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Abstract

Summary: Here we developed a tool called Breakpoint Identification (BreakID) to identity fusion

events from targeted sequencing data. Taking discordant read pairs and split reads as supporting

evidences, BreakID can identify gene fusion breakpoints at single nucleotide resolution. After valid-

ation with confirmed fusion events in cancer cell lines, we have proved that BreakID can achieve

high sensitivity of 90.63% along with PPV of 100% at sequencing depth of 500� and perform better

than other available fusion detection tools. We anticipate that BreakID will have an extensive popu-

larity in the detection and analysis of fusions involved in clinical and research sequencing

scenarios.

Availability and implementation: Source code is freely available at https://github.com/

SinOncology/BreakID.

Contact: bingding.huang@sinotechgenomics.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic irregularities involved in relatively large-scale fragment

size, generally greater than 1000 bp, is defined as Structure

Variation (SV) conventionally (Feuk et al., 2006). This conception

covers different genomic chimeras resulted from deletion, inversion,

translocation, insertion and other complex structural disorders.

Although the functional impact of most SVs is not yet well under-

stood, a number of gene fusions have been proved to function in

tumorigenesis and widely targeted in cancer therapy (Shaw et al.,

2015; Solomon et al., 2009). For example, the tyrosine kinase in-

hibitor Imatinib, has been approved to target BCR–ABL1 fusions in

Chronic Myelogenous Leukemia (CML) by blocking the chimeric

kinase activity (Bellodi et al., 2009). In addition, Crizotinib and

Ceritinib were utilized to treat non-small cell lung cancer (NSCLC)

patients by blocking activity of kinase derived from ALK or ROS1

fusions (Bergethon et al., 2012; Davies et al., 2012; Shaw et al.,

2012, 2014). Another example was that RET-CCDC6 fusion was

targeted by Cabozantinib in Lung Adenocarcinomas (Suzuki et al.,

2013). Inversions and translocations were the vast majority of tar-

getable gene fusion types (Mertens et al., 2015).

In the past few years, various computational methods have been

developed for structural variants detection from whole genome

sequencing or whole exome sequencing data (Cameron et al., 2017;

Chen et al., 2016; Layer et al., 2014; Newman et al., 2014; Rausch

et al., 2012). However, only a few methods were designed especially

for targeted panel sequencing data (Newman et al., 2014). Recently,

we have designed a targeted sequencing panel for ultrasensitive as-

sessment of tumor DNA for clinical applications and cancer target
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therapy. In order to identify fusion breakpoints, we included those

hotspot intronic regions of fusion genes (ALK, RET, ROS1, etc.)

known to be clinical relevant and targetable in different tumors and

developed a novel computational tool called BreakID to detect gen-

omic breakpoints of different fusion events, including transloca-

tions, inversions and complex events. We then evaluated BreakID

together with other five computational tools using several tumor cell

lines with confirmed fusions.

2 Materials and methods

The whole process of BreakID comprises of three major steps: (i)

Identification and clustering of discordant read pairs; (ii)

Identification of breakpoint-spanning split reads to determine break-

points at single nucleotide resolution; (iii) Categorization, filtering

and annotation of fusion events (Fig. 1 and Supplementary Fig. S1).

First of all, BreakID requires the Binary Alignment/Map (BAM)

file of paired-end reads mapped by Burrows-Wheeler Aligner (BWA-

mem algorithm) (Li and Durbin, 2010) which can do soft clipping

and secondary alignment of clipped part of reads that span break-

points (split reads, as shown in Fig. 1C). In the first step, BreakID

estimates the mean insert size of the sequencing data. The output

value will be a reference parameter to define discordant read pairs

(DRP, shown in Fig. 1A). The mapping distance between two ends

of discordant read pairs must be greater than a certain distance, de-

fault is 2 times of the mean insert size. Then BreakID searches such

discordant read pairs in the whole bam file, and classifies them into

four types: the two ends of the pair lie in (i) the same chromosome

with opposite mapping orientation (head to head, blue reads in

Fig. 1A); (ii) the same chromosome with same mapping orientation

(red in Fig. 1A); (iii) the same chromosome with opposite mapping

orientation (tail to tail, orange in Fig. 1A); (iv) different chromo-

some (green in Fig. 1A). Afterwards, BreakID groups these DRP

pairs into different groups by the chromosome locations of read

pairs. Next, within each group, the two-dimensional coordinates of

DRP’s paired ends treated as points on a two-dimensional plane are

clustered using Agglomerative Hierarchical Clustering (AHC) algo-

rithm (Sasirekha and Baby, 2013). In AHC, a clustering convergence

distance threshold D is defined first (default is 2*mean insert size).

Then the distances (Euclidean distance here) between any two points

are calculated to form a distance matrix. In the beginning, all the

points are treated as isolated nodes to initialize the clustering pro-

cess. In each clustering iteration, AHC finds a cluster pair with min-

imum distance using single-linkage approach, and then merges them

into one cluster. The clustering process will be terminated once the

distance between the nearest two clusters is greater than D.

Compared to other clustering methods, AHC can increase DRP’s

clustering performance and ensure only one DRP cluster to represent

one candidate fusion event.

In the second step, for those DRP clusters with more than 2 DRP

pairs (for example, PC1 shown in Fig. 1B), BreakID collects all split

reads (SR) that potentially span fusion breakpoints within a certain

region around the mean position of pair clusters (default distance is

2*mean insert size). To be more precisely, BreakID identifies those

split reads pairing with primary alignment and its corresponding

secondary alignment (with ‘SA’ tag in the bam file, as shown in

Fig. 1D). Only those split reads with a certain complementary

CIGAR string between primary and secondary alignments are con-

sidered as support SRs and then used to compute the candidate

breakpoint positions. For example, as shown in Figure 1D, a pri-

mary alignment has a CIGAR string of ‘xMyS’ and an exact comple-

mentary secondary alignment has a CIGAR string of ‘yMxS’. Due to

mismatch problem in the mapping process, a few bases shifting is

allowed to identify complementary split reads (as shown in Fig. 1E).

The split positions of primary and secondary alignments indicate the

candidate fusion breakpoints (bp1 and bp2 in Fig. 1D and E).

Afterwards, the final fusion breakpoints are the ones that have the

most abundant supported split reads. In the end, a candidate fusion

event is supported by a DRP cluster with at least two DRP pairs and

at least two breakpoint-spanning split reads.

In the final step, the fusion events with supported DRP cluster

and split reads are assigned a fusion type based on the following

principles: (i) ‘Translocations’ are denoted when the paired-ends of

DRP mapped in different chromosomes; (ii) ‘Inversions’ are denoted

when the paired-ends of DRP mapped in the same chromosome but

abnormally oriented compared to the default library orientation and

without DRPs with type c mentioned above (orange read pairs in

Fig. 1A); (iii) ‘Duplication’ are denoted when the paired-ends of

DRP mapped in the same chromosome but abnormally oriented

compared to the default library orientation, plus the existence of

DRPs with reverse mapping position but in default library orienta-

tion; (iv) ‘Deletions’ are denoted when the paired-ends of DRP

mapped in the same chromosomes and in default library orientation

(type a, blue read pairs in Fig. 1A); (v) the remaining events are

denoted as ‘Unknown’ (Supplementary Fig. S2). In addition, those

false positive fusion events located in repeat regions are excluded.

Finally, BreakID annotates the final candidate fusion events with

detailed gene information using UCSC RefSeq annotation.

3 Results

To assess the sensitivity and positive-predictive value (PPV) of BreakID

to detect fusions, we designed a 352.4 kb panel to cover actionable

mutations in cancer target therapy (Supplementary Table S1) and

included hotspot intronic regions of ALK, NTRK1/2, RET, ROS1, etc.

(Supplementary Table S2). The genomic DNA from five cell lines:

HCC-78, NCI-H2228, RT4, LC-2/ad, NA18536 (Supplementary

Table S3, plus one reference standard HD753) were pooled together

using different pooling ratio (Supplementary Table S4) to simulate

Fig. 1. Analytical schema for fusion breakpoints detection in BreakID. (A)

DRPs are identified and grouped by chromosomes of two paired-ends; (B)

each DRP group is clustered using AHC algorithm; (C) split reads spanning

breakpoints are used to find exact breakpoints; (D) the model of primary and

secondary alignment and (E) a certain number of mismatches are allowed in

the two parts of split reads
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different tumor contents (TC) for evaluation. The details of fusion

events in these samples and their breakpoints are listed in

Supplementary Table S5. The mean sequencing depth of each sample

was around 1700�. To investigate the effect of the sequencing depth

on BreakID’s performance, the original bam files were down-sampled

to 250�, 500�, 700�, 900�, 1000�, 1200� (Supplementary Table

S6). As results, the sensitivity of BreakID increased with high sequenc-

ing depth, as there are more supporting DRP pairs and breakpoint-

spanning split reads when increasing sequencing depth. Specially, at

the depth of 500�, which is usually used in typical clinical applica-

tions, BreakID achieved sensitivity of 90.63% and PPV of 100%

(Table 1). While taking those fusion events with tumor content greater

than 5% into account only, the sensitivity and PPV of BreakID were

92.59 and 100%, respectively.

We then compared BreakID with other five fusion detection

methods. The comparison results were shown in Table 1 (500�) and

Supplementary Table S6 (different depths) and more detailed results

were provided in Supplementary Table S9. At the sequencing depth

of 500�, BreakID achieved the highest sensitivity of 90.63%, and

the highest PPV of 100% which was the same as LUMP. BreakID

also performed the best at different sequencing depths. In term of

computational speed, it took only 4.63 s for BreakID with relatively

low memory 0.11 GB to finish the whole calculation for a sample

with 500� sequencing depth. The reason is that BreakID makes use

of ‘SA’ information in the split reads to determine the breakpoints

directly, while other methods need additional calculations with

‘soft-clip’ split reads to derive breakpoints.

In order to confirm those true positive (TP) fusions and false

positive (FP) fusions during calculating performance for each

method, we randomly selected 2 TP and 12 FP fusions for further

PCR validation. The details of PCR validation experiments are

described in Supplementary Material and Supplementary Table S7.

The validation results (Supplementary Fig. S3) showed that no PCR

products were yielded in any pre-defined FP fusions, which proved

that they were artifact fusion events indeed. In addition, we have

routinely sequenced NSCLC patient samples enrolled in our collab-

oration hospitals using this panel and used BreakID to identify ac-

tionable fusion events. So far 22 actionable fusions have been

identified in 22 patients (Supplementary Table S8). We then selected

2 samples (patient P13 and P16) with enough DNA left for FISH

validation and the FISH results confirmed the ALK-EML4 fusions

identified by BreakID in both samples (Supplementary Fig. S4).

4 Conclusion

Here we introduced BreakID, a new computational tool to identify

genomic breakpoints of fusion events at single nucleotide resolution

from targeted sequencing data accurately and rapidly. The valid-

ation results indicated that BreakID has achieved better sensitivity

and PPV than other tools, and is clearly more computationally effi-

cient. This, in our view, represents a methodology improvement that

will benefit many projects that utilize targeted sequencing data to

detect actionable fusion events for clinical application. BreakID is

implemented in C/Cþþ using HTSLib library (http://www.htslib.

org/) to parse the input BAM file rapidly and it is freely available for

academic use at https://github.com/SinOncology/BreakID.

Conflict of Interest: none declared.
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Table 1. Performance of BreakID and other approaches at mean coverage of 500�

Methods Sens. (%) PPV (%) Sens. (%, TC> 5%) PPV (%, TC> 5%) Runtime(s) Mem. (GB)

BreakID 90.63 100.00 92.59 100.00 4.63 0.11

FACTERA 87.50 80.00 88.89 77.42 15.00 0.24

DELLY 84.38 36.99 88.89 34.29 1207.49 0.40

LUMPY 87.50 100.00 92.59 100.00 32.12 0.88

GRIDSS 81.25 78.79 88.89 77.42 208.36 15.49

Manta 87.50 51.85 88.89 48.00 45.58 0.03
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