).

There are generally two types of QA methods. Consensus-model

QA methods decide on the quality of individual protein models

based on their statistics in the assessed model pool. In contrast,

single-model QA methods consider only atoms of the assessed pro-

tein model with no additional information about other models in

the pool and hence, these can be used for conformational sampling

and structure refinement. Furthermore, the performance of

consensus-model QA methods usually depends on single-model QA

methods involved in the conformational sampling used for generat-

ing pools of assessed protein models. In addition, single-model QA

methods are proved to achieve better performance compared to

consensus-model QA methods on unbalanced protein model pools

and in cases where protein models within assessed pool are very

similar (Ray et al., 2012). In addition to these two main types of QA

methods, techniques combining both ideas have also been proposed

(Jing and Dong, 2017; Maghrabi and McGuffin, 2017), referred to

as quasi-single model QA methods.

Among recently proposed single-model QA methods, there are

generally two main approaches to design a scoring function:

physics-based and knowledge-based (data-driven) approaches

(Faraggi and Kloczkowski, 2014; Liu et al., 2014). Physics-based

scoring functions are constructed according to some physical know-

ledge of interactions in the system. This approach takes its roots

from the Gibbs free energy minimization principle, which states that

all target protein structures minimize the Gibbs free energy over the

whole conformational space. However, precise estimation of the

Gibbs free energy requires exhaustive sampling of a huge number of

conformational states (Cecchini et al., 2009; Tyka et al., 2006),

which is computationally intractable in most practical cases. The

physics-based approaches are aimed at constructing scoring func-

tions (often called energy potentials or force-fields) that approxi-

mate the enthalpic part of the Gibbs free energy and can be

estimated efficiently. Usually, these potentials decompose the total

energy into a sum of additive terms (contributions) that represent

stretching of bonds or angles, dihedral potentials, electrostatic and

van der Waals interactions, etc. Alongside with the physics-based

approaches, there are so-called knowledge-based approaches that

deduce the essential energies of molecular interactions from the

structural and sequence databases assuming a certain distribution of

conformations or minimizing a certain loss function. The respective

scoring functions are typically derived either by machine learning or

by estimating the probabilities of certain conformations

(statistical QA methods) using statistics of determined native protein

structures from structural databases. Supplementary Section A in

Supplementary Material overviews several commonly used represen-

tative QA methods.

Although plenty of QA methods have been proposed, often they

miss such meaningful contributions as solvation-related terms and

terms related to hydrogen bonding interactions. However, these con-

tributions are important and generally should be taken into account.

For instance, hydrogen bonds provide structural organization of dis-

tinct protein folds (Hubbard and Kamran Haider, 2001). In addition,

most of QA methods require all-atom protein models as input, and

thus their performance critically depends on the accuracy of side-

chain packing, that is, positions of the side-chain atoms. These can be

modeled with the widely-used SCWRL4 tool (Krivov et al., 2009), as

in Cao and Cheng (2016), or any other method (Liang et al., 2011). A

possibility of working in a simplified coarse-grained representation of

amino acids, as in Kmiecik et al. (2016), overcomes this issue and also

reduces the overall computational complexity. Another drawback of

many existing protein scoring functions is their discontinuity caused,

e.g, by penalties introduced for mismatched inferred and predicted

secondary structures. Because of that, these methods cannot be used

for gradient-based structure optimization.

In this paper, we propose a novel method for protein quality as-

sessment, the Smooth Backbone-Reliant Orientation-Dependent

(SBROD) scoring function. SBROD is a single-model QA method

that scores protein models using only geometric structural features

along with the explicit representation of solvent generated on a regu-

lar grid around assessed proteins. It requires only coordinates of the

protein backbone, and thus is insensitive to conformations of the

side-chains. In addition, the SBROD scoring function is continuous

with respect to coordinates of the protein atoms, which makes it

also potentially applicable for being used in molecular mechanics

applications.

2 Materials and methods

The workflow of SBROD comprises two stages. First, the method

extracts features from each protein model in the dataset. Then, the

scoring function assigns a score to each processed protein model

based on its features extracted on the first stage. Figure 1 schematic-

ally shows the workflow with four groups of geometric features,

which are based on the four types of inter-atomic interactions

described in detail below. Once these features are extracted and pre-

processed, a Ridge Regression model (Draper and Smith, 2014) is

trained to predict the GDT-TS of protein models. For the prepro-

cessing, the features are either scaled individually, so that they lie in

the range ½�1; 1� for the whole training set (the Scaler boxes in

Fig. 1), or they are normalized, so that the Euclidean norm of each

non-zero feature vector is equal to one (the Normalizer boxes in

Fig. 1).

Fig. 1. Workflow of the SBROD QA method. The tunable structural parame-

ters are placed in dotted boxes
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We should note that we also tested more sophisticated models

including Lasso (Tibshirani, 1996), Elastic Net (Zou and Hastie,

2005), Bayesian Regression (Neal, 1996), Ranking SVM (Joachims,

2002) in combination with PCA and Random Projections (Ailon

and Chazelle, 2009) for dimensionality reduction, as well as their

different modifications and ensembles. However, these did not sur-

pass Ridge Regression significantly regarding the prediction per-

formance. Below, we thoroughly describe the proposed method:

from feature generation to training the scoring functions.

2.1 Feature extraction
We build a feature space that reflects four types of physically inter-

pretable interactions: residue–residue pairwise interactions, back-

bone atom–atom pairwise interactions, hydrogen bonding

interactions and solvent–solute interactions. The four respective pro-

cedures for feature extraction are implemented in a unified manner.

Namely, we iterate over predefined pairs of atomic groups and for

each pair we compute feature descriptors that characterize configur-

ation of atoms of one group in the pair with respect to atoms of an-

other group in this pair. The atomic groups are defined by the

aforementioned interactions and consist of either individual back-

bone atoms, atoms that encode orientation of side-chains, atoms

specific to the backbone hydrogen bonds, or atoms specific to pro-

tein–solvent interactions. We should specifically emphasize that our

initial protein model representation contains only heavy backbone

atoms. The required positions of backbone amide hydrogens and

missing Cb atoms are unambiguously reconstructed using geometry

of the input backbone.

Figure 2 schematically shows descriptors that we use. Indices k

and l designate a pair of residues in a protein sequence. Symbols dk;l

and r correspond to distances between atoms, hk;l; hO, and hH de-

note angles between vector pairs, and /k;l is the dihedral angle be-

tween two planes passing through carbon atoms Ck
a ;C

l
a;C

l
b and

through carbon atoms Cl
a;C

k
a ;C

k
b from residues k and l. In a degener-

ate case when the dihedral angle is undefined, we choose its value

randomly from the interval of possible values. While the intervals of

possible values for the angle descriptors are bounded (h 2 ½0; p� and

/ 2 ½0; 2pÞ), the distance descriptors can generally fall into ½0;1Þ.
However, we introduce a cutoff distance c < 1 and assume inter-

actions between atoms beyond this distance negligible, thereby

restricting this interval to the segment ½0; c�.
For each descriptor, we partition the interval of its possible val-

ues into bins of equal width and compute the continuous number

density functions (CNDF) for these bins. CNDF is a continuous

function of descriptors that generalizes the notion of a standard

histogram. This generalization makes the final scoring function

smooth with respect to coordinates of the protein atoms. Let us

demonstrate the computation of CNDF on example descriptors

fðd1
i ; d

2
i Þg

n
i¼1. Let K be the truncated Gaussian kernel with the sup-

port width h:

Kðx; r;hÞ ¼ 1½�h=2 � x � h=2�frðxÞÐ h=2
�h=2 frðnÞdn

;

frðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

x2

2r2 ;

(1)

where 1½�� designates the truth predicate, which converts any logical

proposition into number 1 if the proposition is correct, and 0 other-

wise. We define CNDF for a bin ½a1;b1Þ � ½a2; b2Þ as the sum of

convolutions

Xn

i¼1

ðb1

a1

Kðx� d1
i ; r1;h1Þdx

ðb2

a2

Kðx� d2
i ; r2; h2Þdx; (2)

but not the number of hits into this bin as in the standard histogram,

Xn

i¼1

1½a1 � d1
i < b1�1½a2 � d2

i < b2�: (3)

Below we specify four proposed feature extraction procedures,

where each is parametrized by tunable parameters shown on the left

side of each of the four feature blocks in Figure 1. These parameters

change the estimated descriptors and the computation of CNDF.

2.1.1 Residue–residue pairwise features

The first type of structural features corresponds to interactions be-

tween protein residues. We treat amino acids of different types inde-

pendently and compute CNDF for each pair of residues. Overall, we

use 22 amino acid types that include the 20 standard types as well

as selenocysteine and selenomethionine: A ¼ fAla;Arg; . . . ;

Val; Sec ;Mseg: For a pair of residues, we compute four descriptors

of their relative orientation as it is shown in Figure 2. For residues k

and l, these are the distance dk;l between centers of the alpha carbon

atoms, the dihedral angle /k;l, and two angles, hk;l ¼ Ck
bCk

aCl
a and

hl;k ¼ Cl
bCl

aCk
a . Note, these descriptors depend only on positions of

the Ca and Cb atoms. The CNDF are then computed as follows:

da0a00 ði1; i2; i3; i4Þ ¼

¼
X
ðk;lÞ

ð cr

br
1
i1

cr

br
1

i1�1ð Þ
K x� dk;l; r

r;
cr

2br
1

� �
dx

0
@
�
ð2p

br
2
i2

2p
br
2

i2�1ð Þ
K x� /k;l; r

r;
p
br

2

� �
dx

�
ð p

br
3
i3

p
br
3

i3�1ð Þ
K x� hk;l; r

r;
p

2br
3

� �
dx

�
ð p

br
3
i4

p
br
3

i4�1ð Þ
K x� hl;k; rr;

p
2br

3

� �
dx

1
A;

(4)

Fig. 2. Schematic representation of a protein tertiary structure with four types

of structural features. First, the residue–residue pairwise features encode rela-

tive geometry of residues k and l. These features are the distance dk ;l between

Ca atoms, and three angular parameters /k ;l ; hk ;l and hl;k . Second, each dis-

tance between a pair of heavy backbone atoms within a certain cutoff dis-

tance, e.g. Ck�1
a and Nlþ1, contributes to the backbone atoms’ features. Third,

the hydrogen bonding features are based on the orientations of the donor-ac-

ceptor pairs of atoms relative to the respective residues, which are defined by

the donor angles hH, the acceptor angles hO, and the bond lengths r. Finally,

the solvation features are comprised of relative positions of the Ca atoms with

respect to explicitly generated regular grid of water oxygens Wp (bulk water)
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where br
t is the number of bins for the tth descriptor, it 2 f1; . . . ;br

tg
are the indexes of bins into which the interval of possible values for

the tth descriptor was partitioned, and the sum is taken over all resi-

due–residue pairs (k, l) of certain types ða0; a00Þ 2 A2 for which the

distance between their alpha carbon atoms is less than cr þRk þ Rl,

where Rk and Rl are the effective side-chain sizes of the kth and lth

residues correspondingly. These side-chain sizes vary from 0Å for

glycine, to 6:3Å for arginine. We take cr ¼ 5Å as the cutoff distance,

br
1 ¼ 10 bins for the distance descriptor, and br

2;3 ¼ 12 bins for the

angle descriptors. These descriptor parameters were chosen on the

cross-validation step described below. We have also conducted add-

itional experiments where we excluded pairs of residues neighboring

in the protein sequence (nr > 0 in Fig. 1), but the cross-validation

revealed that counting all such pairs (nr ¼ 0) works best. To pre-

serve sparsity of the features, the support width h of each truncated

Gaussian kernel [see Eq. (1)] was set to one half of the respective

bin’s width.

2.1.2 Backbone atom–atom pairwise features

The second type of structural features corresponds to interactions

between the backbone atoms. We use residue-specific backbone

atom types Ga. More precisely, we define types of heavy backbone

atoms of each amino acid by their element symbols (C, N, O) and

the amino acid type,

Ga ¼ A� fC;N;Og
¼ fðAla;CÞ; . . . ; ðAla;OÞ; ðArg;CÞ; . . . ; ðArg;OÞ; . . .g: (5)

Overall, we use 22�3 backbone atom types. We iterate over

each pair of atoms of certain types within the cutoff distance ca ¼
7Å and describe their relative configuration by the inter-atomic dis-

tance. To compute the CNDF, we use the following formula,

dg0g00 ðiÞ ¼
X
ðk;lÞ

ð ca

bai

ca

ba i�1ð Þ
K x� dk;l; r

a;
ca

2ba

� �
dx; (6)

where ba ¼ 25 is the number of bins, i 2 f1; . . . ;bag are the indexes

of bins into which the interval ½0; ca� was partitioned, and the sum is

taken over all atom–atom pairs (k, l) of all types g0; g00 2 Ga within

the cutoff distance ca specified above. Similarly to the case of the

residue–residue pairwise descriptors, the conducted cross-validation

revealed that counting all covalently bonded atoms in proteins

(na ¼ 0 in Fig. 1) works best.

2.1.3 Hydrogen bonding features

The structural features of the third type represent the hydrogen

bonding interactions. To compute CNDF for the hydrogen bonds,

we iterate over all donor-acceptor pairs ðN;OÞ in the backbone

within the cutoff distance ch ¼ 6Å. To describe the directionality of

these interactions, three descriptors shown in Figure 2 are used.

These are the distance r between the hydrogen atom H and the oxy-

gen atom O, the donor angle hH ¼ NHO, and the acceptor angle

hO ¼ HOC. Then, we compute CNDF dði1; i2; i3Þ with bh
1;2;3 ¼ 6

bins as for the case of residue–residue pairwise descriptors. The

CNDF accumulates all pairs ðN;OÞ observed in amino acids that are

spaced apart in at least nh ¼ 2 positions in the protein sequence, i.e.

we skip all the ðN;OÞ pairs where the atoms N and O occur in the

same residue or residues topologically neighboring in the amino acid

sequence.

2.1.4 Solvent–solute features

To take into account the solvent–solute interactions, which make up

the fourth type of structural features, we explicitly construct a regular

grid of water oxygen atoms around the protein with a period of

rs ¼ 3Å, as explained in (Artemova et al., 2011; Grudinin et al.,

2017). Each point of the grid is located further than vs ¼ 2Å from any

protein backbone atom but closer than 20Å to at least one backbone

atom. Note that we use only coordinates of the protein backbone

atoms to construct the grid. Then, for each pair of alpha carbon and

generated water oxygen atoms ðCk
a ;W

pÞ within the cutoff distance

cs ¼ 15Å, we compute two descriptors. These are the distance dk;p be-

tween these two atoms, and the angle hk;p between vectors Ck
aCk

b and

Ck
aWp pointing towards the side-chain and the water oxygen, respect-

ively. The distance cs ¼ 15Å is made somewhat large to implicitly in-

clude the interactions of solvent with the protein side-chains.

To eliminate the effect of abrupt appearing and disappearing of

water oxygens interacting with the protein atoms at short distances,

we count interactions between alpha carbons and water oxygens

with weights that smoothly decay when the oxygen atom

approaches the protein backbone. First, for each water oxygen atom

Wp, we calculate the distance between Wp and its nearest imaginary

side-chain defined as follows:

dp :¼ min
k

dðWp;Ck
aÞ � Rk; (7)

where dðWp;Ck
aÞ is the distance between atoms Wp and Ck

a , and Rk is

the effective side-chain size of the kth residue. Then, the weights for

the water oxygens are calculated as follows. The weight wp for the

water oxygen atom Wp equals to 0 if the distance between Wp and its

nearest side-chain, i.e. dp in Eq. (7), is less than the minimum threshold

distance vs, and wp grows linearly to 1 when increasing the distance dp:

wp ¼
0; dp < vs;
dp � vs

D
; vs � dp < vs þ D;

1; otherwise;

8>><
>>: (8)

where D ¼ 1Å is the width of the penalized window. Then, for each

amino acid type a 2 A, we compute weighted CNDF daði1; i2Þ as

follows:

daði1; i2Þ ¼
X
ðk;pÞ

wp

ðji1

ji1�1

K x� dk;p; rs;
cs

2bs
1

� �
dx

 

�
ð p

bs
2
i2

p
bs
2

i2�1ð Þ
K x� hk;p; rs;

p
2bs

2

� �
dx

1
A;

(9)

where numbers of bins for the distance and angle descriptors are set

to bs
1 ¼ 3 and bs

2 ¼ 2, respectively; ji ¼ vs þ cs�vs

bs
1

i; i ¼ 0; . . . ; bs
1 are

the bin edges for the distance descriptor, and the sum is taken over

all alpha carbon atoms Ck
a and over all generated water oxygen

atoms Wp in the grid. The specific values for parameters vs ¼ 2Å

and D ¼ 1Å were chosen at the cross-validation stage along with the

values of other tunable parameters.

2.2 Machine learning
To train the SBROD scoring function, we apply Ridge Regression, a

classical machine learning technique to build a linear model, for

which the scores are the weighted sums of features extracted from

the assessed instances. The problem of training a scoring function

can be formulated as follows. Let us denote the space of all protein

structures by P, and let D1; . . . ;Dn � P be decoy sets, where each

decoy set Di is a set of protein models corresponding to the same tar-

get protein structure P
ðiÞ
0 :
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Di ¼ f P
ðiÞ
0|{z}

native

;P
ðiÞ
1 ; . . . ;P

ðiÞ
ti|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

protein models

g � P; i ¼ 1; . . . ;n; (10)

and let S�ðPðiÞj ;P
ðiÞ
0 Þ denote the ground truth score of the model P

ðiÞ
j

from the decoy set Di, which reflects the similarity between the pro-

tein model P
ðiÞ
j and the native protein conformation P

ðiÞ
0 . Let f : P !

R
k be the feature extractor described in Section 2.1. Our task is to

train a scoring function Sw;f : P ! R by minimizing the regularized

empirical loss

min
w;b

Rðw; bÞ þ
Xn

i¼1

Xti

j¼0

L
�

Sw;fðPðiÞj Þ þ bi; S�ðPðiÞj ;P
ðiÞ
0 Þ
�

(11)

over parameters w 2 R
k and b 2 R

n. Here we introduce additional

bias parameters bi 2 R; i ¼ 1; . . . ;n; to make the loss function L in-

dependent of the score shifts equal for all protein models in the

decoy set Di, since we are interested only in ranking capacity of the

trained scoring function. That is, we are only interested in the cap-

ability of the scoring function Sw;fðPÞ to rank protein models in Di

but not to predict the exact ground truth scores S�. In other

words, scoring functions Sw;fðPÞ and Sw;fðPÞ þ
Pn

i¼1

Pti

j¼1 bi1½P ¼
P
ðiÞ
j � 8b1; . . . ; bn 2 R have the same performance when ranking the

protein models from the training decoy sets D1; . . . ;Dn.

2.2.1 Training set

We train the SBROD scoring function on protein models from vari-

ous CASP (Critical Assessment of protein Structure Prediction)

experiments. We used multidomain models, as training on models

split into single domains did not provide any noticeable change in

the performance of the trained scoring function. For the same rea-

son, we did not filter out any abnormal structures or target struc-

tures with all models of poor quality. Server predictions participated

in CASP were downloaded from the official CASP website at http://

predictioncenter.org/download_area/ and were used in training as

protein decoy models.

The total number of structural features extracted from the train-

ing protein models was 4 371 840 for the residue–residue features

(with 99.92% of zeros on average, i.e. average sparsity), 239 775

for the backbone atom–atom features (96.29% sparsity), 216 for h-

bonding (65.32% sparsity) and 138 for solvent–solute (27.32%

sparsity). The average total number of nonzero elements in the fea-

tures was 12 617.

Augmenting training sets with NMA-based decoy protein mod-

els. We propose a new approach for augmentation of protein decoy

sets. For each target structure in the CASP training set, we generate

random structure perturbations based on the Normal Mode

Analysis. These decoy models are generated by the NOLB tool

(Hoffmann and Grudinin, 2017) combining deformations along 100

slowest normal modes with random amplitudes. We generate 300

decoy models for each target structure with RMSD in the range of

0:5–6Å.

2.2.2 Model scores

Although there are multiple ways to measure the similarity between

protein models and target structures, the most accepted one in the

protein structure prediction community is the global distance test

total score (GDT-TS). The GDT-TS of a protein model is an average

percent of its residues that can be superimposed with the corre-

sponding residues in the target structure under selected distance cut-

offs of 1, 2, 4 and 8Å. We use the TM-score utility developed by

Zhang and Skolnick (2007) to compute the GDT-TS of protein

models. The computed GDT-TS of a protein model P
ðiÞ
j against its

corresponding target structure P
ðiÞ
0 (see Section 2.2 for notations) is

denoted by S�ðPðiÞj ;P
ðiÞ
0 Þ and treated as the ground truth score of the

model P
ðiÞ
j .

2.2.3 Ranking model

In our method (11), we use a linear ranking function Sw;fðPÞ ¼
wT fðPÞ with quadratic loss function and ridge regularization,

Lðx; yÞ ¼ ðx� yÞ2; Rðw;bÞ ¼ a jjwjj22 þ
1

b2
jjbjj22

 !
: (12)

Thus, the empirical loss minimization (11) can be rewritten as

follows,

min
~w

ajj ~wjj22 þ
Xn

i¼1

Xti

j¼0

�
~wT~fðPðiÞj Þ � S�ðPðiÞj ;P

ðiÞ
0 Þ
�2

; (13)

which allows to train the scoring function using standard solvers,

where

~fðPðiÞj Þ ¼ ½f1ðPðiÞj Þ; . . . ; fkðPðiÞj Þ; 0; . . . ; 0; b|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
i

;0; . . . ; 0�T 2 R
kþn;

~w¼ ½w1; . . . ;wk; b1; . . . ; bn�T 2 R
kþn:

(14)

Optimization. The optimization problem (13) is reduced to a

system of linear equations and is solved by the conjugate gradient it-

erative method implemented in the SciPy Python library (Jones

et al., 2001), adapted particularly to sparse matrices of a huge

dimension.

Cross-validation. To estimate the best values of the tunable

parameters in the feature extraction procedure (br
i , cr, nr, ba, ca, etc.,

see Fig. 1), and also to select the best regularization parameters a

and b in (13) and (14), we use a 3-fold cross-validation on the

CASP[5-10] datasets. This is a standard technique for tuning free

parameters of a predictive model. More precisely, the original data-

set is randomly partitioned into k (here k¼3) even parts. Then, the

predictive model is trained on k – 1 parts and validated on the

remaining single part. This process is repeated k times with each of

the k parts used exactly once as the validation data. The k results

from the folds are then averaged to produce a single estimation serv-

ing as a criterion of picking the best free parameters of the predictive

model. Thus, all the training CASP[5-10] data is used for both train-

ing and validation. However, the remaining CASP[11-12] datasets

are not involved in this process and are left for the final evaluation.

As a result of the described process, the regularization parameters

were set to be a ¼ 5, b ¼ 50. The optimal parameters of the feature

extraction procedure are specified above in Section 2.1.

3 Results and discussion

We measured the performance of SBROD on the very recent

CASP11 and CASP12 Stage1 and Stage2 datasets (Moult et al.,

2016). We downloaded these datasets from the official CASP web-

site at http://predictioncenter.org/download_area/ and merged them

with the published crystallographic target structures. As a result, we

obtained 84 and 83 decoy sets of protein models with the corre-

sponding target structures for the CASP11 Stage1 and Stage2 data-

sets, respectively. Similarly, we obtained 40 decoy sets for CASP12

Stage1 and 40 decoy sets for CASP12 Stage2. The ground truth

GDT-TS values were computed using the TM-score utility (Zhang

and Skolnick, 2007). The rest of CASP11 and CASP12 data were fil-

tered out either because their corresponding target protein structures

had not been published on the official CASP website or the TM-
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score utility terminated for those structures with error. No other

data were filtered out.

To estimate the performance of a scoring function S : P ! R on

a decoy set D ¼ fP0; . . . ;Ptg with a target structure P0 from the test

set, we evaluate the predicted scores SðPjÞ; j ¼ 0; . . . ; t and then, es-

timate the following performance measures:

• score loss

LossðS;DÞ ¼ jS�ðP̂;P0Þ � max
j¼1;...;t

S�ðPj;P0Þj; (15)

where P̂ ¼ argmaxP2fP1 ;...;Ptg SðPjÞ is the top-ranked protein

model;

• the Pearson correlation coefficient between predicted scores SðPjÞ
and the ground truth S�ðPj;P0Þ for decoy models j ¼ 1; . . . ; t;

• the Spearman rank correlation coefficient, i.e. the Pearson correl-

ation coefficient between ranks of scores rgSðPjÞ and rgS�ðPj;P0Þ,
where rgXj denotes the rank of the value Xj in a set of numbers

fXjgt
j¼1;

• the Kendall rank correlation coefficient.

Note that the target protein structures P0 are excluded when esti-

mating the performance measures and are used only to compute the

ground truth scores of the decoy protein models. Finally, we com-

pute the average of the estimated performance measures over all

decoy sets in the test set.

3.1 Smoothness of CNDF
The parameters of calculated CNDF (see Section 2.1 for definition)

affect the extracted features and hence the performance of SBROD.

Although the parameters of the feature extraction procedures were

either optimized on the cross-validation stage or chosen manually,

the smoothing parameters rr, ra, rh, rs were tuned independently.

Moreover, these parameters were set to zero during all training

stages (i.e. only degenerate CNDF with r! 0 in the truncated

Gaussian kernel (1) were used in training) to increase sparsity of the

features in training sets, which reduced the complexity and made the

training tractable.

To optimize the smoothing parameters and thereby to improve

the scoring capacity of SBROD, we first trained a distinct scoring

function on the CASP[5-9] datasets without smoothing, i.e.

ra ¼ rr ¼ rh ¼ rs ¼ 0. Then, we measured the dependence of the

four performance measures described above (mean score loss, mean

Pearson, Spearman and Kendall rank correlation coefficients) on

values of the smoothing parameters when testing on the CASP10

dataset (Stage1 and Stage2 combined) with different levels of

smoothing by changing the support widths of the truncated

Gaussian kernels ra, rr, rh, rs. Figure 3 shows the ratio of the pre-

diction performance with and without the feature smoothing. One

can see that the smoothing technique improves the performance of

the scoring function. According to all the performance measures, the

optimal smoothing parameter appeared to be r ¼ 0:187. Thus, we

used this value in all other experiments.

3.2 Feature contributions
To calculate individual contributions for all the four types of struc-

tural features, we set to zero all trained weights wi [see Eq. (14)] cor-

responding to three out of the four feature groups that are not under

consideration [see Eq. (13)] and estimated the performance meas-

ures on the CASP11 Stage2 test set. Then, we repeated this proced-

ure for each of the other three feature types. Table 1 lists the results.

It can be observed that the features corresponding to residue–residue

pairwise interactions contribute to the performance of SBROD the

most. However, features representing backbone atom–atom pair-

wise interactions ensure the best GDT-TS loss performance. We

should also note that the protein–solvent interactions alone already

give information sufficient to score protein models with a fair

enough performance. Weights respective to the hydrogen bonds fea-

tures provide the poorest predictive ability. This might be the case

because the information about the hydrogen bonds is already

included in other features and can be inferred from the relative

orientation of protein residues, for example. Finally, one can see

from Table 1 that usage of all the proposed features provides a sig-

nificant gain in performance of SBROD compared to the individual

contributions.

3.3 Amount of training data
An interesting question is whether we can improve the performance

of our scoring function by training on more decoy sets or by artifi-

cially augmenting the training set. To study this, we conducted a

computational experiment where we trained SBROD on different

subsets of the CASP[5-10] datasets using both CASP server submis-

sions and NMA-based decoy protein models (see Section 2.2.1). The

trained scoring functions were validated on the CASP11 Stage2

dataset. Figure 4 shows the learning curves for estimated perform-

ance measures. One can observe that the performance of SBROD

trained on the NMA-based decoy protein models becomes stable

when the number of decoy sets used for training reaches 300, and

no further extension of the training set improves this performance.

In contrast, the performance of SBROD trained on the CASP protein

models grows steadily when increasing size of the training set. Note

that usage of both datasets combined together improves the correl-

ation criteria for training sets with more than 150 decoy sets.

Fig. 3. The performance of SBROD on the CASP10 dataset (Stage1 and

Stage2 combined) for different values of the smoothing parameters

ra ¼ rr ¼ rh ¼ rs ¼ r. The SBROD scoring function was trained on the

CASP[5-9] datasets using features without smoothing (r¼0)

Table 1. Contributions of different feature groups to the SBROD

performance

Feature groups GDT-TS loss Pearson Spearman Kendall

All features 0.057 0.441 0.426 0.298

Residue–residue 0.078 0.380 0.365 0.253

Backbone atom–atom 0.069 0.344 0.327 0.224

Solvation shell 0.107 0.267 0.271 0.189

Hydrogen bonds 0.112 0.142 0.126 0.089

Note: This was measured on the CASP11 Stage2 dataset.
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Finally, Figure 4 makes reasonable the assumption that the perform-

ance of SBROD can be improved by extending the training set, e.g.

by including the CASP12 protein models.

3.4 Comparison with the state-of-the-art
To compare the performance of SBROD against nine state-of-the-

art QA methods, we first used the results obtained by Cao and

Cheng (2016). They assessed the performance of several QA meth-

ods against the ground truth GDT-TS computed with the LGA util-

ity (Zemla, 2003) for structures with side-chains repacked with

SCWRL4 (Krivov et al., 2009) on the CASP11 Stage1 and Stage2

datasets. Since the LGA utility (Zemla, 2003) is not openly avail-

able, we used the TM-score utility (Zhang and Skolnick, 2007) in-

stead. Nonetheless, SBROD is not sensitive to the side-chains

packing, and the difference between the GDT-TS computed by the

TM-score and LGA utilities is negligible. Therefore, the measure-

ments estimated by Cao and Cheng (2016) are consistent with ours,

measured as described above, and all of these can be fairly compared

to each other.

Supplementary Table S1a and b in Supplementary Material list

the performance measures computed for the SBROD scoring func-

tion (trained on the CASP[5-10] data augmented with the generated

NMA-based decoy models, with the CNDF smoothing parameters

of ra ¼ rr ¼ rh ¼ rs ¼ 0:187 on the testing stage) and for nine other

state-of-the-art methods on the CASP11 Stage1 and Stage2 datasets,

correspondingly. It can be seen that our method outperforms all

other methods on both stages of the CASP11 experiment if assessed

by the mean score loss, and it is highly competitive to the other

methods if assessed by the other performance measures.

We also repeated a similar experiment using the CASP12 Stage1

and Stage2 data. For this experiment, the SBROD function was

trained on CASP[5-11] data augmented with the generated NMA-

based decoy models, and more recent methods were added for the

comparison (Section B in Supplementary Material provides details

on those). Table 2 list the results on the original CASP12 server sub-

missions, and Table 3 list the results for the CASP12 data prepro-

cessed with side-chains repacking. As in the previous experiment,

we can see that SBROD is highly competitive to the other methods,

especially on the Stage2 data.

Finally, we assessed the performance of SBROD together with

several other QA methods on the MOULDER dataset (Eramian

et al., 2006). This is a conventional dataset for testing physics-based

and statistical energy potentials. Supplementary Table S2a in

Supplementary Material lists the results and one can see that

SBROD is among the best performers there as well.

4 Conclusion

In this paper, we presented SBROD, a novel method for the single-

model protein quality assessment. SBROD was developed in a gen-

eral supervised machine learning framework. First, features were

extracted and then, a predictive model was trained to construct the

SBROD scoring function. It utilizes only geometric structural fea-

tures, which can be directly extracted from the conformation of the

protein backbone. Thus, conformations of the protein side-chains

are not taken into account when ranking the protein structures. The

SBROD scoring function includes four contributions from residue–

residue, backbone atom–atom, hydrogen bonding, and solvent–sol-

ute pairwise interactions. Performed computational experiments on

diverse structural datasets proved SBROD to achieve the state-of-

the-art performance of single-model protein quality assessment.

More precisely, on both Stage1 and Stage2 datasets from the

CASP11 protein structure prediction exercise (see Supplementary

Table S1a and b), SBROD outperformed all other assessed scoring

functions if ranked by mean GDT-TS loss, and it provided very com-

petitive correlations with the ground truth GDT-TS values. On the

CASP12 dataset (see Tables 2–3) the results of SBROD were also

very competitive to the state-of-the-art methods, especially for the

Stage2 subsets. It is also worth mentioning that SBROD, being based

on the geometrical features only, surpasses many meta algorithms

that use as features scores and predictions from other QA methods

and tools. At the same time, SBROD is one of the least demanding

QA methods and hence it can be also easily used by meta algorithms

as a base predictor. The investigated learning curves, which measure

the dependence of the SBROD’s performance on the size of the

training set, suggest that the method can be significantly improved

just by increasing the size of the training set. Furthermore, we pro-

posed a method for augmenting the protein training decoy sets

required by supervised learning with the NMA-based decoy protein

models. These decoy models can be easily generated by the NOLB

Fig. 4. Learning curves for the performance of SBROD on the validation set as

a function of the number of training decoy sets. The training was performed

on random subsamples of CASP[5-10]. The validation was done using the

CASP11 Stage2 set

Table 2. Performance of the selected QA methods measured on the

CASP12 dataset, sorted by the Spearman correlation

QA Method Loss Pearson Spearman Kendall Z-score

(a) CASP12 Stage1

ProQ2-refine 0.098 0.623 0.651 0.503 2.403

ProQ2 0.099 0.633 0.646 0.495 2.327

ProQ3-repack 0.078 0.634 0.638 0.487 2.512

ProQ3 0.028 0.661 0.630 0.475 3.000

SBROD (this study) 0.076 0.649 0.612 0.462 2.535

VoroMQA 0.085 0.611 0.554 0.414 2.460

RWplus 0.132 0.479 0.465 0.344 2.090

(b) CASP12 Stage2

SBROD (this study) 0.069 0.614 0.559 0.406 1.024

ProQ2-refine 0.096 0.590 0.538 0.388 0.731

ProQ3 0.089 0.572 0.535 0.386 0.898

ProQ2 0.091 0.578 0.529 0.381 0.809

ProQ3-repack 0.070 0.601 0.526 0.381 1.078

VoroMQA 0.106 0.559 0.501 0.362 0.692

RWplus 0.103 0.417 0.378 0.265 0.778

Note: Native protein structures were filtered out from the dataset. The se-

cond column lists GDT-TD losses, the last column lists average Z-scores esti-

mated over the dataset.
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tool, which is computationally fast and easy to use, as perturbations

of the target protein structures from the training set. The conducted

computational experiment revealed that extending the initial train-

ing set with the NMA-based perturbations reliably enhances the per-

formance of the learned scoring function if sufficient number of the

training data is used. The proposed technique for extracting geomet-

rical features as continuous functions of atomic coordinates makes

the SBROD scoring function also continuous in these coordinates.

Therefore, it allows to apply SBROD for continuous gradient-based

optimization of protein conformations. In addition, since SBROD

provides a residue-pairwise-decomposable scoring function for as-

sessment of coarse-grained protein models, it can be also used to as-

sess the backbone conformations for various protein sequences in

the computational protein design. The method is freely available at

https://gitlab.inria.fr/grudinin/sbrod as a server or as a standalone

executable with described use-cases, manuals and scripts used for

training and easily adaptable for using with custom datasets. The

procedures for feature extraction implemented in Cþþ11 are avail-

able on request.
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