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Abstract

Motivation: In recent years, single-cell RNA sequencing enables us to discover cell types or even sub-

types. Its increasing availability provides opportunities to identify cell populations from single-cell

RNA-seq data. Computational methods have been employed to reveal the gene expression variations

among multiple cell populations. Unfortunately, the existing ones can suffer from realistic restrictions

such as experimental noises, numerical instability, high dimensionality and computational scalability.

Results: We propose an evolutionary multiobjective ensemble pruning algorithm (EMEP) that

addresses those realistic restrictions. Our EMEP algorithm first applies the unsupervised dimension-

ality reduction to project data from the original high dimensions to low-dimensional subspaces;

basic clustering algorithms are applied in those new subspaces to generate different clustering

results to form cluster ensembles. However, most of those cluster ensembles are unnecessarily

bulky with the expense of extra time costs and memory consumption. To overcome that problem,

EMEP is designed to dynamically select the suitable clustering results from the ensembles.

Moreover, to guide the multiobjective ensemble evolution, three cluster validity indices including

the overall cluster deviation, the within-cluster compactness and the number of basic partition clus-

ters are formulated as the objective functions to unleash its cell type discovery performance using

evolutionary multiobjective optimization. We applied EMEP to 55 simulated datasets and seven real

single-cell RNA-seq datasets, including six single-cell RNA-seq dataset and one large-scale dataset

with 3005 cells and 4412 genes. Two case studies are also conducted to reveal mechanistic insights

into the biological relevance of EMEP. We found that EMEP can achieve superior performance over

the other clustering algorithms, demonstrating that EMEP can identify cell populations clearly.

Availability and implementation: EMEP is written in Matlab and available at https://github.com/

lixt314/EMEP

Contact: kc.w@cityu.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-seq techniques have been proved to be effective for

discovering new cell types by detecting subpopulations in a hetero-

geneous cell population based on transcriptomic profiles. In fact, the

identification of cell types from single-cell RNA-seq data is consid-

ered as a clustering problem in unsupervised learning. Therefore,

computational methods including k-means, principal component

analysis and spectral clustering (SC) are frequently adopted for

identifying cell types. The rapid development in RNA-seq enables us

to sequence massive amounts of single-cell RNA-sequencing data,

which pose computational challenges; for instance, transcript ampli-

fication noise, dropout events, high-dimensionality and data sparsity

(Kiselev et al., 2017; Wang et al., 2017). Those computational chal-

lenges brought difficulties in developing effective unsupervised

clustering on single-cell RNA-seq data for cell population

interpretations.
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In the past, application-specific unsupervised clustering methods

have been developed to address those computational challenges; for

instance, Kiselev et al. (2017) proposed an unsupervised clustering

called single-cell consensus clustering (SC3), which integrates mul-

tiple cluster labels by a consensus approach and can improve cell

type identification from the transcriptomes of neoplastic cells. Wang

et al. (2017) proposed single-cell interpretation via multikernel

learning (SIMLR) by learning similarity measures from single-cell

RNA-seq data. Zhu et al. (2017) applied the classic non-negative

matrix factorization (NMF), which is compared with other unsuper-

vised clustering methods; the results demonstrate that the non-NMF

can identify interaction modules. Zhang et al. (2018a) utilized mul-

tiple single-cell populations from biological replicates (scVDMC)

for single-cell RNA-seq interpretation. The scVDMC algorithm is a

multitask learning method with embedded feature selection to cap-

ture the differentially expressed genes simultaneously. Zhang et al.

(2018b) proposed an interpretable framework named DendroSplit

based on feature selection to uncover multiple levels of single-cell

RNA-seq clustering problems. Park et al. (2018) proposed a novel

SC framework using multiple doubly stochastic similarity matrices

to form a similar matrix for clustering cell types. Yang et al. (2017)

presented Single-cell Analysis via Iterative Clustering to find the op-

timal set of signature genes for separating cells into distinct groups

based on iterative clustering with the best parameters. However, it is

hardly believed that each of those unsupervised clustering methods

can be the all-time winner across all datasets for single-cell RNA-seq

interpretations. In fact, each clustering algorithm has its own

strengths and weaknesses; different clustering algorithms provide

different performance on different single-cell RNA-seq datasets.

Therefore, it is difficult for users to decide which clustering algo-

rithm is the most appropriate choice for single-cell RNA-seq data.

Cluster ensembles have emerged as an effective method that can

integrate solutions from multiple individual unsupervised clustering

algorithms into consensus results. Cluster ensembles have been

proved effective in solving real-world problems: ensemble clustering

for medical diagnostics (Greene et al., 2004), fuzzy ensemble cluster-

ing (Avogadri and Valentini, 2009), link-based cluster ensemble

(LCE) method (Iam-On et al., 2010a,b), graph-based consensus clus-

tering (Yu et al., 2007) for DNA microarray data, ensemble frame-

work for clustering protein–protein interaction networks (Asur

et al., 2007), ensemble non-NMF methods (Greene et al., 2008) and

knowledge-based cluster ensemble for cancer discovery on biomo-

lecular data (Yu et al., 2011). A detailed list of cluster ensembles

could be referred to the past survey (Yang et al., 2010).

Unfortunately, most of those existing cluster ensembles methods can

produce unnecessarily large ensembles at the expense of extra time

costs and memory consumption. To address those limitations,

ensemble pruning is proposed to select suitable clusters from the en-

semble. In fact, the goal of ensemble pruning is to reduce the number

of clusters without any sacrifice on accuracy. Intuitively, the objec-

tives of ensemble pruning involve both maximizing the generaliza-

tion performance and minimizing the number of clusters for

regularization. Unfortunately, those two objectives are usually con-

flicting; the optimal decision needs to be enabled as the tradeoff be-

tween those two objectives. In this case, it would be ideal to regard

ensemble pruning as a multiobjective problem rather than a single-

objective problem. Therefore, an evolutionary multiobjective ensem-

ble pruning (EMEP) is proposed to dynamically select the basic clus-

tering algorithms as an ensemble; it can be considered as a special

case of weight ensemble clusters with binary weights. Extensive

comparisons with other methods on 55 simulated datasets, 7 real

single-cell RNA-seq datasets and 2 case studies demonstrate that

EMEP shows its competitive edges over several state-of-the-art clus-

tering methods.

2 Materials and methods

2.1 Methodology overview of EMEP
In this section, we propose the EMEP algorithm for single-cell RNA-

seq data. The framework of EMEP is summarized in Figure 1.

Considering an n�m matrix X of single-cell RNA-seq data with n cells

and m genes, our proposed algorithm EMEP includes three important

components (Fig. 1). In the first component, NMF can be adopted for

dimensionality reduction of the gene space (i.e. the single-cell RNA-seq

data matrix X). Algebraically, NMF can decompose X into the product

of the non-negative n� r basis matrix W and the non-negative r�m co-

efficient matrix H. With different numbers of rank models r in

Figure 1, we generate various basis vectors W ¼ fW1;W2; . . . ;Wdg
for clustering, where d is the number of various basis vectors. In this

work, we set the number of rank models from 2 to 20. It is noted that

any basic clustering algorithm can be chosen for clustering various basis

vectors in the set W and obtain multiple cluster results. For example,

we can select the K-means (KM) clustering algorithm in this step be-

cause of its simplicity and efficient performance.

Then, EMEP removes some of the multiple cluster results p ¼
fp1; p2; . . . ;pdg and further improves the generalization performance

for clustering. Given a clustering algorithm C and the set of basis vec-

tors W ¼ fW1;W2; . . . ;Wdg; C : W ! Y maps each basis vector W

to the label space Y and Cs denotes the pruned ensemble with the

selected vectors si 2 f0; 1gd where si ¼ 1 means that the clustering re-

sult on Wi is chosen. To guide the multiobjective ensemble pruning,

three cluster validity indices (i.e. the overall cluster deviation, the

within-cluster compactness and the number of basic ensemble parti-

tions), are chosen as the objective functions, capturing multiple char-

acteristics of the evolving clusters during ensemble pruning. In the

evolution process, for different single-cell RNA-seq datasets, they re-

quire different consensus functions with different clustering algo-

rithms. Therefore, to cluster specific single-cell RNA-seq data,

different consensus functions with different clustering algorithms are

beneficial during different evolutionary stages. Therefore, a pool of

distinct consensus functions with different clustering parameter set-

tings is maintained throughout the evolution process, resulting in the

evolutionary selection competition among different clustering algo-

rithms. Among the consensus functions available, we choose three of

them for concise diversity including the connected-triple-based simi-

larity (CTS) matrix, the SimRank-based similarity (SRS) matrix and

the approximate SimRank-based similarity (ASRS) matrix. For clus-

tering, KM clustering algorithm, SC and clustering by fast search and

find of density peaks (CDP) are selected and compared.

2.2 Unsupervised dimensionality reduction
To interpret high-dimensional single-cell RNA-seq datasets, NMF is

employed to project data from the original high-dimensional spaces

to lower dimensional subspaces as the unsupervised dimensionality

reduction (Gupta and Xiao, 2011). NMF (Lee and Seung, 2001) is a

well-studied unsupervised learning algorithm to decompose the ma-

trix X into two non-negative matrices W 2 R
n�r and H 2 R

r�m by

minimizing the following objective (Frobenius norm) with non-

negativity constraints on W and H:

LNMF ¼ jjX�WHjj2F ¼
P

ijjXij � ðWHÞijj
2;

s:t: W;H � 0;
(1)

where jj � jjF denotes the Frobenius norm. To optimize the objective,

the following multiplicative update rules are iterated until convergence,
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W ¼W� XHT

WHHT
;

H ¼ H�
WTX

WTWH

(2)

After optimizing those objectives, the high-dimensional single-

cell RNA-seq datasets can be projected to lower dimensional sub-

spaces by NMF; it has been proved that the above updating process

can reach local minima of LNMF. With different rank models r,

NMF can obtain various basis matrices W. We arrange those basis

matrices W to a set W ¼ fW1;W2; . . . ;Wdg. A clustering algorithm

can then be selected as the basic partitioning algorithm to cluster

each of those different basis matrices in the set W and obtain mul-

tiple clustering results p ¼ fp1;p2; . . . ;pdg.

2.3 Objective functions
After dimensionality reduction, EMEP algorithm is proposed to

evolve multiple clustering results for RNA-seq cell type discovery.

To guide the evolution, objective functions have to be carefully

designed. We note that the goal of ensemble pruning is to maximize

the generalization performance and minimize the number of chosen

basic partition clusters. Therefore, for the first goal, we consider

two objective functions: (i) sum of distances between the cluster cen-

ters and its data points; (ii) data consistency within the same clus-

ters. For the second goal, the third objective function is designed to

minimize the number of chosen basic partition clusters.

The first objective function concerns with the clustering devi-

ation; it computes the overall deviation of partitioning

(Mukhopadhyay et al., 2015). It is calculated as the total sum of dis-

tances between data points and their corresponding cluster centers.

f1 ¼
X
ck2c

X
xi2ck

dðck;xiÞ (3)

where dðck;xiÞ is the distance (e.g. Euclidean distance) between data

point xi and its corresponding cluster center ck. Based on this defin-

ition, we can observe that it shares a similar strategy with KM.

The second objective function is to minimize the compactness of

clustering (Iam-on et al., 2010a,b); it is another commonly used

measurement. The compactness measures the average distance be-

tween every pairs of data points in the same cluster; it can be

expressed as follows:

f2 ¼
1

S

XK

k¼1

ak

P
xi ;xj2ck

dðxi; xjÞ
akðak � 1Þ=2

 !
(4)

where S is the number of cells in RNA-seq dataset. K denotes the

number of clusters. ck is the kth cluster set. ak is the number of cells

belonging to the kth cluster. Conceptually, the elements in the same

group should be as close to each other as possible; thus, the f2 value

should be minimized.

The last objective function is to minimize the number of chosen

basic partition clusters for regularization. Given a clustering algo-

rithm C and the set of basis vectors W, a map C : W ! Y between

each basis vector and the label space is constructed. Let Cs denotes

the sth pruned ensemble with the binary mask vector si 2 f0;1gd.

The number of basic partition clusters can be described as:

f3 ¼ jjsjj ¼
Xd

i¼1

si (5)

2.4 Pareto optimal approach
In EMEP, we design the overall cluster deviation, the within-cluster

compactness and the number of basic partition clusters as the object-

ive functions and treat the ensemble subsets from the whole multiple

clustering results as the candidate solutions to optimize those three

objective functions. For the first and second objectives, the lower the

score, the better-separated is the clustering between each basis vec-

tor W and the label space Y. For the third objective, the minimiza-

tion of chosen basic partition clusters is the goal of ensemble

pruning. Therefore, the problem of ensemble cluster pruning for

high-dimensional single-cell RNA-seq datasets can be regarded as a

multiobjective optimization problem on those objectives.

Interpreting single-cell RNA-seq datasets under those three conflict-

ing objectives, the difficulty lies in the existence of explainable math-

ematical solution; each objective is usually conflicting to each other. In

other words, a solution good for one objective may be bad for another.

Therefore, it is hard to search for a solution that satisfies all objective

functions; single optimality is not guaranteed for more than one object-

ive. The relationship among those objectives can be described herein: a

decision vector (also known as solution) p1
!
2 P is said to Pareto-dom-

inate the decision vector p2
!
2 P if 8e 2 f1; . . . ;Eg; feðp1

!
Þ � feðp2

!
Þ

and 9e 2 f1; . . . ;Eg; fe ðp1
!
Þ < feðp2

!
Þ, where feð�Þ is the eth objective

function as previously defined and E is the number of objective func-

tions for minimization.

Fig. 1. The overall framework of the EMEP pipeline. (a) The first part is dimension-

ality reduction; NMF can be adopted for dimensionality reduction of gene space

from the single-cell RNA-seq data matrix X. It is noted that, for various rank mod-

els, the algorithm generates various basis vectors W; (b) The second part is the

basic partitioning; for instance, the KM clustering algorithm can be chosen as the

basic partitioning algorithm. For different basis vectors in the setW, the KM clus-

tering algorithm can obtain multiple cluster solutions p ¼ fp1; p2; . . . ; pdg; (c) The

third part is EMEP. It removes the unsuitable cluster results from the ensemble.

Adaptive selection between different consensus functions and clustering algo-

rithms is executed to produce the cluster solution ensemble iteratively
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If those conditions are satisfied, the decision vector (also known as

solution) p1
!
2 P dominates the decision vector p2

!
. Taking two objectives

as an example, the relationship between the design space (i.e. solution

space) and the objective space can be exemplified in Figure 2. Ensemble

cluster pruning can be extended to find the non-dominated set of solu-

tions; its multiobjective optimization can be summarized as follows:

min

f1 ¼
X
ck2c

X
xi2ck

dðck; xiÞ;

f2 ¼ 1

S

XK

k¼1

ak

P
xi ;xj2ck

dðxi;xjÞ
akðak � 1Þ=2

 !
;

f3 ¼
Xd

i¼1

Si;

8>>>>>>>>><
>>>>>>>>>:

(6)

Here, we design the EMEP algorithm based on the decomposition

method (tchebycheff approach) to elucidate all non-dominated solutions.

2.5 Evolutionary multiobjective ensemble pruning
Following the previous sections, EMEP is proposed for clustering and

interpreting high-dimensional single-cell RNA-seq data in this section.

The EMEP process includes target vector definition, mutation, cross-

over and the tchebycheff-based decomposition approach. The mutation

and crossover operations are mainly for updating the current individu-

als in the population. The tchebycheff decomposition approach focuses

on decomposing the multiobjective single-cell RNA-seq clustering

problem into many single-objective single-cell RNA-seq clustering

subproblems.

2.5.1 Target vector definition

For initialization, a population with N parameter vectors encodes

each candidate solution pi ¼ fp1
i ;p

2
i ; . . . ;pd

i g where i ¼ f1; 2; . . . ;

Ng; each vector (or candidate solution) is also associated to each

subprobem. The initial population should cover the entire search

space as much as possible by randomizing the individuals within the

upper and lower boundaries pmax ¼ fp1
max;p

2
max; . . . ; pj

maxg and

pmin ¼ fp1
min; p

2
min; . . . ;pj

ming:

pj
i ¼ pj

min þ randð0;1Þ � ðpj
max � pj

minÞ; 8j ¼ f1;2; . . . ;dg

sj
i ¼

1 if pj
i � 0:5

0 Otherwise

(
(7)

where sj
i ¼ 1 means that the basic cluster Cj is selected and sj

i ¼ 0

means that the base cluster Cj is removed for the ith solution pi.

rand(0, 1) is a random variable within the range [0, 1].

2.5.2 Mutation

After the initialization phase, the evolution phase is mainly for mutation

and crossover operations. The mutation and crossover operations are

inspired from differential evolution (Das and Suganthan, 2011). The mu-

tation operation is employed to generate a mutant vector vi correspond-

ing to the solution vector pi, which can be described as follows:

vj
i ¼ pj

r1
þ F � ðpj

r2
� pj

r3
Þ; (8)

where r1, r2 and r3 are three indexes selected randomly from the

population. F is a differential weight parameter called scale factor

that can scale the difference vector.

2.5.3 Crossover

After the mutation phase, the crossover operation is applied to the target

vector pi and the mutant vector vi to produce the trial vector u as follows:

uj
i ¼

�
vj

i if randð0; 1Þ � CR

pj
i Otherwise

sj
i ¼

�
1 if uj

i � 0:5

0 Otherwise

(9)

where CR 2 ½0; 1� is the crossover rate, which controls the fraction

of values copied from the mutant vector. This crossover operation

copies the jth parameter of the mutant vector vi to the corresponding

element in the trial vector ui. Otherwise, It copies the jth parameter

from target vector pi. After obtaining the ui, it can be transformed

into the binary cluster selection space si, which is employed to select

the base clusters to form an ensemble to produce the final clustering

result (p	) for the ith individual.

2.5.4 Tchebycheff decomposition approach

Given a basic clustering method C and a set of basis vectors W ¼
fWigd

i¼1; C : W ! Y maps the feature space W to the label space Y.

After that, we can obtain multiple cluster results p ¼ fp1; p2; . . . ;pdg.
In our article, the number of basic cluster results is d. As we know,

the goal of our proposed algorithm EMEP is to prune clusters from

the ensemble and further improve the generalization performance. To

obtain the well-separated clusters with modal regularization, our algo-

rithm decomposes the problem into a number of single-objective sin-

gle-cell RNA-seq data clustering subproblems by the Tchebycheff

approach (Zhang and Li, 2007) and then optimize them simultan-

eously. The Tchebycheff approach can be defined as follows:

gteðpjkjÞ ¼ max
1�i�E

fkj
ijfiðpÞ � z	i jg;

i 2 f1; . . . ;Eg; j 2 f1; 2; . . . ;Ng
(10)

where E is the number of objective functions; N is the number

of evenly spread weight vectors, which is also the population size;

kj ¼ fkj
1; k

j
2; . . . ; kj

Eg is the weight vector of jth individual and the

weight vector satisfies
PE

i¼1 kj
i ¼ 1 and kj

i � 0. z	 ¼ fz	1; z	2; . . . ; z	Eg
is the ideal reference point for each z	i < minffiðpÞjx 2 Xg. In this

article, we generate N weight vectors fk1 ¼ fk1
1; k

1
2; . . . ; k1

Eg; k2 ¼
fk2

1; k
2
2; . . . ; k2

Eg; . . . ; kN ¼ fkN
1 ; k

N
2 ; . . . ; kN

E gg and decompose the

multiobjective single-cell RNA-seq data clustering problem into

N single objective single-cell RNA-seq data clustering problems.

Then, each individual represents a subproblem associated with the

weight vector k. The framework of EMEP for clustering single-cell

RNA-seq data is outlined in Supplementary Algorithm S1.

For the initialization phase, N weight vectors are generated

according to the corresponding individual. Then the neighborhood

index B is calculated by finding the T closest weight vectors. Each
Fig. 2. Relationship between the design space and the objective space and so-

lution definition for two-objective problems
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population member is randomly assigned with one of the consensus

functions from the pool and the associated basic clustering algo-

rithms are chosen randomly from the corresponding pool. Based on

the consensus functions and the basic clustering algorithm, the

selected cluster in si are combined to establish the final clustering re-

sult (p	) for the ith individual. Next, three objective functions

f1; f2; f3 can be calculated to measure the performance of the cluster-

ing result (p	). After that, the evolution phase is proposed for

population evolution using mutation and crossover operations.

By executing those two operations, we can obtain a new population

with the vector ui. The new ui can be transformed into the binary

cluster selection space si, which is employed to select the base clus-

ters to form an ensemble to produce the final clustering result (p	)
for the ith individual by the corresponding consensus function and

basic clustering algorithm. After calculating those objective func-

tions, the neighbors of each subproblem are considered to compare

with the current subproblem to find better solutions; its details are

described in Supplementary Algorithm S2. If gteðukjkkÞ is higher

than gteðpjjkkÞ, the individual pj is replaced by the new trial vector

uk. After repeating this procedure for each subproblem, each off-

spring individual is compared with the current subproblem and its

neighbors in the original population. If the trial vector uk is fitter

than the target vector pj, it demonstrates that the combination of

selected consensus function and basic clustering algorithm are suit-

able to analyze the current single-cell RNA-seq dataset of interest.

Therefore, that combination will be stored for positive selection. If

the target vector pj has better performance than the new trial vector

uk, it represents that this combination of consensus function and

basic clustering algorithm is not very suitable for the current single-

cell RNA-seq dataset. Adaptive selection is employed to select the

consensus functions and basic clustering algorithm from the pool,

exerting directional selection pressure on the fittest combination of

consensus functions and basic clustering algorithms.

2.6 Pool selection of consensus functions and clustering

algorithms
The effectiveness of ensemble algorithms for single-cell RNA-seq

datasets depends on the selected consensus functions and its associ-

ated basic clustering algorithms. However, different single-cell

RNA-seq datasets require different consensus functions with various

clustering algorithms. In addition, to cluster single-cell RNA-seq

datasets, different consensus functions with different clustering algo-

rithms can compete and outperform each other at different stages of

the evolution than a single consensus function with single clustering

algorithm as in the ensemble algorithm.

Motivated by such observation, we propose an ensemble of con-

sensus functions and clustering algorithms as adaptive selection for

evolutionary multiobjective optimization in which a pool of consensus

functions, along with a pool of algorithms corresponding to each asso-

ciated basic clustering algorithm competes to produce successful off-

spring populations. The candidate pool of consensus functions and

clustering algorithms is designed to exhibit diverse characteristics so

that they can achieve robust performance characteristics in the evolu-

tion, as depicted in Figure 3. From this figure, pi and ui are two prun-

ing solutions, which denote the selected cluster results from p to form

different ensembles. Each member is assigned with a consensus func-

tion and associated clustering algorithm taken from the respective

pools to produce the final cluster result. Then, if the generated trial

vector produced ui is better than the target vector pi, the consensus

function and associated clustering algorithm are retained with trial

vector ui which becomes the target vector in the next generation. For

the pool of consensus functions, three consensus functions including

the CTS matrix (Klink et al., 2006), the SRS matrix (Calado et al.,

2006) and the ASRS matrix (Iam-On et al., 2012) are considered. For

basic clustering algorithms in the pool, KM clustering algorithm, SC

(Von Luxburg, 2007) and CDP published on Science (Rodriguez and

Laio, 2014) are selected to evolutionarily interpret those single-cell

RNA-seq datasets for cell population identification.

2.7 Parameter settings
In order to evaluate the performance of EMEP, five parameters

including the population size (N), the number of objective function

evaluations, the scaling factor (F), the CR and the neighborhood size

(T) are set for scalability and flexibility. The detailed parameter set-

tings of our proposed EMEP are summarized as follows:

1. Settings for reproduction operators: The scaling factor (F) is 0.4

and CR is 0.1 as discussed in Supplementary Figure S1 and

Supplementary Tables S1 and S2. The parameter analysis on

those values is summarized in Figure 4.

2. Population size: The population size N is determined by the

simplex-lattice design factor H together with the objective number

E (Deb and Jain, 2014); N ¼ CM�1
HþE�1 where E is the number of

objective functions in our proposed problem and H is set to three.

3. Neighborhood size: T ¼ 4 (discussion in Supplementary Tables

S3 and S4 and Fig. 4)

4. Number of runs and stopping condition: Each algorithm is run

30 independent times on each dataset. Then, we compute the

averages of 30 independent runs and analyze the results on each

single-cell RNA-seq dataset for fair comparisons. The 1000 ob-

jective function evaluations are adopted as the termination crite-

ria. (Li et al., 2017; Li and Wong, 2018).

3 Results

3.1 Datasets
In this work, 55 simulated datasets based on a real human transcrip-

tional regulation network of 2723 genes are adopted to validate the

Fig. 3. The proposed method of adaptive selection between consensus func-

tions and basic clustering algorithms in a iterative manner. First, multiple

cluster results p are obtained after applying NMF and the basic partitioning al-

gorithm. pi and ui are two pruning solutions, which denote the selected clus-

ter results from p to form different ensembles receptively. Then, adaptive

selection can select a consensus function from the pool and then find the cor-

responding clustering algorithm to produce the final cluster result. Three con-

sensus functions including the CTS matrix, the SRS matrix and the ASRS

matrix are considered. For basic clustering algorithms in the pool, KM cluster-

ing algorithm, SC and CDP are selected. Finally, the new cluster result p	1 and

p	2 can be obtained
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performance of our proposed algorithm EMEP; the simulated data-

sets are generated based on the dynamical gene regulation model

(Liu et al., 2017) as follows:

FmRNA
i ðx; yÞ¼ dxi

dt
¼ mi � fiðyÞ � kmRNA

i � xi;

FProt
i ðx; yÞ¼ dyi

dt
¼ ri � xi � kProt

i � yi;

8i ¼ f1; . . . ;ng

(11)

where mi is the maximum transcription rate and ri is the translation

rate, kmRNA
i and kProt

i are the mRNA and protein degradation rates.

fið�Þ is the relative activation of the ith gene. For the 55 synthetic

datasets, they are provided based on a real human transcription

regulation network. Each dataset contains 200 samples, which are

classified into 4 clusters. The number of knock-out genes is varied

from 100 to 500. The noise level is varied from 0 to 0.5. Each

knock-out genes includes 11 instances for different noise levels.

On top of those 55 simulated datasets, six real-world single-cell

RNA-seq datasets and one large-scale single-cell RNA-seq datasets

(>3000 cells) are employed to test the cluster validity of EMEP. The

summary of the characteristics of the seven real single-cell RNA-seq

datasets is tabulated in Table 1.

3.2 Competitive methods
The performance of EMEP is evaluated through comparative studies

including nine well-known clustering algorithms: LCE (Iam-On

et al., 2012), entropy-based consensus clustering (ECC) (Liu et al.,

2017), SC (Von Luxburg, 2007), KM clustering, CDP (Rodriguez

and Laio, 2014), t-distributed stochastic neighbor embedding

(t-SNE) (Maaten and Hinton, 2008), SIMLR (Wang et al., 2017),

Sparse SC (SSC) (Von Luxburg, 2007) and SC based on learning

similarity matrix (MPSSC) (Park et al., 2018).

3.3 Evaluation on simulated datasets
Since all those simulated datasets have the truth labels, the external

measurements are applied to evaluate the performance of different

clustering algorithms. Two important external measurements

including normalized mutual information (NMI) and adjusted rand

index (ARI) are chosen for evaluating the consistency between the

obtained cluster labels and the true labels on each of those 55 simu-

lated datasets. To simulate the data for different subtypes (clusters),

Liu et al. (2017) assume that each subtype is characterized by a spe-

cific set of knocked-out genes. The set of the number of knocked-out

genes is [100, 200, 300, 400, 500]. The noise level is varied from [0,

0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]. Each knock-out

genes includes 11 instances for different noise levels. Therefore, for

various synthetic datasets, they have different knocked-out genes

with various noise levels. The detail description of those 55 synthetic

datasets for NMI was provided in Supplementary Table S5 and

Supplementary Fig. S2 (similarity results are obtained for ARI in

Supplementary Table S6 and Supplementary Fig. S2). From those

Tables, we found that for most datasets, EMEP is superior to other

computational methods. For 100 knock-out genes, EMEP can pro-

vide better solutions on 10 datasets. At the 0.5 noise level, SC, SSC

and MPSSC are superior to EMEP. For the rest dataset, EMEP

achieves promising results on some datasets by a large margin.

Meanwhile, we can observe that all algorithms can cluster the small

noise levels clearly with high NMI since only light perturbations are

applied for the human transcriptional regulation network. To com-

pare the overall performance of those dataset, we also summarized

the average value, as listed in the last column of Supplementary

Table S5. From the results, SC, SSC, MPSSC, SLMIR and EMEP are

clearly superior to LCE, KM, CDP, t-SNE and ECC in regard to the

average results. Meanwhile, EMEP is also competitive to, if not bet-

ter than, the SC, SSC, MPSSC and SLMIR. For the ARI, from the

experimental results in Supplementary Table S6, we can find that it

has similar performance with the NMI. Therefore, we can conclude

that our proposed algorithm EMEP performs better than nine clus-

tering algorithms in a competitive manner.

3.4 Application to single-cell RNA-seq datasets
In this section, we evaluate our proposed EMEP and other clustering

algorithms including LCE, ECC, SC, KM, CDP, t-SNE, SIMLR, SSC

and MPSSC on those seven single-cell RNA-seq datasets containing

six small-scale datasets and one large-scale dataset. The detailed de-

scription of those seven single-cell RNA-seq datasets including the

number of cells, the number of genes and the cell types are summar-

ized in Table 1. NMI and ARI are employed as the evaluation met-

rics. Figure 5 and Supplementary Table S7 summarize the clustering

performance of different algorithms measured by NMI on the six

small-scale single-cell RNA-seq data (Similar results are obtained

using ARI; see Supplementary Table S8 and Fig. S3). For statistically

significant comparisons, the Paired Wilcoxonil signed rank test is

computed to perform statistically significant testing between pairs of

algorithms in Supplementary Tables S7 and S8. Three symbols

including ‘þ’, ‘�’ and ‘
’, are designed based on P-value < 0.05.

The ‘
’ denotes that there is not any significant difference between

two compared algorithms. The ‘þ’ denotes that our algorithm

EMEP is better than other algorithms while the ‘�’ indicates the op-

posite meaning. From the results, we found that EMEP, MPSSC and

SIMLR are superior to other seven clustering algorithms. From the

Figure 5 and Supplementary Table S7, the EMEP is the best algo-

rithm while CDP algorithm performs the worst because it suffers

from the curse of dimensionality where the distances between all

pairs of points in the high dimensional and sparse data can become

meaningless. Moreover, our proposed algorithm EMEP can provide

promising results on several datasets including Buettner, Deng and

Treutlin. On the Ting dataset, our algorithm EMEP can provide the

nearly optimal accuracy. Meanwhile, we also compare EMEP with

t-SNE for those six single-cell RNA-seq data. t-SNE is a dimension-

ality reduction technique that is particularly well suited for the

Fig. 4. Figures (a) and (b) denote the average NMI and ARI values versus the

parameter analysis on F and CR under the same objective function evalua-

tions (i.e. 1000). Figures (c) and (d) denote the NMI and ARI values versus the

values of T for six small-scale single-cell RNA-seq datasets and the line chart

denotes the average values for those six small-scale single-cell RNA-seq data
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visualization of high-dimensional datasets. From the experimental

results, we can find that EMEP outperforms t-SNE on the six data-

sets; the differences between SIMLR and the t-SNE are often large,

especially for Buettner and Deng datasets. In addition to producing

2D embedding consistent with the true labels on each dataset, we

compare EMEP and t-SNE for 2D visualization as summarized in

Supplementary Figures S9 and S10. For the EMEP, the similarity

matrices for consensus functions from the data are obtained and then

the t-SNE is employed to visualize the similarity matrices. The axes

are in arbitrary units. Each point represents a cell and smaller distan-

ces between two cells represent greater similarity and vice versa.

None of the two methods used the true labels as inputs and the true

label information was added in the form of distinct colors to validate

the results. From those figures, EMEP can identify subpopulation

structures for most single-cell RNA-seq data such as Buettner dataset.

We observed that each of those three validated groups could be fur-

ther divided into subgroups and most of them are consistent with the

original cellular subpopulations (Buettner et al., 2015). As evidenced

by the experimental results, we can summarize that our algorithm

can produce better solutions than other state-of-the-art clustering

algorithms on most of the single-cell RNA-seq datasets. The reason is

that EMEP can optimize the basic partitions with ensemble pruning;

it can enable the expressive interpretations with sturdy stability. To

compare the overall performance of those clustering algorithms, we

calculate the average values on those small-scale single-cell RNA-seq

datasets as shown in Supplementary Tables S7 and S8; it demon-

strates that EMEP has significant advantages in a robust manner over

multiple runs and trials.

Among those small-scale single-cell RNA-seq datasets, we mainly

analyze two single-cell RNA-seq datasets, Buettner dataset (Buettner

et al., 2015) and Ting dataset (Ting et al., 2014) for detailed insights.

The first dataset is the Buettner dataset which has 182 embryonic

stem cells and 8989 genes with three clusters at different cell cycles

(G1, M and G2M) based on the sorting of the Hoechst 33 342-

stained cell area of flow cytometry (FACS) distribution (Buettner

et al., 2015). Figure 6a visualizes the heatmap of Buettner dataset

with three clusters and Figure 6c shows the 2D visualization of

EMEP for Buettner dataset. We observe that our algorithm EMEP

can yield significant clusters. The second single-cell RNA-seq dataset

is Ting dataset including 114 pancreatic circulating tumor cells and

14 405 genes with five clusters including single-cell transcriptomes

from MEFs, the NB508 pancreatic cancer cell line, normal WBCs,

bulk primary tumors diluted to 10 or 100 pg of RNA and classical

CTC (Ting et al., 2014). Figure 6b visualizes the heatmap of the Ting

dataset where we observe that five clusters can be found in the figure

and Figure 6d shows the 2D visualization of EMEP for Ting dataset.

Moreover, we also evaluate the robustness and effectiveness of

EMEP on the large-scale single-cell RNA-seq dataset. The Zeisel

dataset is derived from the mouse cortex and hippocampus, which

relies on unique molecule identifier assays and 3ndays counting.

Zeisel et al. (2015) analyzed the transcriptomes of mouse brain cells

and the interneurons of similar type in dissimilar regions of the

brain. The Zeisel dataset includes nine subpopulations and 3005

cells from the mouse brain. Ten clustering algorithms including

LCE, ECC, SC, KM, CDP, t-SNE, SIMLR, SSC, MPSSC and EMEP

are employed to test the performance. The experimental results are

summarized in Supplementary Figure S4. As depicted in this figure,

we can argue that our algorithm EMEP can provide better solutions

than other compared methods even for such a big dataset.

3.5 Case studies
Two case studies are conducted to reveal insights into EMEP on the

NCBI Gene Expression Omnibus (GEO) repository. The first case is

derived from pancreas islet single-cell-based identification of six

known human pancreas islet cell types (alpha cells, beta cells, delta

cells, pp cells, acinar cells and duct cells) based on the known marker

genes (Jiang et al., 2018) in contact with the surrounding acinar and

ductal cells of the exocrine pancreas. The sequencing datasets of pan-

creas islet single cells can be found in the GEO repository under the

accession number GSE73727. In this dataset, 60 single cells including

18 alpha cells, 12 beta cells, 11 acinar cells, 8 duct cells, 2 delta cells

and 9 pp cells are assayed for 4494 genes. The results of LCE, ECC,

SC, KM, CDP, t-SNE, SIMLR, SSC, MPSSC and EMEP are summar-

ized in Supplementary Figure S5. From the figure, EMEP provides

better solutions than other clustering algorithms. SIMLR and MPSSC

are the first and second runners-up in terms of NMI. For the external

Table 1. Summary of the seven single-cell RNA-seq datasets

Dataset Cells (n) Genes (m) Cell types Depth (per cell)

Buettner (Buettner et al., 2015) 182 8989 3 �3000 reads

Deng (Deng et al., 2014) 135 12548 7 �40 000 reads

Ginhoux (Schlitzer et al., 2015) 251 11834 3 �60 000 reads

Pollen (Pollen et al., 2014) 249 14805 11 �50 000 reads

Ting (Ting et al., 2014) 114 14405 5 �75 000 reads

Treutlein (Treutlein et al., 2014) 80 9352 5 �62 500 reads

Zeisel (Zeisel et al., 2015) 3005 4412 9 �50 000 reads

Fig. 5. The performance of EMEP and other nine clustering algorithms including

LCE, ECC, SC, KM, CDP, t-SNE, SIMLR, SSC and MPSSC on the six small-scale

single-cell RNA-seq datasets. The performance is measured using the NMI
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measurement ARI, EMEP obtains the best solution compared with

other algorithms while CDP is ranked the second for this pancreatic

islet single cells dataset. It indicates that EMEP is of good robustness

for single-cell RNA-seq datasets. The clustering results from different

clustering algorithms for the pancreatic islet single-cells datasets are

shown in Figure 7. Cells that are grouped in the same cluster are

annotated in the same color in each algorithm column.

The second case is human cancer cell dataset (Ramsköld et al.,

2012), derived from Smart-Seq which accession number in GEO is

GSE38495. In this dataset, there are 33 cells and 3575 features with

seven clusters including hESC cells, LNCap cells, CTC cells, PC3 cells,

SKMEL cells, T24 cells and UACC cells. The results of different clus-

tering algorithms including LCE, ECC, SC, KM, CDP, t-SNE, SIMLR,

SSC, MPSSC and EMEP are summarized in Supplementary Figure S6.

From this figure, we can find that EMEP generally performs better

than the competitors for NMI. For ARI, we observe that EMEP pro-

vides the best solutions while SSC performs the worst. Meanwhile,

Figure 7 also depicts the actual clustering results on the human cancer

cells dataset, revealing the detailed insights provided by EMEP.

3.6 Low-depth single-cell RNA-seq data
In this section, we conduct an experiment for comparing EMEP with

other computational methods on a low-depth single-cell RNA-seq

Data published in Nature Communications (Kimmerling et al., 2016).

This single-cell libraries were sequenced on a NextSeq500 using 30-

bp paired end reads to an average depth of 1 229 637 6 60 907 reads

(�6000 reads per cell) (Streets and Huang, 2014). After that,

Kimmerling dataset was created to test the C1 platform including 194

mouse cell lines with 23420 features. It consists of two groups includ-

ing C1: 89 L1210, mouse lymphocytic leukemia cells, and 105 mouse

CD8þ T-cells (Kimmerling et al., 2016). Five cells with less than 500

non-zero genes were omitted. The data can be downloaded in the

GEO repository under the accession number GSE74923. The experi-

ment results of LCE, ECC, SC, KM, CDP, t-SNE, SIMLR, SSC,

MPSSC and EMEP are summarized in Figure 8a. From the figure, we

can find that EMEP has the highest NMI values; it represents that

EMEP performs better than their competitors. This demonstrates that

the proposed methods can optimize the basic partitions with ensemble

pruning. Except EMEP, t-SNE can provide better NMI values than

other computational methods. Meanwhile, LCE, ECC and SIMLR

can generate the same NMI values. For ARI, EMEP also can provide

the best values while KM and CDP perform the worst. In addition, we

produce 2D embedding consistent with the true labels on Kimmerling

dataset as shown in Figure 8b. From the figure, we can find that dif-

ferent cells are clearly clustered in their own groups.

4 Discussion

In this study, a novel multiobjective ensemble algorithm based on evo-

lutionary pruning (EMEP) is proposed based on the observation that

not all clustering results are suitable for all single-cell RNA-seq data

distribution. In the algorithm, a dimensionality reduction method is

employed to project data from the original high-dimensional space to

low-dimensional subspaces. Three different cluster validity indices

including the overall cluster deviation, the cluster compactness and

the number of chosen basic partition clusters are proposed as object-

ive functions to capture multiple characteristics of the evolving clus-

ters. After that, EMEP is proposed to remove unsuitable clusters from

the ensemble, improving the generalization performance. Based on

the experimental results, EMEP can demonstrate significate advan-

tages in terms of NMI and ARI, compared with 9 clustering methods

on more than 60 single-cell RNA-seq datasets. Two case studies

including pancreatic islet single cells and human cancer cells are con-

ducted to demonstrate that EMEP can clearly distinguish different cell

types from single-cell RNA-seq data.

Although EMEP has a good performance for single-cell RNA-seq

data, there are some limitations in this algorithm. Since EMEP is an

ensemble-based method, it can be usually time-consuming with high

Fig. 6. (a) Heatmap visualizes the Buettner dataset including 182 embryonic

stem cells and 8989 features with three clusters in the similarity matrix.

(b) Heatmap visualizes the Ting dataset including 114 pancreatic circulating

tumor cells and 14 405 features with five clusters using the similarity matrix.

(c) 2D visualization for Buettner dataset. (d) 2D visualization for Ting dataset

Fig. 7. The clustering results from different clustering algorithms including LCE,

ECC, SC, KM, CDP, t-SNE, SIMLR, SSC, MPSSC and EMEP on the pancreas islet

single cells dataset and Human Cancer Cells dataset. Cells that are grouped in the

same cluster are annotated in the same color in each column (i.e. each algorithm)

Fig. 8. The performance of EMEP and other nine clustering algorithms includ-

ing LCE, ECC, SC, KM, CDP, t-SNE, SIMLR, SSC and MPSSC on the low-depth

single-cell RNA-seq dataset published in Nature Communications. (a) is the

performance of NMI and ARI; (b) is the 2D visualization for that dataset
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complexity (discussion in Supplementary Material). Moreover, the

final solution depends on the choice of the ensemble algorithm.

Meanwhile, since evolutionary algorithms are stochastic, there is no

guarantee that two runs under the same conditions will find the same

solutions. Itol very hard to theoretically prove and design mutation

and crossover operations to detect the appearance of the ‘best’ point.

Therefore, in this study, we run the EMEP algorithm for 30 inde-

pendent times on each single-cell RNA-seq dataset and compute the

averages for statistically significant comparisons.

For further studies, from the perspective of multiobjective evolu-

tionary optimization for single-cell RNA-seq data, multiobjective evo-

lutionary optimization including encoding schemes and selection of

final solution from the non-dominated front is still lacking. Therefore,

studies are needed to consider those areas. Meanwhile, we believe that

our study provides a refreshing view on the use of multiobjective opti-

mization for single-cell RNA-seq, enabling numerous downstream

studies on the multiobjective formulation in other problems.

Acknowledgements

The authors would like to thank reviewers for their reading time and con-

structive comments.

Funding

This work was supported by three grants from the Research Grants Council

of the Hong Kong Special Administrative Region [CityU 21200816], [CityU

11203217] and [CityU 11200218]. This research is also supported by the

National Natural Science Foundation of China under [Grant No. 61603087]

and funded by the Natural Science Foundation of Jilin Province under [Grant

No. 20190103006JH]. Meanwhile, this research is also supported by the

Fundamental Research Funds for the Central Universities [No.

2412017FZ026].

Conflict of Interest: none declared.

References

Asur,S. et al. (2007) An ensemble framework for clustering protein–protein

interaction networks. Bioinformatics, 23, i29–i40.

Avogadri,R. and Valentini,G. (2009) Fuzzy ensemble clustering based on random

projections for DNA microarray data analysis. Artif. Intell. Med., 45, 173–183.

Buettner,F. et al. (2015) Computational analysis of cell-to-cell heterogeneity

in single-cell RNA-sequencing data reveals hidden subpopulations of cells.

Nat. Biotechnol., 33, 155.

Calado,P. et al. (2006) Link-based similarity measures for the classification of

web documents. J. Am. Soc. Inform. Sci. Technol., 57, 208–221.

Das,S. and Suganthan,P.N. (2011) Differential evolution: a survey of the

state-of-the-art. IEEE Trans. Evol. Comput., 15, 4–31.

Deb,K. and Jain,H. (2014) An evolutionary many-objective optimization algo-

rithm using reference-point-based nondominated sorting approach, part i: solv-

ing problems with box constraints. IEEE Trans. Evol. Comput., 18, 577–601.

Deng,Q. et al. (2014) Single-cell RNA-seq reveals dynamic, random monoal-

lelic gene expression in mammalian cells. Science, 343, 193–196.

Greene,D. et al. (2004) Ensemble clustering in medical diagnostics. In:

Computer-Based Medical Systems, 2004. CBMS 2004. Proceedings.

17th IEEE Symposium on, Olivier,C. (ed), pp. 576–581. IEEE, Bethesda.

Greene,D. et al. (2008) Ensemble non-negative matrix factorization methods for

clustering proteinymposium onDeng</snam. Bioinformatics, 24, 1722–1728.

Gupta,M.D. and Xiao,J. (2011) Non-negative matrix factorization as a fea-

ture selection tool for maximum margin classifiers. In: Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on, Colorado Springs,

CO, USA, pp 2841–2848.

Iam-On,N. et al. (2010a) Lce: a link-based cluster ensemble method for

improved gene expression data analysis. Bioinformatics, 26, 1513–1519.

Iam-On,N. et al. (2010b) Linkclue: a matlab package for link-based cluster

ensembles. J. Stat. Softw., 36, 1–36.

Iam-On,N. et al. (2012) A link-based cluster ensemble approach for categoric-

al data clustering. IEEE Trans. Knowl. Data Eng., 24, 413–425.

Jiang,H. et al. (2018) Single cell clustering based on cell-pair differentiability

correlation and variance analysis. Bioinformatics, 1, 11.

Kimmerling,R.J. et al. (2016) A microfluidic platform enabling single-cell

RNA-seq of multigenerational lineages. Nat. Commun., 7, 10220.

Kiselev,V.Y. et al. (2017) Sc3: consensus clustering of single-cell RNA-seq

data. Nat. Methods, 14, 483.

Klink,S. et al. (2006) Analysing social networks within bibliographical data.

In: International Conference on Database and Expert Systems Applications,

Stephane,B. et al. (eds) pp. 234–243. Springer, Berlin, Heidelberg.

Lee,D.D. and Seung,H.S. (2001) Algorithms for non-negative matrix factor-

ization. In: Advances in Neural Information Processing Systems, MIT Press,

Cambridge, MA, USA, pp. 556–562.

Li,X. and Wong,K.-C. (2018) Evolutionary multiobjective clustering and its appli-

cations to patient stratification. IEEE Trans. Cybernetics, 99, 1–14.

Li,X. et al. (2017) Evolving spatial clusters of genomic regions from

high-throughput chromatin conformation capture data. IEEE Trans.

Nanobiosci., 16, 400–407.

Liu,H. et al. (2017) Entropy-based consensus clustering for patient stratifica-

tion. Bioinformatics, 33, 2691–2698.

Maaten,L. v d. and Hinton,G. (2008) Visualizing data using t-sne. J. Mach.

Learn. Res., 9, 2579–2605.

Mukhopadhyay,A. et al. (2015) A survey of multiobjective evolutionary clus-

tering. ACM Comput. Surveys, 47, 1.

Park,S. et al. (2018) Spectral clustering based on learning similarity matrix.

Bioinformatics, 1, 8.

Pollen,A.A. et al. (2014) Low-coverage single-cell mRNA sequencing reveals

cellular heterogeneity and activated signaling pathways in developing cere-

bral cortex. Nat. Biotechnol., 32, 1053.
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