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Abstract

Summary: Chromosomal copy number aberrations can be efficiently detected and quantified using

low-coverage whole-genome sequencing, but analysis is hampered by the lack of knowledge on

absolute DNA copy numbers and tumor purity. Here, we describe an analytical tool for Absolute

Copy number Estimation, ACE, which scales relative copy number signals from chromosomal seg-

ments to optimally fit absolute copy numbers, without the need for additional genetic information,

such as SNP data. In doing so, ACE derives an estimate of tumor purity as well. ACE facilitates ana-

lysis of large numbers of samples, while maintaining the flexibility to customize models and gener-

ate output of single samples.

Availability and implementation: ACE is freely available via www.bioconductor.org and at www.

github.com/tgac-vumc/ACE.

Contact: rh.brakenhoff@vumc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer arises through accumulation of genetic and epigenetic

changes. The genetic changes encompass small somatic mutations

and gross chromosomal alterations, including translocation and

copy number aberrations (CNAs). CNAs are a common trait of

most cancers (Beroukhim et al., 2010) and are used as biomarkers in

prognostic and predictive patient stratification (Macintyre et al.,

2016).

Low-coverage whole-genome sequencing (lcWGS, �0.1X cover-

age of the genome) is an efficient and cost-effective method to detect

CNAs. The data yield relative sequence depth signals at each genom-

ic location, but does not enumerate chromosomal copies.

Determining absolute copy numbers would add valuable informa-

tion on tumor content (cellularity) and intratumoral heterogeneity

of the samples. Currently available tools that provide estimates of

absolute copy numbers are mostly limited to data generated by SNP

arrays (Van Loo et al., 2010), whole exome sequencing or high-

coverage WGS (Favero et al., 2015; Riester et al., 2016) or require

matched normal samples (Gusnanto et al., 2012; Oesper et al.,

2014). ABSOLUTE (Carter et al., 2012) and ichorCNA

(Adalsteinsson et al., 2017) provide cellularity and ploidy estimates

from lcWGS data, but lack dynamic functionality to visually inspect

the absolute copy number estimations and select the best fits. We

therefore developed a tool for Absolute Copy number Estimation,

ACE, which includes dynamic data visualization. Using simulation

data and a published dataset, we demonstrate that its estimates are

generally more accurate than other software tools. Additionally, it

offers an interactive environment to evaluate the optimal predicted

model besides alternative models.

2 Materials and methods

ACE is an R package. Complete software availability, dependencies

and version information is available in the Supplementary Material,
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via www.bioconductor.org and at www.github.com/tgac-vumc/

ACE.

Segment data are obtained from lcWGS reads through the

QDNAseq pipeline, which bins the mapped sequencing reads, cor-

rects for mappabilty and GC-content (Scheinin et al., 2014) and seg-

ments the data by incorporating DNAcopy (Venkatraman and

Olshen, 2007). For model fitting in ACE, errors per segment are cal-

culated based on the difference between the segment value and the

closest value of an integer copy number, as a function of ploidy and

cellularity. ACE calculates the error of the fit as the root mean

square error (default) or mean absolute error (optional) of all

segments. To account for segment length, segment errors are

repeated as many times as the number of bins the segment com-

prises. To balance sensitivity, specificity and accuracy, ACE features

customizable penalty factors for low cellularity and divergent ploi-

dies. See Supplementary Material for formulae and further details.

A fitting procedure is executed over a range of ploidies (Fig. 1A)

or one fixed ploidy (Fig. 1B). Ploidy represents the number of copies

associated with the median segment value. Error of fits are calcu-

lated for each cellularity and the indicated ploidy. Cellularities (and

ploidies when variable) are reported when the error of the fit reaches

a minimum. Inversely, absolute copy numbers of segments and bins

are calculated using the derived cellularity and ploidy (Fig. 1C).

3 Results

We applied ACE to lcWGS data of DNA from a near-diploid cell

line with many CNAs (UM-SCC-22A), a diploid cell line with few

and only single copy CNAs (HCT116), a triploid cell line (HT29)

and a tetraploid cell line (MOLT-4), using lcWGS data of DNA

from exfoliated oral cells of a healthy individual as negative control.

To assess ACE performance at all ranges of tumor cell percentages,

we generated in silico admixtures of sequencing reads derived from

tumor and normal cells, and analyzed these with varying bin sizes,

penalty and error methods (Supplementary Material). We also esti-

mated tumor cell percentage of these admixture permutations using

ABSOLUTE and ichorCNA (Table 1). The three methods have com-

parable accuracies between �30% and 80% tumor-derived reads

(Supplementary Fig. S1). For all three algorithms, we determined the

range of tumor DNA percentage at which the algorithm was able to

produce an accurate top prediction. Overall, ACE performed very

well both at low and high cellularity (Table 1), and showed the larg-

est range of accurate predictions for the triploid and tetraploid cell

lines. More details are available in the Supplementary Material.

Increasing the penalty factor for low cellularities improves speci-

ficity (no false positive estimates) and accuracy of models, but at the

cost of decreased sensitivity. To determine the lowest penalty at

which ACE is still highly specific, we analyzed all permutation sam-

ples without any tumor DNA for false positive fits. A penalty of 0.1

Table 1. Prediction accuracy of ACE, ABSOLUTE and ichorCNA on

simulated data of three cell lines with varying copy number

profiles

UM-SCC-22A HCT116 HT29 MOLT-4

(2N) (2N) (3N) (4N)

ACE 12–100 20–100 14–100 15a–100

ABSOLUTE 21–100 19–100b 28–100 36–100

ichorCNA 10–100 16–81 31–91 26–100

Notes: Numbers indicate the range of tumor DNA percentages at which

the specified algorithm estimates the correct tumor cell percentage (less than

25% deviation) in at least 9 out of 10 permutations.
aOnly 8 out of 10 at 17% and 20% tumor DNA percentage.
bOnly 8 out of 10 at 95% tumor DNA percentage.

Fig. 1. Results of ACE on a permutation sample with 20% of sequencing reads

derived from cell line UM-SCC-22A. ACE performs model fitting as a function

of both cellularity and ploidy (A) or cellularity at a fixed ploidy (B). In (A), the

relative error is color-coded and minima are indicated with a black dot. The

cellularity (and ploidy, 2N in this example) corresponding to the top predic-

tion is used to produce an absolute copy number profile with number of cop-

ies on the Y-axis and bins ordered by chromosomal location on the X-axis (C)

Fig. 2. Tumor purity estimates of an ovarian carcinoma dataset. Segmented

copy number data from lcWGS was used to derive tumor purity estimates

using ABSOLUTE (red) and ACE (green). The results of the algorithms (on the

Y-axis) are plotted against a manually curated tumor purity estimate based

on both copy number data and high-depth mutation data (X-axis, gold

standard)
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proved sufficient to prevent false positive fits in all healthy control

permutations with 10 million sequencing reads (Supplementary Fig.

S2) and is thus the optimal penalty for high sensitivity in this data-

set, whereas a penalty between 0.25 and 0.5 is better-suited for opti-

mizing accuracy of predictions (Supplementary Fig. S3).

Finally, we analyzed a recently published dataset of 253 ovarian

carcinoma samples (Macintyre et al., 2018). Importantly, the sam-

ples varied in tumor purity and were selected for their clonal TP53

mutations, of which the frequency was accurately determined. This

allowed the authors to estimate tumor purity accurately based on

both clonal mutation data and copy number data. We used their

tumor purity determination as gold standard and compared it with

the estimates corresponding to the best fits of ACE and ABSOLUTE

based solely on copy number data (see Supplementary Material for

details). The estimates of ACE are in good concordance with the

gold standard over the entire range of tumor purity (Fig. 2). The me-

dian difference between the gold standard and ACE was 0.07, com-

pared to 0.28 for ABSOLUTE. In relative terms, estimates of ACE

deviated from the gold standard by a median factor of 1.15 com-

pared to a median factor of 1.94 for ABSOLUTE. Because of

ABSOLUTE’s high deviation from the gold standard when consider-

ing only its highest ranked model, we also tested at which fit

ACE and ABSOLUTE approximate the gold standard model.

Generally, ACE arrives at the correct model with fewer fits

than ABSOLUTE, illustrating its efficacy in model prioritization

(Supplementary Fig. S5).

4 Discussion

ACE is a comprehensive tool to produce absolute copy number pro-

files and arrive at estimates of tumor purity and ploidy based on

lcWGS data only. ACE’s model fitting accuracy performs better

than currently available algorithms ABSOLUTE and ichorCNA

largely irrespective of tumor purity and ploidy, on both simulated

data and an ovarian carcinoma dataset. On the one hand, ACE facil-

itates analysis of multiple samples directly from mapped reads; on

the other hand, it accommodates extensive evaluation of single sam-

ples. ACE is therefore a well-suited bioinformatics tool to maximize

interpretable outcome of lcWGS experiments.
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