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Abstract

Motivation: With the development of chromatin conformation capture technology and its high-

throughput derivative Hi-C sequencing, studies of the three-dimensional interactome of the gen-

ome that involve multiple Hi-C datasets are becoming available. To account for the technology-

driven biases unique to each dataset, there is a distinct need for methods to jointly normalize mul-

tiple Hi-C datasets. Previous attempts at removing biases from Hi-C data have made use of techni-

ques which normalize individual Hi-C datasets, or, at best, jointly normalize two datasets.

Results: Here, we present multiHiCcompare, a cyclic loess regression-based joint normalization

technique for removing biases across multiple Hi-C datasets. In contrast to other normalization

techniques, it properly handles the Hi-C-specific decay of chromatin interaction frequencies with

the increasing distance between interacting regions. multiHiCcompare uses the general linear

model framework for comparative analysis of multiple Hi-C datasets, adapted for the Hi-C-specific

decay of chromatin interaction frequencies. multiHiCcompare outperforms other methods when

detecting a priori known chromatin interaction differences from jointly normalized datasets.

Applied to the analysis of auxin-treated versus untreated experiments, and CTCF depletion experi-

ments, multiHiCcompare was able to recover the expected epigenetic and gene expression signa-

tures of loss of chromatin interactions and reveal novel insights.

Availability and implementation: multiHiCcompare is freely available on GitHub and as a

Bioconductor R package https://bioconductor.org/packages/multiHiCcompare.

Contact: mikhail.dozmorov@vcuhealth.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of chromatin conformation capture (3C) technology

allowed for the first insights into the three-dimensional (3D) interac-

tome of the genome (Dekker et al., 2002). Following 3C, 4C and

5C, a high-throughput technology, Hi-C, was introduced as a means

for the capture of all versus all interactions across the entire genome

(Lieberman-Aiden et al., 2009). The structure and interactions of

the DNA in 3D space inside the nucleus have been shown to shape

the gene expression of cells and define cellular identity (Dowen

et al., 2014; Ji et al., 2016; Phillips-Cremins and Corces, 2013; Rao

et al., 2014; Vietri Rudan et al., 2015) and in the regulation of

tumor suppressors and oncogenes (Hnisz et al., 2016; Rickman

et al., 2012; Taberlay et al., 2016; Valton and Dekker, 2016). The

dynamic nature of the 3D structure of the genome prompted signifi-

cant attention to the comparative analysis of multiple Hi-C datasets

(Bonev et al., 2017; Dixon et al., 2015).

Soon after Hi-C data became available, it became clear that the

data contained biases which affected the construction and analysis

of chromatin contact maps (Yaffe and Tanay, 2011). These biases

fall into two categories: DNA sequence-driven and sequencing
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technology-driven. The sequence-driven biases that can be explicitly

modeled include GC content, chromatin accessibility, nucleosome

occupancy, repetitive elements and other properties of the DNA se-

quence (O’Sullivan et al., 2013; Yaffe and Tanay, 2011), and are

consistent across datasets. The much less understood and hard-to-

model technology-driven biases include cross-linking preferences,

the choice of restriction enzymes (e.g. HindIII, MboI, DpnII), biotin

labeling, chromatin fragmentation and sequencing depth, among

others. These biases affect Hi-C datasets unpredictably, justifying

the need for joint normalization of multiple datasets. Early studies

tended to focus on normalizing individual Hi-C datasets (Imakaev

et al., 2012; Knight and Ruiz, 2012; Lieberman-Aiden et al., 2009;

Yaffe and Tanay, 2011). These individual methods improve repro-

ducibility of replicated datasets (Hu et al., 2012; Imakaev et al.,

2012; Yaffe and Tanay, 2011). However, these methods leave the

problem of different biases between multiple Hi-C datasets

unaddressed.

Early methods for normalizing and comparing Hi-C datasets

were developed to normalize individual datasets and overlap them.

The most notable example is the HiCCUPS algorithm (Rao et al.,

2014), which detects chromatin interaction ‘hotspots’ in individually

normalized Hi-C datasets. Hotspots, i.e. chromatin interactions

enriched relative to the local background, are then compared be-

tween datasets by simply overlapping them. This approach does not

distinguish hotspots detected due to local biases and does not quan-

tify the significance of the differences. Several papers utilized indi-

vidually normalized Hi-C datasets and overlap-based methods to

reveal important insights into the dynamics of the 3D structure of

the genome (Bonev et al., 2017; Dixon et al., 2015). However, the

overlap-based methods are severely limited in detecting statistically

significant chromatin interaction changes.

To the best of our knowledge, only four methods approach a

statistically grounded comparison of Hi-C datasets. The diffHic

method is an extension of a negative binomial distribution-based

analysis operating on count data (Lun and Smyth, 2015). As such,

it leaves a user with challenges of sequencing data storage, the

computational burden of processing, normalization, summariza-

tion and other bioinformatics heavy lifting of Hi-C data. The

HOMER method uses a binomial model to compare individually

normalized Hi-C datasets (Heinz et al., 2010). The ChromoR

method (Shavit and Lio’, 2014) uses a Poisson model to compare

Hi-C datasets. The latest method, FIND, exploits a spatial Poisson

process to consider spatial dependency between chromatin regions

when detecting differentially interacting loci (Djekidel et al.,

2018). However, in our tests, these methods failed to detect

consistent differential chromatin interactions. Furthermore, all but

diffHic methods use individually normalized Hi-C datasets, leaving

the technology-driven biases unaccounted for. Thus, the problem

of normalization and statistical comparison of multiple Hi-C

datasets remains unsolved.

Our method, HiCcompare (Stansfield et al., 2018), was one of

the pioneering normalization methods to consider between dataset

biases; however, it is limited to only joint normalization and com-

parison of two datasets. As sequencing costs continue to decrease

and availability of Hi-C sequencing data increases, this method will

fall short for Hi-C experiments involving comparison of multiple

datasets.

We present a method, multiHiCcompare, for joint normalization

and comparison of multiple Hi-C datasets. Our method is based on

a distance-centric view of Hi-C data, accounting for the fact that

chromatin interaction frequencies (IFs) decay with the increasing

distance between interacting regions. Our method utilizes cyclic

loess regression-based normalization to jointly normalize Hi-C data-

sets between replicates and conditions. We then present a differen-

tial chromatin interaction analysis framework based on a general

linear model (GLM)-based approach (McCarthy et al., 2012;

Robinson et al., 2010). Our framework operates on interaction

counts subset in a distance-centric manner to produce RNA-seq-

count-like matrices that can be directly analyzed using the GLM ap-

proach. As an output, genomic coordinates of differentially interact-

ing regions are reported in text format, and the results are

compatible with Juicer (Durand et al., 2016) for easy visualization.

This method, implemented in the multiHiCcompare R package,

represents a streamlined and well-documented pipeline for the

joint normalization and comparative analysis of multiple Hi-C

experiments.

2 Materials and methods

Hi-C data format. multiHiCcompare works on processed Hi-C data

in the form of sparse upper triangular matrices, in plain text format.

A typical sparse Hi-C matrix is stored in a separate file for each

chromosome and contains three columns—the start location for the

first interacting regions, the start location for the second interacting

region, and the IF for that interaction. When importing data to use

in multiHiCcompare, an additional column needs to be added indi-

cating the chromosome number, as the first column. The original

HiCcompare package provides functions for converting between full

and sparse matrices (Stansfield et al., 2018).

Filtering. Pairs of chromatin regions showing zero IF across all

samples are not considered in all analyses. Additional filtering

options include filtering out interacting pairs of regions with the

average IF below a pre-defined threshold and/or the proportion of

zero IF values larger than a pre-defined threshold across multiple

datasets. Filtering helps to increase the computational speed when

normalizing and comparing the data. Additionally, it removes inter-

actions with low variability and high numbers of zero IFs that may

create problems when estimating the parameters of the negative bi-

nomial distribution in the comparative analysis step (Lun and

Smyth, 2017). Furthermore, filtering helps to increase power by

reducing the effect of the multiple testing correction. By default,

interaction pairs with an average IF <5 and the proportion of zero

IFs larger than 80% are filtered out.

Cyclic loess normalization. We previously developed a loess

regression-based method for normalizing two Hi-C datasets

(Stansfield et al., 2018). Briefly, the method is based on representing

the data on a mean-difference (MD) plot. The MD plot is similar to

the MA plot (Bland–Altman plot) (Dudoit et al., 2002) which is

commonly used for the visualization of gene expression differences.

M is defined as the log difference between the two datasets

M ¼ log2ðIF2=IF1Þ, where IF1 and IF2 are IFs of the first and the se-

cond Hi-C datasets, respectively. D is defined as the distance be-

tween two interacting regions, expressed in unit-length of the

resolution of the Hi-C data. A loess regression curve is fit through

the MD plot and used to remove global biases by centering the M

differences around M ¼ 0 baseline (Stansfield et al., 2018). In our

previous work, we show that joint loess normalization on the MD

plot is superior to other common Hi-C normalization methods (ICE,

KR, MA) for the purpose of comparison between experimental con-

ditions (Stansfield et al., 2018). We also performed an additional

comparison of cyclic loess with HiCNorm (Hu et al., 2012)

(Supplementary Fig. S1). The details of cyclic loess are reported in

the Supplementary Methods.
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Additionally, we implemented a modified version of the fast lin-

ear loess (‘fastlo’) method (Ballman et al., 2004) that is adapted to

Hi-C data on a per-distance basis. To perform ‘fastlo’ on Hi-C data

we first split the data into p pooled matrices. ‘Progressive pooling’ is

used to split up the Hi-C matrix by unit distance such that distance

0 is its own pool, distances 1 and 2 are pooled, distances 3, 4, 5 are

pooled and so on until all unit distances belong to one of p pools.

p is calculated as follows p ¼ ceiling
ffiffiffiffiffiffiffiffiffiffi
8ndþ1
p

�1

2

n o
where nd is the

number of unit distances. The solution for the number of pools fol-

lows from the quadratic formula solution for triangular numbers.

Progressive pooling is required for the fastlo and difference detection

steps because each off-diagonal trace of the matrix gets progressively

smaller than the last. Thus, progressive pooling allows for normal-

ization and analysis to be performed in a distance-centric manner

while maintaining a similar number of contacts in each pool. These

pooled contacts are assembled into matrices of IFs. Each matrix will

have an IFgj value with g interacting pairs for each of the j samples.

These p matrices can then be input into the ‘fastlo’ algorithm using

the following steps:

1. Create the vector ÎFpgj, the row means of the pth matrix. This

is the equivalent of creating an average IF at distance pool p.

2. Plot ÎFp versus ðIFpg � ^IFp
Þ for each sample j. This is equivalent

to an MA plot at a genomic distance pool p.

3. Fit a loess curve f ðxÞ to the plot.

4. Subtract f ðxÞ from sample j.

5. Repeat for all remaining replicates.

6. Repeat until the algorithm converges.

The above steps are performed on the log2-transformed IFs. If a

parallelization option is specified, the ‘fastlo’ algorithm is parallel-

ized by splitting up the p matrices and sending them to multiple pro-

cessors. Similar to cyclic loess, fastlo typically converges within two

iterations, which is defined as the point when the row means no lon-

ger change (Ballman et al., 2004). Additionally, fastlo has been

shown to provide similar normalized values as quantile normaliza-

tion while being almost as fast computationally (Ballman et al.,

2004). Both the cyclic loess and fastlo methods are included in the

multiHiCcompare package.

After joint normalization, any negative IFs are automatically set

to values of 0. All IFs that started with a zero value are reverted to

zero after normalization is complete. This is because we are unable

to determine if zeros in Hi-C matrices represent a missing value or

an actual absence of contact between the pair of regions.

Detection of chromatin interaction differences. After normaliza-

tion of the data, we can then proceed to the differential analysis.

The primary goal of the differential analysis is to detect the maximal

number of true differences while minimizing false positives.

Approaches that utilize information across replicate high-

throughput data (microarrays, RNA-seq, ChIP-seq) have been

shown to improve the power of differential analysis (Phipson et al.,

2016; Sartor et al., 2006; Smyth, 2004; Yu et al., 2011). Adopting

the distance-centric view of Hi-C data (the off-diagonal vectors in

chromatin interaction matrices, Fig. 1), a comparison with other

sequencing technologies can be drawn. Similar to RNA-seq read

counts, Hi-C IFs may have differing amounts of biological variation

across replicates.

As Hi-C reads forming pairwise IFs are count based, the IFs can

be modeled using a negative binomial distribution (Robinson and

Smyth, 2007) (Supplementary Fig. S2). The distributions of

distance-centric vectors of interaction counts can be approximated

by the NB distribution, and this approximation holds at different

resolutions of Hi-C data and different distances between interacting

regions. Thus, the GLM framework of differential gene expression

analysis developed for RNA-seq (Anders and Huber, 2010; Auer

and Doerge, 2010; Baggerly et al., 2003, 2004; Hansen et al., 2011;

Lu et al., 2005; McCarthy et al., 2012; Robinson et al., 2010;

Robinson and Smyth, 2007, 2008) can be adapted for differential

analysis of IFs. We adapted this framework to process IFs repre-

sented as p ‘progressively pooled’ distance-centric matrices with g

rows (indices for interacting pairs of regions) and i columns (indices

for replicates, Fig. 1). The ‘progressive pooling’ strategy is aimed to

increase the robustness of statistical estimates across the whole

range of distances between interacting regions. Its adaptation for the

GLM framework is described in Supplementary Methods.

Benchmarking multiHiCcompare. To accurately benchmark a

method, data with ground truth differences are required (Dozmorov

et al., 2010). As there is no gold standard for differential interactions

in Hi-C data, we used technical replicates from HCT-116 colorectal

cancer cell line at 100 KB resolution for chromosome 22 (Rao et al.,

2017) to generate a set of 4�4 Hi-C matrices with ground truth dif-

ferences. To create this dataset, we used four technical replicates

(‘Normal; Biological Sample 2’) (Supplementary Table S1) and cre-

ated an additional four Hi-C datasets by adding random noise to

each of them. Noise was estimated by fitting the distributions of the

differences between the replicate dataset’s IFs. The differences were

found to follow a roughly normal distribution with means near 0

and SDs between 8 and 11. Thus, to add noise to our ‘simulated’

replicates we sampled from a normal distribution with mean 0 and

SD of 10. The noise matrix was then added to the real Hi-C data to

produce the simulated replicates. This created a total of eight semi-

simulated replicate datasets, suitable for the 4�4 group comparison.

A pre-specified number of ground truth differences were added

in randomly to the chromatin interaction matrices. The randomly

selected interacting pairs had their IFs set to the mean of all samples

and then Gaussian noise sampled from a N(0,r) distribution was

added to the IFs. r is defined by fitting a linear regression between

average IF and SD of IFs. Finally, the IFs for one of the experimental

conditions were multiplied by a pre-specified fold change. This

method produces an average fold change difference between the

conditions while still preserving some variation in the IFs from dif-

ferent samples.

To illustrate the benefits of replicated Hi-C data, two parameters

of comparative analysis were tested—(i) the number of replicates

and (ii) the fold change. Additionally, we investigated the effect of

the resolution of Hi-C data (finer resolution is expected to have the

lower dynamic range and the higher proportion of zero IFs). We

also compared the performance of multiHiCcompare with the ori-

ginal HiCcompare method (Stansfield et al., 2018). Using the

ground truth differences as a reference, we performed a receiver

operating characteristic curve (ROC) analysis as well as assessed

other standard performance classifiers.

Comparisons. The methods for the comparisons of

multiHiCcompare with FIND and diffHic along with the analyses

for the auxin-treated cells and CTCF depleted cells are described in

the Supplementary Methods.

Software availability. multiHiCcompare is freely available as an

R package on Bioconductor at https://bioconductor.org/packages/

multiHiCcompare and Github at https://github.com/dozmorovlab/

multHiCcompare. The package includes a vignette and test data

along with documentation for all functions. multiHiCcompare is

released under the MIT open source software license.

Data access. For our benchmarking of multiHiCcompare, we

used 14 samples from HCT-116 human colorectal carcinoma cell
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line (Rao et al., 2017). For the comparison with diffHic, we used

data from RWPE1 prostate cancer epithelial cell lines over-

expressing the ERG protein or GFP protein (Rickman et al., 2012).

For the enrichment analysis of differentially interacting regions in

HCT-116 and HEK293 cells, we used ChIP-seq transcription factor

(TF) binding sites from CistromeDB (Mei et al., 2017). All data

sources are presented in Supplementary Tables S1, S3 and S5.

3 Results

3.1 multiHiCcompare method outline
multiHiCcompare is an R package for the joint normalization and

detection of chromatin interaction differences in multiple Hi-C data-

sets. A basic multiHiCcompare analysis will start with pre-processed

Hi-C data from two or more experimental conditions for which

each condition has one or more samples (technical or biological

replicates). The whole-genome Hi-C data should be provided as a

single file in the form of plain text four column sparse upper triangu-

lar matrices. The data are then jointly normalized using either

our cyclic loess or fastlo methods. Finally, the experimental condi-

tions can be compared using either an exact test or a generalized

linear model (GLM) framework, depending on the complexity of

the experimental design. The flowchart in Figure 1 shows a typical

multiHiCcompare workflow.

3.2 Replicates of Hi-C data improve the power of detec-

tion of differential chromatin interactions
The performance of multiHiCcompare was quantified by using

varying numbers of replicates per condition with added true differ-

ences at varying fold changes (see Section 2). multiHiCcompare was

able to detect the majority of the introduced differences with rela-

tively low numbers of false positives, and the power of detecting dif-

ferential interactions increased dramatically as the number of

replicates in each experimental condition and the fold change

increased (Fig. 2). These results emphasize the utility of the GLM

for differential chromatin interaction analysis.

The performance of multiHiCcompare was also tested

against the original HiCcompare, which is designed to compare

two datasets. We found that both methods performed well in

detecting the added differences, however, HiCcompare had a

larger area under the ROC curve in cases with one replicate per ex-

perimental condition (Fig. 2). This is likely due to the limitations

in calculating the dispersion factor for the negative binomial model

used in multiHiCcompare when no replicates are available.

Therefore, for 1�1 dataset comparison, we recommend using the

original HiCcompare method, while when multiple replicates

are available multiHiCcompare is more powerful at detecting true

differences.

3.3 multiHiCcompare outperforms FIND
To compare the performance of multiHiCcompare with FIND, a re-

cently published method for differential chromatin interaction detec-

tion (Djekidel et al., 2018), we generated simulated Hi-C matrices

with true differences at 2, 4 and 6-fold changes (see Section 2). To

test the effect of the number of replicates for each of these fold

changes, we performed 2�2, 3�3 and 4�4 analyses. We found that

over the range of fold changes, multiHiCcompare detected more

true positives with less false positives than FIND (Supplementary

Table S2) and showed a larger area under the ROC curve perform-

ance (Supplementary Fig. S3). The Matthew’s Correlation

Coefficient (MCC) for multiHiCcompare was also higher than that

Fig. 1. Flowchart for a multiHiCcompare analysis. Pre-processed Hi-C data are

read in and then normalized using the cyclic loess (or fastlo) methods. Then

‘progressive pooling’ of the off-diagonal (distance-centric) IFs into a matrix

format is performed for input into either an exact test or GLM. Finally, the

results of the comparison are shown on a composite MD plot indicating

where the differences occurred
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of FIND for the majority of tested examples (Fig. 3). At the higher

fold changes tested, multiHiCcompare was able to detect nearly two

times the amount of true differences compared to FIND

(Supplementary Table S2). These results demonstrate that

multiHiCcompare outperforms FIND in the detection of differential

chromatin interactions at different fold changes and different num-

bers of replicates.

3.4 multiHiCcompare identifies similar chromatin

interaction differences detected by diffHic
We compared the performance of multiHiCcompare with the

diffHic method (Lun and Smyth, 2015). We used the Hi-C data

from human prostate epithelial cells (RWPE1 cells) over-expressing

the ERG protein or

a GFP control, analyzed in the diffHic paper (Rickman et al.,

2012). multiHiCcompare found 1752 differences (FDR < 0.05) be-

tween the ERG and GFP conditions, more than was found in the ori-

ginal HiCcompare analysis (Stansfield et al., 2018), yet <5737

differences (FDR < 0.05) detected by diffHic. As shown in Figure 2,

multiHiCcompare might have gained some additional power over

HiCcompare by making use of the two Hi-C libraries (the

multiHiCcompare analysis was a 2�2 analysis, compared to the

1�1 analysis of HiCcompare). However, both HiCcompare and

multiHiCcompare seem to be more conservative than diffHic. The

overlap between the multiHiCcompare-detected and diffHic-

detected differences was significant (1254 overlapping regions,

Fisher’s exact test P-value < 2:2x10�16). This overlap is expected as

both methods utilize the same GLM framework, while

multiHiCcompare applies it with respect to the distance between

interacting regions. Additionally, multiHiCcompare was able to de-

tect all but one differential interactions validated by fluorescence in

situ hybridization (FISH) (Table 1), further confirming the power of

multiHiCcompare in detecting biologically relevant chromatin inter-

action differences.

3.5 multiHiCcompare is robust to the resolution of Hi-C

data
Typically, Hi-C data at higher resolution (smaller size of chromatin

regions tested for interactions) have a lower dynamic range and a

higher proportion of zero IFs (sparsity). To examine the effect of

resolution on the performance of multiHiCcompare, we calculated

the MCC at resolutions of 50, 10 and 5 KB (Supplementary Fig. S5,

see Section 2). multiHiCcompare encountered some difficulties at

detecting the added in differences at 2-fold changes in the very high-

resolution data. However, at fold changes of 4 or greater,

multiHiCcompare performed well at all resolutions. Evaluation of

other performance metrics confirmed this conclusion

(Supplementary Table S4). These results indicate that sparsity of the

Hi-C data might hinder the detection of small differences at high

resolution, but overall multiHiCcompare appears to perform well

even in sparse conditions.

3.6 multiHiCcompare detects regions associated with

loss of chromatin loops in auxin-treated cells
We compared data from HCT-116 cells treated with auxin to those

not treated (Rao et al., 2017). The auxin treatment is thought to

eliminate chromatin loops, thus changing many chromatin interac-

tions. The untreated group contained seven samples from biological

replicates 1 and 2. The auxin-treated group contained seven samples

from biological replicates 1 and 2 treated with auxin for 6 h

(Supplementary Table S1). All samples were jointly normalized, and

differentially interacting chromatin regions were detected. The bio-

logical replicate number was entered as a covariate, and the main ef-

fect of auxin treatment was evaluated. This analysis was aimed at

identifying regions associated with loss of chromatin loops.

We found a total of 417 145 differentially interacting pairs

between the normal cells and the auxin treatment (FDR < 0.05).

The auxin treatment is known to destroy the RAD21 protein of the

cohesin complex and thus degrade chromatin looping. Therefore,

Fig. 2. ROC analysis of the performance of multiHiCcompare and HiCCompare over various fold changes for introduced differences. The ROC curves demonstrate

the increase in power in detecting differential chromosome interactions as the number of replicates per experimental condition increases from 1 to 4 compared

with the performance of HiCcompare at 2, 4, 6-fold changes, panels (A), (B), (C), respectively

Fig. 3. Comparison of MCC between multiHiCcompare and FIND over various

fold changes and 2�2, 3� 3, and 4�4 numbers of replicates per condition,

panels (A), (B), (C), respectively. MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p
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we hypothesized that the regions detected by multiHiCcompare as

differentially interacting should be enriched with RAD21 binding

sites, and their IF should be decreased in auxin-treated condition.

To test the significant differentially interacting regions for the en-

richment of TF binding sites, we performed permutation tests where

a random set of genomic regions of the same size as the significant

regions were sampled and compared for enrichment against the sig-

nificant regions. Analysis of the most significant differentially inter-

acting regions (FDR < 10�15) showed that they were significantly

enriched for RAD21 binding sites (permutation P-value <0.001,

Supplementary Table S3). Additionally, the regions enriched for

RAD21 mostly exhibited lower IF values compared to the normal

cells.

Notably, we detected SMC1A, another structural maintenance

protein of the cohesin complex reported to be affected by the auxin

treatment

(Rao et al., 2017), to be enriched in these regions (permutation

P-value ¼0.04). Consistent with the original findings, SMC1A

enriched regions also exhibited lower IF values compared to the

normal cells (Supplementary Table S3). Further, consistent with the

original findings, we found that HCT-116 cell-specific CTCF sites

were not enriched in the detected regions. These results indicate

that multiHiCcompare is capable of detecting biologically relevant

differences in chromatin conformation between experimental

conditions.

In addition to the expected decrease in RAD21 and SMC1A

binding sites, and no change in CTCF binding, we tested whether

regions differentially interacting in auxin-treated condition are

enriched in other HCT-116-specific TFs (Supplementary Table S3).

The rationale here was to detect other TFs that may be responsible

for chromatin loop formation. Notably, we detected strong enrich-

ment in TCF4 binding sites (Table 2), a TF previously linked to

SMC3, a known component of the cohesin complex (Ghiselli et al.,

2003). Furthermore, we observed enrichment of the heterochroma-

tin protein HP1c (also known as CBX3) and other proteins respon-

sible for chromatin structure (Table 2). Expectedly, chromatin IF

was decreased in these regions, confirming that auxin treatment

leads to loss of chromatin loops formed by the cohesin complex

(Rao et al., 2017). These findings confirm that multiHiCcompare

allows for deeper insights into the biology of differential chromatin

interactions.

We further hypothesized that the differentially expressed (DE)

genes detected in Rao et al. (2017) would be enriched within the

regions detected by multiHiCcompare as differentially interacting.

The list of DE genes was obtained from GEO (GSE106886) and

matched with the corresponding regions by genomic coordinates.

The DE genes (FDR < 0.05) were checked for enrichment within the

most significant differentially interacting regions (FDR < 10�15).

We found that these genes were significantly enriched within the

regions detected by multiHiCcompare (permutation P-value ¼
3:9 � 10�4). In summary, these results demonstrate that

multiHiCcompare is a powerful tool to detect biologically relevant

chromatin interaction differences.

3.7 multiHiCcompare detects regions associated with

siRNA knockdown of CTCF
Similar to the analysis performed on the auxin-treated cells, we used

multiHiCcompare to analyze an experiment of CTCF siRNA knock-

down in HEK293 cells (Zuin et al., 2014). CTCF is thought to play

a role in shaping the 3D organization of the genome, especially in re-

lation to topologically associated domains (Phillips and Corces,

2009; Vietri Rudan et al., 2015), and its knockout led to the reduc-

tion of intra-domain interactions with the concurrent increase in

Table 1. Differential interaction statistics from multiHiCcompare and diffHic for chromatin interaction differences experimentally validated

by FISH

multiHiCcompare diffHic

Interaction logFC logCPM P-value FDR logFC logCPM P-values FDR

FYN - MOXD1 �2.113 10.093 <0.001 0.007 0.733 1.134 0.002 0.042

HEY2 - MOXD1 1.232 11.182 <0.001 <0.001 0.67 2.625 <0.001 0.002

SERPINB9 - MOXD1 �2.227 9.621 0.008 0.356 �1.27 �0.151 0.001 0.016

FYN - HEY2 �2.113 10.093 <0.001 0.007 �1.545 0.621 <0.001 <0.001

Note: ‘Interaction’—the genes interacting identified by FISH, ‘logFC’—the log2 fold change of IF difference between conditions, ‘logCPM’—the between-con-

ditions average log counts per million of the IFs, for multiHiCcompare and diffHic results, respectively.

Table 2. TFs significantly (P-value <0.05) enriched in the differen-

tially interacting regions in HCT-116 auxin-treated cells

Transcription

factor

Number of

experiments

Mean

logFC

Stouffer–Liptak

P-value

TCF4 8 �1.07 1.38E-07

CBX3 7 �0.60 2.95E-04

EP300 1 �0.89 9.99E-04

FOSL1 1 �0.89 9.99E-04

CEBPB 1 �0.87 9.99E-04

JUND 1 �0.87 9.99E-04

RAD21 1 �0.87 9.99E-04

KMT2B 1 �0.84 9.99E-04

SRF 1 �0.83 9.99E-04

TCF7L2 1 �0.83 9.99E-04

MAX 1 �0.82 9.99E-04

TEAD4 1 �0.82 9.99E-04

USF1 1 �0.79 2.00E-03

ATF3 1 �0.79 3.00E-03

ZBTB33 1 �0.58 4.00E-03

ZC3H8 1 �0.73 6.99E-03

YY1 1 �0.78 1.10E-02

ELF1 1 �0.76 1.10E-02

EGR1 1 �0.75 2.10E-02

SMC1A 1 �0.85 4.40E-02

SP1 5 �1.13 4.41E-02

AFF4 7 �0.19 4.87E-02

MECP2 2 �0.85 4.92E-02

Note: The Stouffer-Liptak method of combining P-values (Stouffer, 1949)

was used to obtain a summary P-value for each TF, as many TFs were repre-

sented by multiple datasets. ‘Number of experiments’—the number of ChIP-

seq tracks supporting the enrichment, ‘Mean logFC’—the between-conditions

average log fold change of regions overlapping with a TF, ‘Stouffer-Liptak p-

value’—enrichment P-value summarized using Stouffer–Liptak method

(sorted by).

Differential analysis of multiple Hi-C datasets 2921

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/17/2916/5298730 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz048#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz048#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz048#supplementary-data


inter-domain interactions. Thus, it was expected that knockdown of

CTCF should lead to changes that can be detected by

multiHiCcompare. We detected a total of 640 (FDR < 0.05) differ-

ences between the control and CTCF siRNA knockdown cells.

About 448 (70%) of the differentially interacting regions had posi-

tive fold changes (mean log fold-change 2.8), potentially reflecting

the increased inter-domain interactions.

Knockdown of CTCF is expected to ‘free’ its binding sites from

the insulator effect of CTCF and allow the associated chromatin

regions to interact. Indeed, the original study found that the pro-

moters of genes DE after CTCF knockdown were enriched in CTCF

binding sites (Zuin et al., 2014). Analysis of the significant differen-

tially interacting regions detected by multiHiCcompare showed that

they were significantly enriched for CTCF binding sites (permuta-

tion P-value <0.001, Supplementary Tables S5 and S6). Members of

the cohesin complex were also found to be enriched following

CTCF knockdown (Zuin et al., 2014); e.g. SMC3 was also found to

be enriched in the differential regions (permutation P-value <0.001,

Supplementary Table S6). These findings mirror the original results

(Zuin et al., 2014), further confirming that multiHiCcompare is

able to detect known biological differences in Hi-C data.

We also detected strong enrichment of POLR2A binding sites in

the differential regions detected by multiHiCcompare, not reported

in the original study. Notably, upregulation of polymerase genes,

including POLR2A, following knockdown of TFII-I, an interacting

partner of CTCF, has been noted (Marques et al., 2015). Their

results suggest that the increase in inter-domain interactions fol-

lowed by CTCF depletion is likely accompanied by an increase in

transcription driven by RNA polymerase II. In summary, these

results suggest that multiHiCcompare can confirm known and de-

tect new findings in the comparative analysis of Hi-C data.

3.8 Runtime evaluation
In our testing, both cyclic loess and fastlo normalization methods

perform reasonably equally in regards to difference detection

(Supplementary Fig. S4); however, fastlo offers quicker computa-

tional speeds (Supplementary Fig. S6A). We provide cyclic loess

method as a conceptually straightforward and illustrative algorithm

of the joint normalization of multiple datasets and recommend fas-

tlo as the default joint normalization method.

When compared to FIND, multiHiCcompare showed a much

faster runtime. We found that FIND was extremely slow on any Hi-

C matrices that were relatively complete (low proportion of zeros).

For example, at resolutions of 20–5 0KB FIND runtimes were more

than 72 h, while multiHiCcompare can perform a comparable ana-

lysis in under 10 min (Supplementary Fig. S6A). Thus,

multiHiCcompare represents a fast and scalable method for joint

normalization and detection of chromatin interaction differences.

The memory footprint expectedly increased with the increased

resolution of the data and the number of replicates (Supplementary

Fig. S6B). However, the memory footprint depends on sparsity of

the data, hence, the high-resolution data may take less memory due

to the increased sparsity. In summary, a whole-genome Hi-C data

analysis can be performed on a desktop computer.

4 Discussion

As Hi-C datasets begin to be generated in multiple replicates, meth-

ods for the joint analysis of them are becoming crucial. Our methods

address this need by providing a software implementation for the

joint normalization of multiple datasets and the detection of

differential chromatin interactions. As with any sequencing tech-

nologies, Hi-C data are unpredictably affected by technological biases,

hindering the detection of chromatin interaction differences. While

methods for normalization of individual Hi-C datasets have been

developed (Imakaev et al., 2012; Knight and Ruiz, 2012; Lieberman-

Aiden et al., 2009; Yaffe and Tanay, 2011), methods for joint normal-

ization and comparative analysis of Hi-C data remain immature. We

present the first method for jointly normalizing multiple Hi-C datasets

by extending our HiCcompare loess regression-based method

(Stansfield et al., 2018) and adapting the GLM-based difference

detection method (McCarthy et al., 2012; Robinson et al., 2010) for

the comparative analysis of multiple Hi-C datasets. multiHiCcompare

can detect a priori known changes in replicate data with a low rate

of false positives, and its power only increases with the increasing

number of Hi-C replicates. We demonstrate that multiHiCcompare

can detect biologically relevant regions associated with loss of chroma-

tin loops in auxin-treated cells (Rao et al., 2017) and CTCF knock-

down cells (Zuin et al., 2014). We believe that if replicates of Hi-C

data are available, they should be used in multiHiCcompare to gain

the most power in detecting chromatin interaction differences.

The diffHic method (Lun and Smyth, 2015) pioneered the use of

the negative binomial distribution and the GLM framework, origin-

ally implemented in the edgeR package (Robinson et al., 2010), for

the comparative analysis of two Hi-C datasets. Other tools, such as

HiBrowse (Paulsen et al., 2014), diffloop (Lareau and Aryee, 2018),

also utilized this framework. We further confirm the suitability of

the negative binomial distribution for Hi-C data modeling

(Supplementary Fig. S2) and extend the edgeR functionality with the

distance-centric view of Hi-C data. Our previous results (Stansfield

et al., 2018) and the current implementation demonstrate that the

distance-centric analysis of Hi-C data is a powerful approach to de-

tect true chromatin interaction differences.

Interestingly, when comparing multiHiCcompare against FIND,

multiHiCcompare performed much better than FIND even when

using FIND’s simulation function. This may be because FIND excels

at detecting large fold changes (e.g. 10-fold or 20-fold changes)

(Djekidel et al., 2018), while multiHiCcompare performs well at

fold changes as small as 2. Thus, besides being much faster than

FIND (see ‘Runtime evaluation’ results), multiHiCcompare is better

suited for the detection of chromatin interaction differences across

the whole range of fold changes.

In comparison with diffHic, multiHiCcompare showed similar

performance in our analysis of the RWPE1 data. Although

multiHiCcompare detected a smaller number of differences than

diffHic, there was a significant overlap in the detected lists of

regions. This is expected as both multiHiCcompare and diffHic use

the GLM framework for difference detection but differ in the nor-

malization approach and distance-based considerations imple-

mented in multiHiCcompare. We feel that the distance-centric

approach for joint normalization and difference detection, as imple-

mented in multiHiCcompare, is better suited for the analysis of mul-

tiple Hi-C datasets.

In summary, the multiHiCcompare R package provides user-

friendly methods for the joint normalization and comparative ana-

lysis of multiple Hi-C datasets. Our methods have been shown to

perform similarly or better than other available methods. To date,

multiHiCcompare is the only method for the joint normalization of

multiple Hi-C datasets, which has been shown to outperform the

commonly used methods for normalizing individual datasets

(Stansfield et al., 2018). Finally, since multiHiCcompare is designed

as a Bioconductor R package, it can be easily installed and used on

all operating systems.
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