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Abstract

Summary: Distribution of fitness effects (DFE) of mutations can be inferred from site frequency

spectrum (SFS) data. There is mounting interest to determine whether distinct genomic regions

and/or species share a common DFE, or whether evidence exists for differences among them.

polyDFEv2.0 fits multiple SFS datasets at once and provides likelihood ratio tests for DFE invari-

ance across datasets. Simulations show that testing for DFE invariance across genomic regions

within a species requires models accounting for distinct sources of heterogeneity (chance and

genuine difference in DFE) underlying differences in SFS data in these regions. Not accounting for

this will result in the spurious detection of DFE differences.

Availability and Implementation: polyDFEv2.0 is implemented in C and is accompanied by a series

of R functions that facilitate post-processing of the output. It is available as source code and com-

piled binaries under a GNU General Public License v3.0 from https://github.com/paula-tataru/

polyDFE.

Contact: tbata@birc.au.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Levels of purifying and positive selection vary throughout the gen-

ome and a powerful way to study such variation is by inferring the

distribution of fitness effects (DFE) for different genomic regions

that are a priori expected to undergo distinct selective pressures

(Gronau et al., 2013; Racimo and Schraiber 2014). Similarly, there

is renewed interest in understanding what genomic, demographic

and ecological factors explain differences in genome-wide poly-

morphism patterns across species (Chen et al., 2017; Ellegren and

Galtier 2016; Huber et al., 2017). The site frequency spectrum (SFS)

contains information to infer the DFE of new mutations. Existing

methods infer the DFE while accounting for demography and other

sources of distortion in the SFS (Barton et al., 2018; Galtier 2016;

Kim et al., 2017; Kousathanas and Keightley 2013; Schneider et al.,

2011; Tataru et al., 2017). Yet, current methods assume that a

mutation’s fitness is drawn from a single common DFE and are

therefore not well suited to determine whether distinct gene

categories, genomic regions and/or species share invariant DFEs, or

whether there are genuine differences between such categories.

Here, we present a new method, polyDFEv2.0, for testing invari-

ance of DFEs across datasets, be it distinct genomic regions within

species, or different species. Simulations demonstrate that the

method guards against excessive type I error while retaining sub-

stantial power to detect differences across datasets.

2 Results and discussion

polyDFE implements a likelihood framework that allows fitting sim-

ultaneously DFE parameters, nuisance parameters that account for

distortions in the SFS data induced by linkage and demography and

errors when polarizing the SFS data (Tataru et al., 2017). Here, we

extend polyDFE for fitting multiple datasets. Any fitted parameter

can be constrained to be shared (invariant) across datasets or fitted

independently for each dataset (models M1–M4, Table 1).
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Likelihood ratio tests (LRTs) are used to determine if the datasets

have different DFEs.

When testing for invariance in DFEs across species, we use LRTs

comparing the fit of M3 and M4, as we expect demography and scaled

mutation rates to vary between species (Table 1). Simulations

(Supplementary Material) show that comparing M3 and M4 provides a

reliable test for the null hypothesis of DFE invariance: no inflation in

type I error under H0 and good power to detect differences in strength

of purifying and positive selection (Supplementary Fig. S1).

When analyzing SFS datasets from distinct regions or gene

ontologies within one species, we investigated the type I error and

power of two LRTs: M1 versus M2 and M3 versus M4. Comparing

models M1 and M2 amounts to assume that all genomic regions

share the same nuisance parameters. Simulations show that M1

might not be a proper null model for DFE invariance within species

and accordingly that the v2 approximation for this LRT might not

apply even with large datasets (Supplementary Figs S1 and S2A).

This is because even under DFE invariance, differences in coalescent

histories between genomic regions and single nucleotide poly-

morphism polarization error rates will generate differences in the

observed SFS data across regions. It is a challenge to devise inference

models that do not spuriously attribute the differences observed in the

SFS counts as underlying differences in the DFEs. Modeling accurately

the differences in coalescent histories and the interaction of selection

and demography along the genome remains difficult (Hartfield et al.,

2017; Li et al., 2012) and the object of much current research. Here,

the models fitted in the polyDFE framework account for this via the

use of distinct nuisance parameters for each SFS dataset.

Accordingly, even when fitting different SFS datasets within a

single species, we recommend fitting models with nuisance parame-

ters for each SFS. Using models that account for both differences in

DFE and nuisance parameters (M3 and M4) allows to control for type

I error while retaining substantial power to detect differences in DFE

(Supplementary Fig. S1). An alternative that is computationally more

demanding is to rely on simulations to obtain the empirical distribu-

tion of the LRT under the null hypothesis of invariance instead of rely-

ing on the v2 approximations (see Supplementary Material for details).

We re-analyzed a chimpanzee dataset (Bataillon et al., 2015) and

tested for DFEs invariance across two subspecies (central versus eastern

chimpanzee) and between autosomal versus X-linked regions (see

Supplementary Material for details). We found autosomal DFEs to be

different between subspecies. Central chimpanzees exhibit a higher ef-

fective size resulting in overall a few more strongly deleterious muta-

tions (Supplementary Fig. S3A). No significant differences are found

when the comparison involved X-linked regions (Supplementary Fig.

S3B and C). While genuine differences in DFEs probably exist, simula-

tions show that the amount of data available on the X chromosome

(0.89 Mb of X-linked sites versus 20 Mb of autosomes) entails substan-

tial loss of power. The amount of data available can limit drastically

the statistical power (Supplementary Fig. S4): the observed differences

in the inferred DFEs are very modest among autosomes but they are

detected as significantly different while the more substantial differences

between X and autosomes are not.

3 Conclusion

polyDFEv2.0 provides tests for DFE invariance. Flexibility in the fitted

models also enables testing more specific hypothesis regarding the na-

ture of the differences across DFEs: e.g. did the shape of the DFE change

and/or the proportion of beneficial mutations change across DFEs?

Using models that are flexible enough to account jointly for differences

in nuisance parameters across categories/species is of paramount im-

portance to make reliable tests for DFE invariance across and within

species. Ultimately, amounts of single nucleotide polymorphisms within

each compared SFS drastically condition the power of our method to

detect heterogeneity. We recommend prudence when dividing data

among too many separate SFSs to be fitted using different DFEs.
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Table 1. Models for detecting heterogeneity in DFEs across data-

sets fitted in polyDFEv2.0

Model parameters fitted

Models DFE parameters Demography Mutation

rate

Polarization

error

M1 Shared Shared Shared Shared

M2 Independent Shared Shared Shared

M3 Shared Independent Independent Independent

M4 Independent Independent Independent Independent
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