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Abstract

Motivation: Estimating haplotype frequencies from genotype data plays an important role in gen-

etic analysis. In silico methods are usually computationally involved since phase information is not

available. Due to tight linkage disequilibrium and low recombination rates, the number of haplo-

types observed in human populations is far less than all the possibilities. This motivates us to solve

the estimation problem by maximizing the sparsity of existing haplotypes. Here, we propose a new

algorithm by applying the compressive sensing (CS) theory in the field of signal processing,

compressive sensing haplotype inference (CSHAP), to solve the sparse representation of haplotype

frequencies based on allele frequencies and between-allele co-variances.

Results: Our proposed approach can handle both individual genotype data and pooled DNA data

with hundreds of loci. The CSHAP exhibits the same accuracy compared with the state-of-the-art

methods, but runs several orders of magnitude faster. CSHAP can also handle with missing geno-

type data imputations efficiently.

Availability and implementation: The CSHAP is implemented in R, the source code and the testing

datasets are available at http://home.ustc.edu.cn/�zhouys/CSHAP/.

Contact: ynyang@ustc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Inferring haplotype pairs from unphased genotypes is of great import-

ance in genetic analysis. The key point is to solve the phase ambiguity

from genotype data, and there have been many methods for haplotype

inference (Browning and Browning, 2011; Liu et al., 2008; Niu et al.,

2002). Likelihood-based approaches using the expectation-

maximization (EM) algorithm and related methods are proved to be

statistically efficient under Hardy-Weinberg equilibrium (HWE)

(Excoffier and Slatkin, 1995; Qin et al., 2002). On the other hand, a

number of Bayesian methods that incorporate complex biological

knowledge have been widely studied in literature (Lin et al., 2002; Niu

et al., 2002; Stephens et al., 2001; Stephens and Donnelly, 2003;

Stephens and Scheet, 2005; Xing et al., 2007; Zhang et al., 2006).

Among those, the PHASE algorithm (Stephens and Scheet, 2005) had

been considered as a gold standard, in which an approximate

coalescent prior was used to model the clustering property of haplo-

types. For modern phasing methods, hidden Markov models (HMMs)

are often used. Under the assumption that haplotypes tend to cluster

into groups over short regions, Scheet and Stephens (2006) proposed

the fastPHASE algorithm based on HMM. This algorithm made it pos-

sible to a phase larger number of markers and samples. To reduce the

computational time of PHASE, Delaneau et al. (2008) used the binary

trees to represent the sets of possible haplotypes and proposed a linear

complexity phasing method Shape-IT (Delaneau et al., 2011). By com-

bining the local windows approach of phasing in Impute2 (Howie

et al., 2011), Delaneau et al. (2013) proposed Shape-IT v2, which has

been widely used in the 1000 Genomes Project (Delaneau et al., 2014).

Due to low rates of mutations and re-combinations in genetic

evolution and the resultant high linkage disequilibrium (LD) in the

genome, only a few haplotypes out of the large number of possible

haplotypes are present in population (Daly et al., 2001; Patil et al.,
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2001). Many algorithms have been developed to maximize different

measurements of parsimony of population haplotypes.

Clark (1990) suggested a heuristic approach to reconstruct hap-

lotypes that use the least number of distinct haplotypes. Gusfield

(2001) reformulated Clark’s algorithm into a conceptual integer lin-

ear programing (ILP) problem, then made a further modification

(Gusfield, 2003) to make it practical. Computational results

reported that the ILP method is very accurate (Gusfield and Orzack,

2005) for tightly linked polymorphisms. Moreover, Gusfield (2003)

proposed an approach to the haplotype inference problem called

Pure-Parsimony approach, which tries to find a solution that mini-

mizes the total number of distinct haplotypes used, or equivalently,

the ‘0 norm of haplotype frequency vector. Unfortunately, the

Pure-Parsimony method is NP-hard, which cannot be computed effi-

ciently. Jajamovich and Wang (2012) proposed to obtain a sparse

solution by minimizing the Tsallis entropy of the frequency vector,

which is still an NP-hard problem.

The most impressive conclusion in compressive sensing (CS) the-

ory in the field of signal processing is that sparse or compressible sig-

nals could be accurately and efficiently recovered by minimizing the

‘1 norm of signals subject to the measurements from well-behaved

under-determined linear sensing systems. Based on this, we propose

a regularization algorithm, CSHAP, to reconstruct haplotypes by

maximizing an ‘1 measure of parsimony defined as the weighted

sum of haplotype frequencies, subject to constraints of a series of

under-determined linear equations determined by estimated allele

frequencies and pairwise covariance (or LD coefficients) of geno-

types. Although the use of the first two moments as constraints may

lose information, but as we will see later the loss is acceptable and

exact or almost exact reconstruction is possible if haplotypes that

present in population are sparse.

In this article, we propose a CS framework, CSHAP, for haplo-

type inference. We first introduce the approach based on the sparse

representation of the exact allele frequencies and LD coefficients.

Then we relax the constraints by allowing estimation errors in allele

frequencies and LD coefficients. We will show that the method is ap-

plicable to both individual and pooling designs and works under

both HWE and Hardy-Weinberg disequilibrium (HWD).

Furthermore, by applying a modified EM algorithm, we can im-

prove the accuracy of the CSHAP algorithm and make it possible to

deal with missing data. Finally, based on the idea of partition-

ligation (PL) first proposed by Niu et al. (2002), we further extend

the algorithm to support long-range haplotypes. Performance of

CSHAP is evaluated and compared with other methods by simula-

tion studies and real data analysis.

2 Materials and methods

2.1 Notations
Consider q single nucleotide polymorphism (SNP) loci. Each locus is dia-

llelic and thus theoretically there are r ¼ 2q possible haplotypes. Denote

the minor allele at each locus by 1 and major allele by 0. We index the

haplotypes by the sequence of coefficients of binary expansion of

0; 1; . . . ; r, i.e. let hj ¼ ðh1j; . . . ; hqjÞ0 represent the jth haplotype vector.

For a specific locus of an individual, if both alleles have a 0 (or

1), this site is called homozygous and is encoded with a 0 (or 2).

Conversely, if the two alleles are different, the site is heterozygous

and the genotype for the locus is 1. The above encoding also works

for pooling designs. Suppose we have T pooled genotype observa-

tions at the q loci, each is from a pool of N individuals (or 2N chro-

mosomes equivalently). Let Gi ¼ ðGi1; . . . ;GiqÞ0 be the pooled

genotypes of the ith pool. Since Gi is a sum of 2N haplotypes, we

have 0 � Gik � 2N; i ¼ 1; . . . ;T;k ¼ 1; 2; . . . ; q. If N ¼ 1, then the

observations are individual genotypes and T stands for the number

of individuals. Our objective is to estimate the haplotype frequencies

p based on the genotype observations G ¼ ðG1; . . . ;GTÞ0.

2.2 Sparse representation of haplotype frequency
The minor allele frequency (MAF) for each locus and the joint prob-

ability of minor alleles at any two loci can be represented linearly

using the haplotype frequencies p. In fact, the MAFs have a linear

form representation x0 ¼ Hp, and the joint probabilities of minor

alleles can be expressed as g0 ¼ HKH0, where H ¼ ðh1; . . . ;hrÞ is a q

� r matrix and K ¼ diagfpg is a diagonal r � r matrix with diagonal

elements p (Sham et al., 2002). Although g0 is a matrix consisting of

all pairwise allele probabilities of any two loci, i.e. g0 i;j ¼
Pðlocus i ¼ 1; locus j ¼ 1Þ. These two representations are true

whether the HWE holds or not. In addition, we have the natural

constraint 10p ¼ 1 since p is a probability distribution. Now we

write the above three equations into a single linear equation:

Wp ¼ b; (1)

with

W ¼
10

H
H ^H

0
@

1
A

where the qðq�1Þ
2 � r matrix H ^H denotes the matrix whose rows

are the logical product of all pairs of H, and b consists of the scalar

1, the vector x0 and vector of the off-diagonal entries of g0, corre-

sponding to the above three constraints, respectively.

Next, we normalize matrix W such that its columns have unit ‘2
norms. Denote Ks ¼ diagðs1; . . . ; srÞ; where sj is the ‘2 norm of the jth

column of W. We denote the normalized matrix as U ¼ WK�1
s and will

call it the sensing matrix. Define p� ¼ Ksp. Then (1) can be rewritten as

Up� ¼ b (2)

Note that the sensing matrix U has dimension q2þqþ2
2 � r and the

(2) is underdetermined when q2þqþ2
2 < r ¼ 2q, or equivalently q>3.

Therefore, b can be regarded as the noiseless partial observations of

p� from underdetermined linear sensing system U.

Because only relatively few haplotypes can be present in a popu-

lation when the number of possible haplotypes is large, the principle

of parsimony has been emphasized in haplotype reconstruction

(Clark, 1990; Gusfield, 2003). Noticing the equivalency between the

sparsity of p and p�, the sparse signal p� can be recovered by solving

the following optimization problem:

min
p�2Rr

þ
jjp�jj‘0 subject to Up� ¼ b: (3)

Solving (3) is equivalent to seeking the sparsest solution in the feasible

space, which is a combinatorial optimization problem and is NP-hard.

The ‘1 norm is known as the convex envelope of the ‘0 norm

over convex set D ¼ fx 2 R
r : jjxjj1 � 1g when jjxjj1 ¼ max xi. In

other words, jjxjj‘1 is the best pointwise approximation to jjxjj‘0
among the set of convex function on D (Hiriart-Urruty and

Lemaréchal, 1993; Recht et al., 2010). Thus, instead of minimizing

the ‘0 norm of p� directly, we suggest the ‘1 minimization:

min
p�2Rr

þ
jjp�jj‘1 subject to Up� ¼ b: (4)

which is the typical form in CS theory and can be solved efficiently

by linear programing.
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The above Equation (4) is based on known exact value of b,

however, b is unknown and needs to be estimated based on genotype

observations. In the next subsection, we will make some modifica-

tions of (4) by allowing b with estimation errors.

2.3 Presence of noise
The MAFs can be readily estimated by sample means

x̂0 ¼
P

iGi=ð2NTÞ. Under the assumption of HWE, the variance–

covariance matrix of the q alleles can be estimated by sample vari-

ance–covariance matrix R̂0 ¼
P

iGiG
0
i=ð2NTÞ � 2Nx̂0x̂ 00 (Zhang

et al., 2008). Then the two-locus joint probabilities g0 ¼ R0 þx0x00
can be estimated by ĝ0 ¼ R̂0 þ x̂0x̂ 00. Then a natural estimate of b

is b̂ consisting of 1, x̂ and the off-diagonal entries of ĝ.

Now allowing error of b̂ in measuring Up�, we transform the op-

timization Equation (4) into the following robust problem:

min
p�2Rr

þ
jjp�jj‘1 subject to jjUp� � b̂jj‘2 � � (5)

where � is a tuning parameter controlling the error of estimates. This

problem is a special case of second order cone programing (Boyd

and Vandenberghe, 2004), which can be solved efficiently by many

standard approaches such as iteratively reweighted least squares or

interior-point algorithms.

The haplotype frequency pj is then estimated by p̂j ¼ p̂
�
j =sj; j ¼

1; . . . ; r; p� is the solution to (5). Necessary normalization is carried

out to ensure p̂ is a proper probability distribution.

2.4 Selection of tuning parameter �
To solve the Equation (5), we need to select a proper tuning param-

eter �. Given the fact that � ¼ 0 when b̂ ¼ b, the � should be as

small as possible as the ‘2 estimation error of the first two moments

should not be too large. However, we found that there is usually no

solution for (5) if � ¼ 0 as typically b̂ 6¼ b. On the other hand, the

estimated frequencies are degenerate to ð1;0; . . . ;0Þ0 as �!1.

It is reasonable to believe that, for sufficiently large T and N, the

estimates b̂ is very close to b with certain probability, thereby the

level of noise (‘2 error of estimates) is bounded. The � should be

related to the signal-to-noise ratio, which is directly determined by

T, N and b.

From the Central Limit Theorem in statistics, we know that if the

pool size N is large, then Gi will be asymptotically normally distrib-

uted with mean lG ¼ 2Nx0 and covariance matrix RG ¼ 2NR0 (Kuk

et al., 2008). Using this fact we obtain (Bilodeau and Brenner, 2008)

2N
ffiffiffiffi
T
p
ðx̂0 �xÞ!d Nð0;RGÞ

2NðT � 1ÞR̂0!
d WqðT � 1;RGÞ

(6)

Here !d represents convergence in distribution and WqðT �
1;RGÞ represent the Wishart distribution with T � 1 degrees of free-

dom and scale matrix RG.

Denote e ¼ b̂ � Up�, approximately we have e � Nð0;ReÞ,
where Re ¼ Varðb̂Þ. Consider the squared norm of the error

jjejj2‘2 ¼ e0e, then:

Eðe0eÞ ¼ tr ðReÞ
Varðe0eÞ ¼ 2 tr ðReReÞ

holds asymptotically. Based on the well-known concentration inequal-

ities, the probability that jjejj2‘2 exceeds its mean plus 2 or 3 standard

deviations is small (<5 or 2%, respectively). We then solve (5) with

�2k ¼ tr ðReÞ þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 tr ðReReÞ

p

and simply select k ¼ 2.

Since all the components of the vector b̂ are made up of the ele-

ments in x̂0 and R̂0, and we have obtained the asymptotic distribu-

tion of them in (6). The variance–covariance matrix Re of b̂, can be

derived or estimated from x̂0 and R̂0 naturally (details can be found

in the Supplementary Section 1.1).

2.5 The deviation of HWE
Likelihood-based methods for estimating haplotype frequencies

often require the assumption of HWE, but which may not be true if

there exists population substructure. Here we introduce the inbreed-

ing coefficient q to describe the possible dependence of the two hap-

lotypes within a subject (Zeng and Lin, 2005). The distribution of

diplotype H ¼ ½hk; hl� is assumed as:

PðHjp; qÞ ¼ ð1� qÞpkpl þ qpkIk¼l; (7)

where Ik¼l is the indicator of whether k ¼ l. Larger q means more

similar between H1 and H2. Note that if one takes q ¼ 0, then this is

equivalent to the HWE assumption. Under model (7), the variance–

covariance matrix of the genotype data is Rq ¼ ð1þ qÞR0 ¼
ð1þ qÞðg0 �x0x00Þ which can be estimated by R̂q ¼ 1

2NT

P
iGiG

0
i �

2Nx̂qx̂ 0q and x̂q ¼ x̂0 ¼ 1
2NT

P
iGi. The joint probabilities gq there-

fore are estimated by ĝq ¼ R̂q=ð1þ q̂Þ þ x̂qx̂ 0q, where q̂ is an esti-

mate of q. In this article, unless when HWE is explicitly assumed,

we adopt the following estimate

q̂ ¼
Pq

i¼1 ViPq
i¼1

�Gið1� �Gi=2NÞ
� 1;

where �Gi, Vi is the sample mean and variance of genotypes of ith

locus, respectively.

Then b can be readily estimated by the estimator b̂q ¼ b̂ðx̂q; ĝqÞ.
Now problem (5) is then modified to

min
p�2Rr

þ
jjp�jj‘1 subject to jjUp� � b̂qjj‘2 � � (8)

where � is the ‘2 error bound.

On the other hand, introducing a new estimator q̂ will increase

the variance, especially when q gets close to zero. In this case, the de-

parture from HWE is negligible and it is not worth considering an

extra inbreeding parameter, since our EM algorithm is relatively ro-

bust to deviations from HWE. An adaptive way to test the

hypothesis

H0 : q ¼ 0$ H1 : q > 0 (9)

In the simulation experiment, we compute q̂L ¼ q̂ � 1:645
ffiffiffiffiffi
v̂q

p
,

the 95% lower one-sided confidence bound, where the
ffiffiffiffiffi
v̂q

p
is the

variance of q̂ obtained by bootstrap. If q̂L > 0, we will use the

modified Equation (8). If q̂L � 0, we will ignore the inbreeding par-

ameter and still use (5).

2.6 CSHAP for individual DNA data
For individual genotyping design (N ¼ 1), the Equation (5) can ac-

curately identify the major haplotypes which really exist in the

population, but the values may be biased.

Notice that the Equation (5) does not guarantee the compatibil-

ity of haplotypes with all the observed genotypes, especially when �

is relatively large, while too small � may leads to no solution.

Therefore, we first find the smallest �0 such that solution exists.

Then we calculate the largest �k described in Section 2.4. Now we

have a range of � values ½�0; �k�. For every � that falls within this

interval, our equation will return a series of solutions with different

CSHAP 2829
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compatibility and sparsity. In all these compatible solutions, we

choose the sparsest one as p̂.

Once we get the above solution p̂, we obtain a set of haplotypes

H based on the non-zero entries of p̂. Now we can use p̂ and H as

the input of the standard EM algorithm. In each iteration, we will

only consider the haplotypes contained in H, and only update their

corresponding frequencies in p̂.

In fact, the p̂ is quite close to the true haplotype frequency, espe-

cially for common-frequency (pi � 5%) variants. Correspondingly,

H is very similar to the haplotypes that really present in sample gen-

otypes, so that we can regard H as a haplotype reference panel. For

most individuals, we can find only one compatible diplotype config-

urations in the reference panel; then, we regard these solutions as

‘solved’ and exclude them in the following iterations. Although

most of the phasing algorithm needs to update the estimated haplo-

types for every individuals in each iteration, we only consider the

remaining ones. Furthermore, when the total number of individuals

T is large, we only use the distinctive genotypes that appear in the

remaining individuals, since the number of distinctive genotypes is

very limited compared with T. These modifications will significantly

reduce the number of individuals that need to be considered in each

iteration.

Another important feature of our algorithm is that it can deal

with missing data easily. We only need to estimate sample moments

in Equation (5) based on samples which are complete on the locus

or loci involved. The missing locus is then imputed with H in the

subsequent EM procedures (details can be found in the

Supplementary Sections 1.2 and 1.3).

The resulting hybrid algorithm, referred as the CSHAP algo-

rithm, incorporates the advantages of both CS theory and EM algo-

rithm. Our algorithm can be more accurate than purely using

Equation (5) and more computationally efficient than the current

state-of-the-art algorithms.

2.7 CSHAP for large DNA pools
The haplotype estimation methods of pooled DNA data can be div-

ided into two categories: To focus on a small number of pool sizes

N (each pool contains about two to three individuals) with large

number of markers q, or to consider on a small number of markers

q but lager pool sizes N. The former can be solved with EM algo-

rithm (Yang et al., 2003), however, for the other case, the EM algo-

rithm is computationally involved and is not feasible when pool size

N � 10. Kuk et al. (2008) proposed an approximate EM (AEM) al-

gorithm based on Central Limit Theorem, which makes the method

based on EM algorithm computationally feasible for large N, with

substantial improvement in accuracy simultaneously. However, the

time consumption of AEM grows exponentially with q, which limits

the performance of AEM when q is larger.

In this case, we substitute the EM procedure in CSHAP with the

AEM algorithm. The resulting hybrid algorithm runs nearly two

orders of magnitude faster than AEM while exhibiting almost same

accuracy.

2.8 CSHAP for long-range haplotypes
Due to the computer memory constraint, our algorithm supports at

most 24–27 loci for the length of each block. When the number of

loci q exceeds this limit, we apply a special PL strategy (Niu et al.,

2002).

Assuming the genotype data consists of L ¼ K�M loci, where

M is the number of blocks and K is the length of each block.

Without loss of generality, the genotype data can be divided into M

contiguous ‘atomistic’ blocks. In most of the previously published

articles (Delaneau et al., 2011; Niu et al., 2002; Qin et al., 2002;

Stephens and Scheet, 2005;), K was usually set between 5 and 8 due

to the limitation of algorithms. In contrast, our method allows set-

ting K ¼ 16–20 while maintaining efficiency. Obviously, larger K

and smaller M can help avoid the local-mode problem (Qin et al.,

2002) of EM.

Once we have conducted the CSHAP procedure for each of M

atomistic blocks, we iteratively combine the ð2i� 1Þth block with

the subsequent ð2iÞth block until all blocks are ligated as one. Most

of the PL methods usually take D haplotypes with top estimated fre-

quencies in each block, where D can be specified between 40 and 50

(Niu et al., 2002) or be determined separately by some frequency

thresholds (Stephens and Donnelly, 2003). This ‘thrown away’ pro-

cedure can limit the number of possible concatenated haplotypes to

D2, but may lead the algorithm to trap into a local mode simultan-

eously. Here we use all estimated haplotypes in each block instead.

However, the total number of all possible concatenated haplotypes

may be significantly larger than D2. Notice that only relatively few

concatenated haplotypes are true among all those possible haplo-

types, we use CS again in this ligation step.

Next we demonstrate how to combine the block A with the

adjacent block B. From the estimated haplotype frequencies p̂A

we obtain a haplotype set HA with nA haplotypes. Denote HA ¼
ðhn1

; . . . ;hnA
Þ is a qA � nA matrix obtained by combining the haplo-

type vectors in HA by column. Similarly, we have HB and HB for

block B. Denote the set of all possible concatenated haplotypes as

HA�B. Define HAB is a ðqA þ qBÞ � ðnAnBÞ matrix which can be re-

gard as the Cartesian product of HA and HB. Similar to the structure

of W in the (1), we have:

WAB ¼
10

HAB

HAB ^HAB

0
@

1
A

and UAB;KAB; p
�
AB; bAB correspondingly.

Now we transform the ligation problem into this following prob-

lem, which has been already resolved in the above.

min
p�

AB
2Rþ
jjp�ABjj‘1 subject to jjUABp�AB � b̂ABjj‘2 � �

The non-zero entries of p̂AB correspond to the estimated haplo-

types and frequencies inHA�B. We can also use the EM algorithm to

improve the accuracy of p̂AB. This process is repeatable until all

blocks are connected as one.

When the number of loci increases to, say, more than 1000s, the

frequency estimation is meaningless, since almost every haplotypes

are rare. What we actually do at this time is ‘phasing’, which is a to-

tally different task. However, with a few changes, our algorithm can

be used as a phasing tool under this situation. We describe the

details and results in the Supplementary Section 1.4.

3 Results

We demonstrate the performances of our algorithm by simulations.

First we compare the estimation accuracies of CSHAP, PHASE

v2.1.1, fastPHASE v1.4, Shape-IT v2.17 and PL-EM v1.0 (with de-

fault settings) using individual genotyping data under the assump-

tion of HWE as well as HWD. In addition, we illustrate the

computational efficiency of CSHAP in comparison with the others.

For pooling design, we compare the estimation accuracies of

CSHAP, PoooL and AEM with various pool sizes and sample sizes.

Meanwhile, we show the running time of CSHAP and AEM. All the
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simulations are repeated 10 000 times if not specified explicitly. Our

platform is a desktop computer with Ubuntu 16.04 64-bit, Intel

Core i5-7400 CPU@3.00 GHz and 8.0 GB RAM.

To summarize the accuracies of our methods, and to compare

the accuracies between the different algorithms, we use two meas-

ures: the absolute discrepancy (Excoffier and Slatkin, 1995) and the

v2 distance. The asbolute discrepancy between the estimated haplo-

type frequencies and their true values is defined as
Pr

i¼1 jp̂i � pij=2,

and the v2 distance is defined as
Pr

i¼1; pi 6¼0 ðp̂i � piÞ2=pi.

3.1 Individual design
We generate T unrelated individual genotypes according to the com-

monly used 10-locus haplotype frequencies of angiotensinogen

(AGT) gene considered in Yang et al. (2003) by assuming HWE,

T ¼ 10; 20; 50; 100; 200; 500; 1000; 2000. Part of the results is dem-

onstrated in Supplementary Table S2. We can see that for small sam-

ple size, the performances of CSHAP are better than the others in

the sense of bias and the effective accumulated probability (EAP) of

p. Also CSHAP has smaller estimation bias of almost every haplo-

type than PHASE’s and Shape-IT’s. For larger sample sizes

(T � 100), the precision of CSHAP is very close to the PHASE and

PL-EM, and slightly better than Shape-IT.

Simulation results are summarized in Figure 1. We can see that,

for small sample size (T< 100), the absolute discrepancy of CSHAP

is smaller than those of the others, and the solution of CSHAP is

much sparser than those of PHASE and Shape-IT. When T exceeds

about 100, CSHAP behaves as accurate as PHASE, while slightly

better than fastPHASE and Shape-IT.

Comparisons of computational efficiencies are given in

Table 1. The CSHAP is at least two to three orders of magnitude

faster than PHASE and fastPHASE. For T ¼ 100 in our simulation,

the CSHAP is 365 times faster more efficient than PHASE while

maintaining the same accuracy. For T ¼ 2000, the CSHAP is 1775

times faster than PHASE, 2010 times faster than fastPHASE, 468

times faster than Shape-IT and 19 times faster than PL-EM. Notice

that the running time of most other methods shows approximately

linear trends with sample size T, and in contrast, our method only

in the order of a logarithmic scale. More details are in

Supplementary Figure S1.

3.2 Haplotype diversity and missing data
To measure the performances under different haplotype diversities,

we generate T ¼ 100 individual genotypes according to the 11-locus

G6PD haplotypes in Sabeti et al. (2002). The G6PD haplotypes are

different among the following six ethnic populations: African

American, Asian, Beni (Nigeria), European American, Shona

(Zimbabwe) and Yoruba (Nigeria). The published haplotypes and

frequencies are given in Supplementary Table S3. In addition, we

randomly mask about 5% of the data as missing sites.

As Figure 2 shows, our CSHAP method performs well under

varying degrees of diversities, as well as missing data imputation. In

fact, the v2 distances and the absolute discrepancies of PHASE,

fastPHASE, CSHAP are similar. The Shape-IT identified too many

non-existent haplotypes, which leads to higher discrepancies. PL-

EM seems to have problems accurately imputing missing data in the

Asian population. Our CSHAP method has almost the same preci-

sion as PHASE, while fastPHASE is only a little less accurate than

PHASE, but our method gives a sparser solution with the same

precision.

3.3 The case of HWD
We generate T ¼ 100 haplotype pairs from (7) using the 10-locus

AGT gene with a series of inbreeding coefficients q ¼ 0:05; 0:1;

0:15;0:2;0:3. For each of 10 000 simulation trials, we first construct

a bootstrap sample by resampling with replacement from these sam-

ple genotypes 1000 times to estimate the variance of q̂ in (9). The

proportion of times out of the simulations that q̂L � 0 is

0:888; 0:750;0:502; 0:303;0:065, for the above mentioned different

values of q, respectively.

Results are summarized in the Supplementary Table S4. We can

see that introducing a q̂ helps to reduce the impact of deviations

from HWE, but the SDs are slightly larger. Our adaptive estimator

q̂L can make this tradeoff conveniently.

3.4 Pooling design
Next we consider large pooling design. The simulations are based

on pooled 10-locus AGT gene data with N ¼ 50, 100 and T ¼ 50,

100 where HWE is assumed. We investigate the performance of

CSHAP with PoooL and AEM. To compare with previous published

Fig. 1. Average accuracy comparison in 10 000 trials with increasing numbers

of sample size T. The top panel shows the v2 distance between the true fre-

quency and estimated frequencies. The second panel shows the absolute dis-

crepancy. The bottom panel shows the sparsity (the number of existing

haplotypes in solution), respectively. The true haplotype dataset has 11

unique existing haplotypes

Table 1. Running times of CSHAP, PHASE, fastPHASE, Shape-IT

and PL-EM algorithm for 1000 replicates of simulation

T CSHAP PHASE fastPHASE Shape-IT PL-EM

10 10.2 741 338 120 140

20 12.9 1459 651 139 142

50 17.5 3726 1589 246 146

100 21.1 7727 3145 410 156

200 26.0 9851 6309 731 188

500 29.1 16 619 15 746 2007 258

1000 30.8 28 471 32 019 6014 384

2000 32.6 57 990 65 662 15 318 645

Note: Using Yang et al. (2003)s 10-locus haplotype frequencies of AGT

dataset for individual data. The unit of running time is second. T stands for

the sample size.
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results by Kuk et al. (2008) and Zhang et al. (2008), we use the

averaged Euclidean distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr

i¼1 ðp̂i � piÞ2=r
q

instead of v2

distance.

Figure 3 shows summarized results. The performance of PoooL

is not optimal, since the distance and discrepancy are many times

higher than those of AEM and CSHAP. Meanwhile, CSHAP shows

comparable performance with AEM, the distance and discrepancy

are slightly higher, but CSHAP can obtain sparser results than

AEM. However, the computational efficiency of CSHAP is about

two orders of magnitude faster than that of AEM, Supplementary

Table S5 demonstrates that CSHAP runs about 120 times faster

than AEM in our simulations.

3.5 Long-range haplotypes
In this section, we use the human angiotensin converting enzyme

(ACE) dataset. This dataset contains q ¼ 52 SNPs and 11 individu-

als, the genotypes have up to 37 heterozygous sites. For all individu-

als, 13 unique haplotypes from the 22 chromosomes are resolved in

Rieder et al. (1999). We generate T ¼ 50;100; 200; 500;1000;2000

unrelated individual genotypes by assuming HWE and test all the

methods in Section 3.1. The result is shown in Figure 4. Our

method, PHASE and PL-EM produce the best solution, but CSHAP

costs much less time. The biases of Shape-IT and fastPHASE are

relatively slightly larger.

The running time of all methods are described in Table 2.

CSHAP is about two to three orders of magnitude faster than

PHASE and fastPHASE, while providing the most accurate results.

For example, when T ¼ 2000, the CSHAP is 3000 times faster than

PHASE, 1634 times faster than fastPHASE, 303 times faster than

Shape-IT and 10 times faster than PL-EM. More details are in

Supplementary Figure S2.

4 Conclusion

In this study, we propose an efficient algorithm, CSHAP, for esti-

mating haplotype frequencies from individual or pooled DNA data,

under the HWE assumption or not. The CSHAP algorithm mini-

mizes the weighted sum of haplotype frequencies under constraints

on the allele frequencies and covariances (i.e. LD coefficients). This

method is based on the maximum parsimony principle of Gusfield

(2003), which was to minimize the total number of distinct haplo-

types, subject to the condition that the solutions are consistent with

genotype observations. In our approach, we substitute the ‘0 norm

by the ‘1 norm and reduce the consistency condition to a system of

linear constraints on the first two moments of genotype observa-

tions. Besides, we use a modified EM algorithm to boost accuracy

efficiently.

Extensive simulation studies show that our method is compar-

able to or better than the existing methods but has significant

Fig. 2. Measures of performance of PHASE, fastPHASE, CSHAP, Shape-IT and

PL-EM based on the simulated G6PD gene datasets among six different popu-

lations. Sample size T ¼ 100, all the simulations are repeated 10 000 times

Fig. 3. Measures of performance of PoooL, AEM and CSHAP. T stands for the

number of pools, and each pool contains N individuals. For each pooling de-

sign and method, simulation was repeated 10 000 times

Fig. 4. Measures of performance of PHASE, fastPHASE, CSHAP, Shape-IT and

PL-EM. For each method and sample size T, simulation was repeated 1000

times. The Shape-IT failed to estimate haplotype frequencies when T ¼ 2000,

since the program aborted with an error
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computational advantage. An outstanding feature of our method is

its computing efficiency for both individual and pooled DNA data.

We showed that if the number of existing haplotypes in population

is small, our method can recover the haplotypes with high accuracy.

In addition, by introducing the inbreeding coefficients the HWE as-

sumption is not required in our approach and this quantity can also

capture the inflation of variance in genotype observations caused by

genotype errors, population substructures etc.

Furthermore, by introducing the divide-and-conquer idea of

PL, our method is able to handle long-range haplotypes. The

specially designed PL algorithm can help us to overcome the local-

mode problem while maintaining efficiency. In conclusion, our

method can be a powerful and efficient approach in genome-wide

association studies.
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