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Abstract

Summary: Multiview datasets are the norm in bioinformatics, often under the label multi-omics.

Multiview data are gathered from several experiments, measurements or feature sets available for

the same subjects. Recent studies in pattern recognition have shown the advantage of using multi-

view methods of clustering and dimensionality reduction; however, none of these methods are

readily available to the extent of our knowledge. Multiview extensions of four well-known pattern

recognition methods are proposed here. Three multiview dimensionality reduction methods: multi-

view t-distributed stochastic neighbour embedding, multiview multidimensional scaling and multi-

view minimum curvilinearity embedding, as well as a multiview spectral clustering method. Often

they produce better results than their single-view counterparts, tested here on four multiview

datasets.

Availability and implementation: R package at the B2SLab site: http://b2slab.upc.edu/software-

and-tutorials/ and Python package: https://pypi.python.org/pypi/multiview.

Contact: samir.kanaan@upc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiview datasets comprise several data matrices or views, where

each matrix contains the result of a different measurement or experi-

ment on the same subjects. Examples of data views in the bioinfor-

matics field are: gene sequencing and expression, metabolomic data,

phenotypes and medical imaging. True multiview methods simultan-

eously process two or more data views to produce a single result co-

herent with all of them. Several studies show that true multiview

methods perform better than single-view solutions (Zhang et al.,

2015; Zhao et al., 2014).

Multiview methods for unsupervised tasks are specially useful,

as there is no a priori knowledge on classes and consequently it is

more difficult to choose the right data view. Even though several

multiview methods have been proposed, to the extent of our know-

ledge none of them is available as open software. This paper

presents multiview extensions to four well-known pattern recogni-

tion methods: (i) t-distributed stochastic neighbour embedding

(t-SNE) (Van Der Maaten et al., 2008), (ii) Multidimensional scal-

ing (MDS) (Kruskal, 1964) and (iii) Minimum curvilinearity

embedding (MCE; Cannistraci et al., 2010, 2013) are standard

dimensionality reduction and data visualization methods. (iv)

Spectral clustering (SC) (Shi and Malik, 2005) is an advanced clus-

tering method that can identify non-convex clusters. The new mul-

tiview methods are implemented as open source R and Python

packages. They are described here along with some application

examples and results.
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2 Materials and methods

Multiview dimensionality reduction methods receive a set of v � 2

high-dimensional data views and produce a single, low-dimensional

representation of the input data coherent with all the input views.

Multiview t-SNE (mv-tsne) computes a neighbourhood probabil-

ity matrix P1� i� v for each input matrix. mv-tsne merges the v prob-

ability matrices applying the expert opinion pooling results from

(Abbas, 2009). More specifically, it obtains a single probability ma-

trix using the log-linear pooling P ¼ r
Qv

i¼1 Pxi

i , where r is a normal-

ization factor and the optimal xi exponents are determined in an

optimization stage. Afterwards, the t-SNE optimization stage is

applied to P to find the optimal data projection.

Multiview MDS (mv-mds) double-centres the input matrices and

computes the first k common eigenvectors using a variation of the

Common Principal Components Analysis (CPCA) method proposed

in (Trendafilov, 2010). The result is the orthogonal matrix W such

that the pre-processed input matrices can all be expressed as

L0i ¼WT Li W; i ¼ 1;2; . . . ; v. Hence, the common low-

dimensional projection of the original multiview data is the first k

common eigenvectors computed by CPCA, where k is the desired

dimensionality of the projection.

Multiview MCE (mv-mce) is a multiview extension to MCE.

Original MCE computes a distance matrix as the shortest paths be-

tween all data points over their minimum spanning tree, then applies

MDS to produce a low-dimensional representation of the data. mv-

mce computes the shortest paths over the minimum spanning tree

over each of the input views, then applies mv-mds to produce a sin-

gle low-dimensional representation of the data.

Given a multiview dataset, with v � 2 data views, multiview

clustering methods find a clustering assignment that is expected to

be coherent with the v input data views.

Multiview SC (mv-sc) (Kanaan-Izquierdo et al., 2018) computes

the clustering of a multiview dataset in three steps: first it computes

the Laplacian matrices of all input views; second it computes the first

k common eigenvectors of the data using CPCA (Trendafilov, 2010);

finally it computes the clustering assignment using K-means.

CPCA guarantees a decreasing sum of the eigenvalues associated

to each eigenvector, thus conserving the eigengaps:

dðiÞ ¼
PC

c¼1 kðiÞc �
PC

c¼1 kðiþ1Þ
c � 0 8i ¼ 1;2; . . . k. This satisfies the

matrix perturbation theory condition and consequently mv-sc produ-

ces a stable subspace on which the data clustering can be obtained.

3 Results

Package multiview has been tested on four multiview datasets: mul-

tidrug cell line dataset (Szakács et al., 2004), the Berkeley protein

dataset (Lanckriet et al., 2004), CORA dataset (McCallum and

Nigam, 1998) and a dataset of features from 2D electrophoresis

images of cerebrospinal fluid (2DE-CSF), in the context of a study

on neuropathies (Pattini et al., 2008).

mv-tsne has been applied to the multidrug cell line dataset.

Figure 1 shows the results, where Subplots (a) and (b) correspond to

standard t-SNE applied to each view, and Subplot (c) corresponds to

the multiview projection produced by mv-tsne. mv-tsne finds the

common traits of several cell locations (notably MELAN, CNS and

NSCLC), even if those cell groups appear scattered on the single-

view projections (a) and (b). mv-tsne and mv-mds projections are

also quantitatively better than those produced by the single-view

equivalent methods.

Table 1 shows the clustering purity and normalized mutual in-

formation on the tested datasets using single views, stacked data and

mv-sc.

Finally, mv-mce has been applied to the 2DE-CSF dataset in

order to obtain a 2D representation of the 2050 features in the data-

set. These features have been split in two blocks according to an ini-

tial clustering (900 and 1150 features), which in turn have been used

as input data views for mv-mce. Figure 2 shows the resulting projec-

tion and its connection with the four subject classes in the study.

4 Conclusions

Package multiview provides multiview extensions of widely used

pattern recognition methods that often yield higher quality results

than their single-view counterparts. The dimensionality reduction

methods may help to discover underlying patterns in the data that

may not be apparent when working with a data view alone.

Moreover they provide a single-view representation of multiview

data, allowing their use with classical methods. The mv-sc method

produces better clustering assignments than single-view spectral

clustering. Besides, all the methods presented can process any num-

ber and type of input data views. In conclusion, package multiview,

available in R and Python, provides potentially useful and widely

Fig. 1. Multidrug cell line data projection. (a) t-SNE on the ABC expression levels; (b) t-SNE on the reaction to drugs; (c) multiview t-SNE

Table 1. Clustering quality on the datasets used

Best Stacked mv-sc

Multidrug cell Purity 0.469 0.469 0.542

NMI 0.483 0.483 0.550

Berkeley protein Purity 0.785 0.796 0.807

NMI 0.309 0.295 0.346

CORA Purity 0.335 0.350 0.384

NMI 0.135 0.186 0.189
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applicable pattern recognition methods to the bioinformatics com-

munity, so this package makes a relevant contribution.
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