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Abstract

Motivation: For many RNA families, the secondary structure is known to be better conserved

among the member RNAs compared to the primary sequence. For this reason, it is important to

consider the underlying folding structures when aligning RNA sequences, especially for those with

relatively low sequence identity. Given a set of RNAs with unknown structures, simultaneous RNA

alignment and folding algorithms aim to accurately align the RNAs by jointly predicting their con-

sensus secondary structure and the optimal sequence alignment. Despite the improved accuracy

of the resulting alignment, the computational complexity of simultaneous alignment and folding

for a pair of RNAs is OðN6Þ, which is too costly to be used for large-scale analysis.

Results: In order to address this shortcoming, in this work, we propose a novel network-based

scheme for pairwise structural alignment of RNAs. The proposed algorithm, TOPAS, builds on the

concept of topological networks that provide structural maps of the RNAs to be aligned. For each

RNA sequence, TOPAS first constructs a topological network based on the predicted folding struc-

ture, which consists of sequential edges and structural edges weighted by the base-pairing proba-

bilities. The obtained networks can then be efficiently aligned by using probabilistic network align-

ment techniques, thereby yielding the structural alignment of the RNAs. The computational

complexity of our proposed method is significantly lower than that of the Sankoff-style dynamic

programming approach, while yielding favorable alignment results. Furthermore, another import-

ant advantage of the proposed algorithm is its capability of handling RNAs with pseudoknots while

predicting the RNA structural alignment. We demonstrate that TOPAS generally outperforms previ-

ous RNA structural alignment methods on RNA benchmarks in terms of both speed and accuracy.

Availability and implementation: Source code of TOPAS and the benchmark data used in this

paper are available at https://github.com/bjyoontamu/TOPAS.

Contact: bjyoon@ece.tamu.edu

1 Introduction

RNA sequence alignment methods play important roles in compara-

tive genome analysis, especially for accelerating the discovery of

novel noncoding RNAs (ncRNAs) as well as studying their functions

and structures. Sequence alignment techniques provide effective

means of quantitatively evaluating the similarity between different

RNA sequences, which can be used for computational identification

of homologous RNAs that belong to the same functional family. As

revealed in various comparative studies of RNAs, for many RNA

families, the secondary structure of the RNAs tends to be better con-

served among the members compared to their primary sequence

(Freyhult et al., 2006; Glotz et al., 1981; Johnsson et al., 2014; Raué
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et al., 1988; Zwieb et al., 1981). As a consequence, it is critical for

RNA sequence alignment techniques to sensibly incorporate the

underlying RNA secondary structure into the alignment process in

order to obtain accurate alignment results.

RNA is a single-stranded molecule that is composed of a chain

of nucleotides with four different types of bases A, C, G and U. Due

to the base-pairing interactions between different bases, an RNA

may fold onto itself thereby forming a complicated structure.

Although the prediction of the native three-dimensional structure of

an RNA is challenging, the two-dimensional RNA secondary struc-

ture is amenable to mathematical analysis and computational pre-

diction (Flamm et al., 2000; Greenleaf et al., 2008; Tinoco and

Bustamante, 1999), thanks to the quasi-hierarchical nature of the

folding structure. Canonical Watson-Crick pairs A–U and C–G are

typically formed between bases and wobble pairs G–U are also fre-

quently observed in RNA secondary structure. In a typical RNA sec-

ondary structure, the base-pairs appear in a nested manner such that

two base-pairs (i1, i2) and (j1, j2)—ik and jk referring to base loca-

tions—either satisfy i1 < i2 < j1 < j2 or i1 < j1 < j2 < i2. An

RNA secondary structure that contains non-nested crossing base-

pairs is called a pseudoknot. In general, pseudoknots make compu-

tational analysis of RNAs—e.g. structure prediction and structural

alignment—significantly more challenging.

Probably the first—and arguably also the most influential—

method that has been proposed for structural alignment of RNAs

with unknown structures is the algorithm proposed by Sankoff,

which simultaneously solves the sequence alignment problem and

the consensus RNA secondary structure prediction problem through

a dynamic programming approach (Sankoff, 1985). Several different

implementations of Sankoff-style algorithms exist to date for RNA

structural alignment. For example, Dynalign and Foldalign are

popular methods that use thermodynamic models to evaluate the

free energy of a potential secondary structure and utilizes dynamic

programming to find the structure with the lowest free energy that is

common to the RNAs to be aligned (Fu et al., 2014; Harmanci

et al., 2008; Havgaard et al., 2005; Mathews and Turner, 2002;

Sundfeld et al., 2016). Another method, called PARTS, introduces a

pseudo-free energy model based on the base-pairing and alignment

probabilities to find the best structural alignment that maximizes

the joint probability (Harmanci et al., 2008). Although Sankoff-

style algorithms generally yield more accurate and reliable alignment

results compared to alignment techniques that solely rely on se-

quence similarity, their main downside is the sharp increase in com-

plexity. For example, the complexity of the original Sankoff

algorithm for the structural alignment of two RNA sequences of

length N is OðN6Þ in time and OðN4Þ in space (i.e. memory)

(Hamada et al., 2009). The extremely high complexity of the origin-

al Sankoff algorithm makes it impractical for large-scale genome

analysis, and a number of simplified variations of Sankoff-style algo-

rithms have been developed to efficiently solve the RNA structural

alignment problem (Gardner et al., 2005; Will et al., 2007, 2015).

One such example is PMcomp, which uses base-pairing probabilities

as a lightweight energy model and imposes restrictions on the

matching base-pairs to reduce the overall computational complexity

to OðN4Þ (Hofacker et al., 2004). LocARNA adopts a light-weight

energy model like PMcomp, and it simplifies the dynamic program-

ming approach by incorporating the sparse property of base-pairing

(Will et al., 2007). SPARSE (Will et al., 2015) and RAF (Chuong et

al., 2008) further improve the alignment speed achieving quadratic

time complexity. In order to improve the alignment speed, SPARSE

(Will et al., 2015) utilizes ensemble-based sparsification and RAF

(Chuong et al., 2008) exploits the fact that the probable alignment

edges in the sequence alignment tend to be sparse. All the aforemen-

tioned Sankoff-style algorithms utilize energy models (or pseudo en-

ergy models based on base-pairing probability) and aim to find the

optimal structural alignment through dynamic programming with

various simplifications and constraints to reduce the overall

complexity.

In contrast to the Sankoff-style algorithms, we propose a novel

approach for RNA structural alignment by adopting the concept of

topological network that integrates the sequence and structural in-

formation of the RNAs to be aligned. Topological networks provide

convenient ways of concisely representing the complicated interac-

tions and relationships among parts or entities that form a larger

whole. Well known examples of such networks are the protein–

protein interaction (PPI) networks and the co-expression networks.

In a PPI network, nodes correspond to proteins and edges between

nodes represent interactions between the corresponding proteins. In

a co-expression network, nodes typically correspond to genes and

the presence of an edge between two nodes imply that there exists a

significant correlation between the expression levels of the con-

nected genes. In recent years, there has been growing interest in

developing efficient computational tools for comparative analysis of

large-scale biological networks (Yoon et al., 2012), especially for

the comparison and alignment of PPI networks (Jeong and Yoon,

2015; Jeong et al., 2016; Liao et al., 2009; Sahraeian and Yoon,

2013; Singh et al., 2008). By comparing the PPI networks (Gursoy

et al., 2008) that capture the physical interactions among proteins in

different species, PPI network alignment aims to predict the func-

tional correspondence between proteins across networks and iden-

tify network modules that may be conserved in different species. In

order to obtain accurate alignment results that are biologically

meaningful, network alignment methods generally consider both the

sequence similarity between proteins and the topological similarity

between networks during the alignment process (Yoon et al., 2012).

In this paper, we propose a novel RNA structural alignment al-

gorithm called TOPAS (TOPological network-based Alignment of

Structural RNAs) that builds on the concepts of topological net-

works and network alignment. TOPAS first constructs a topological

network for each RNA sequence such that the network captures the

sequence and structural properties of the RNA. The constructed

topological networks are then aligned by utilizing an efficient net-

work alignment technique, which leads to an accurate structural

alignment that seamlessly integrates the sequence similarity and the

structural similarity between the given RNAs. The network-based

approach that is adopted by TOPAS for representing and aligning

RNAs makes the algorithm very flexible, allowing it to handle

RNAs with arbitrary structures, including pseudoknots. We com-

pare our proposed algorithm TOPAS with several well-known RNA

structural alignment algorithms and show that TOPAS outperforms

previous algorithms in term of speed and accuracy.

2 Materials and methods

RNA structural alignment aims to predict an accurate alignment of

a given set of RNAs, such that their common folding structures are

faithfully aligned to each other. For fast and accurate structural

alignment of RNAs, we propose an innovative network-based ap-

proach. In the proposed approach, we first construct a topological

network for each RNA that provides a graphical representation of

its sequence composition as well as its potential secondary structure.

Next, the constructed topological networks are efficiently aligned

using a network alignment technique, where the resulting network
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alignment gives rise to the structural alignment of the corresponding

RNAs. Recent studies in comparative network analysis (Singh et al.,

2008; Yoon et al., 2012) have shown that accurate network align-

ment results can be attained by sensibly integrating the similarity be-

tween nodes across networks as well as the topological similarity

between the networks. In a similar way, network alignment techni-

ques can be used to reliably align topological networks representing

RNA sequences and their folding structures, thereby predicting an

accurate structural alignment of the RNAs that incorporates both

the sequence similarity and the structural similarity between the

RNAs. In what follows, we discuss the two main steps of the pro-

posed RNA structural alignment algorithm TOPAS—i.e. construc-

tion of the topological networks based on the given RNAs and

finding the RNA structural alignment through the alignment topo-

logical networks—in more details.

2.1 Topological network construction from RNA

sequences
For each of the RNAs to be aligned, we first construct a topological

network that provides a graphical representation of the RNA se-

quence and its potential folding structure. The backbone of the

topological network is formed based on the primary sequence of the

RNA, where every nucleotide in the RNA is represented as a node in

the topological network. Next, nodes that can form a base-pair in

the RNA folding structure are also connected by a weighted edge,

where the weight is determined by the corresponding base-pairing

probability. The base-pairing probabilities can be estimated by using

thermodynamic equilibrium models with experimentally determined

parameters (Mathews, 2004; McCaskill, 1990; Turner and

Mathews, 2010), which are widely used for RNA structure predic-

tion. In order to keep the topological network sparse by keeping

only the edges that correspond to reliable base-pairs, edges with

base-pairing probabilities that are lower than a threshold PTh are

removed from the network. This has the effect of reducing the over-

all cost of network alignment and enhancing the accuracy of the

final alignment results. The sequence similarity between nodes

across different networks is estimated by using a pair hidden

Markov model (pair-HMM) (Mount, 2009; Yoon, 2009).

Alignment probabilities between nucleotides are estimated through

the forward-backward algorithm based on the given pair-HMM,

and their normalized bit scores are used as a measure of node simi-

larity across networks, which incorporate the sequence similarity be-

tween the corresponding RNAs. The detailed network construction

process and the proposed network-based RNA structural alignment

algorithm TOPAS are elaborated in Section 2.2.

2.2 RNA structural alignment based on topological

networks
Let Gn ¼ ðVn;EnÞ be the nth topological network. Vn is the set of

nodes in the network, where each node corresponds to a nucleotide

in the nth sequence. En is the set of weighted edges between the

nodes, where each edge reflects that the connected nodes may form

a base-pair in the RNA with a base-pairing probability exceeding

the threshold PTh. Given two topological networks G1 and G2, we

aim to accurately align the networks by integrating their node simi-

larity and topological similarity, thereby predicting an accurate

structural alignment of the RNAs represented by the networks. Let

R be the overall similarity between the two networks, where the

element R(a, b) is the overall similarity score between two nodes

a 2 V1 and b 2 V2. To compute the overall similarity R, we inte-

grate the following three types of similarities: (i) structural similarity

RS between the underlying secondary structures of the two RNAs;

(ii) connected similarity RC for consecutive node (nucleotide) align-

ment; and (iii) sequence similarity RE for nucleotide-level sequence

resemblance. The structural similarity RS and the connected similar-

ity RC reflect the topological similarity between the networks G1

and G2, while RE reflects the similarity between nodes in the two

networks (i.e. the sequence-level similarity between the correspond-

ing RNAs).

In order to compute R, we adopt a similar approach that was

originally used in the IsoRank network alignment algorithm (Singh

et al., 2008). In IsoRank, two nodes in different networks are likely

to be matched (or aligned) to each other if their neighbors are also

well matched to one another. This gives rise to a similarity diffusion

scheme that can be iteratively applied until convergence, thereby

computing the overall similarity scores. Following similar principles,

we compute the structural similarity RSða; bÞ and connected similar-

ity RCða; bÞ by

RSða; bÞ ¼
X

c 2 NG1
ðaÞ

d 2 NG2
ðbÞ

PS1
ða; cÞPS2

ðb;dÞ
DðcÞDðdÞ Rðc; dÞ (1)

and

RCða; bÞ ¼
1

2
Rða� 1; b� 1Þ þ Rðaþ 1; bþ 1ÞÞ
�

(2)

where NGn
ðxÞ is defined as the set of connected neighbors of the

node x in the topological network Gn. PS1
ða; cÞ is the base-pairing

probability for the node pair at (a, c) in the network G1,

and PS2
ðb; dÞ is the base-pairing probability for the node pair at

(b, d) in the network G2. DðcÞ ¼
P

u2NG1
ðcÞ PS1

ðu; cÞ and DðdÞ ¼P
v2NG2

ðdÞ PS2
ðv;dÞ are the weighted degrees of nodes c and d, re-

spectively. These are illustrated in Figure 1.

The structural similarity RS measures the topological similarity

between nodes in different topological networks based on the base-

pairing probabilities in the respective RNAs, such that nodes

(nucleotides) involved in conserved base-pairs are likely to be

aligned in the network alignment (hence the RNA structural align-

ment). Next, the connected similarity RC is inspired by the message-

passing based sequence alignment scheme proposed in Yoon (2014).

RC is computed based on the principle that two nucleotides in two

RNA sequences are likely to be aligned if their neighboring nucleoti-

des are also aligned in the RNA sequence alignment. As mentioned

before, both RS and RC attempt to estimate the topological

Fig. 1. Illustration of topological networks for RNA structural alignment.

R(c, d) denotes the pairwise similarity between nodes at position c in network

G1 and position d in network G2. PS1ða; cÞ is the base-pairing probability for

nodes at position (a, c) in network G1. NG1
ðaÞ denotes the set of the neighbors

of node at position a if there exists the base-pairing interaction in network G1
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similarity between the given networks by capturing the similarity be-

tween the neighborhoods of two nodes that belong to different

networks.

Finally, the overall similarity score R is computed by combining

the structural similarity RS, the connected similarity RC, and the se-

quence similarity RE as follows

R ¼ ða � RS þ b � RC þ ð1� a� bÞ � REÞ; (3)

where a and b are weighting parameters that control the contribu-

tion from RS and that from RC such that 0 � a; b; aþ b � 1. The

Equation (3) can be rewritten in a matrix form as R ¼ AR, where

the matrix A represents the linear combination of the three types of

similarities ðRS;RC;REÞ according to Equations (1), (2) and (3). We

can efficiently compute the overall similarity R by using the power

method as follows:

Rðkþ1Þ  ARðkÞ=jARðkÞj; (4)

where Rðkþ1Þ is the estimation of the similarity score matrix R in the

ðkþ 1Þth iteration, and the initial similarity Rð0Þ is set to a random

vector with unit L1–norm and nonnegative elements. The conver-

gence rate of the power method is dominated by the second largest

eigenvalue of the matrix A, but the number of iterations can be lim-

ited to a fixed number NIt or the iteration could be stopped if the re-

sidual is lower than a predefined tolerance. Based on the estimated

node-to-node similarity scores in R, we can now find the optimal

network alignment through dynamic programming. To be more spe-

cific, the estimated scores that measure the similarities between

nodes that belong to different topological networks (which represent

different RNAs) can be used to find the best pairwise alignment be-

tween the networks that maximize the sum of the similarity scores

of the aligned nodes. Since the nodes in the topological networks

correspond to nucleotides in the corresponding RNAs, the structural

alignment of the RNAs can be readily obtained from the resulting

network alignment. The pseudo-code of the proposed network-

based RNA structural alignment algorithm TOPAS is shown in

Figure 2.

The computational complexity of TOPAS is dominated by the

estimation of the overall similarity R. Typically, the matrix A is very

sparse, which allows efficient computation of R. The overall compu-

tational complexity will be Oðkd1d2N2Þ, where k is the number of

iterations in the power method, d1 is the number of base-pairing

interaction edges in the network G1, and d2 is the number of base-

pairing interaction edges in G2. For typical RNAs, we have

kd1d2 � N2. Additionally, the space complexity of TOPAS is

OðN2Þ which is much lower than OðN4Þ required by the traditional

Sankoff algorithm. It is worth noting that LocARNA and RAF also

have the same low space complexity OðN2Þ.

3 Results

3.1 Construction of topological networks
Given a pair of RNA sequences, TOPAS constructs topological net-

works for the respective RNAs based on the base-pairing probabil-

ities estimated using the RNAstructure package (version 5.8).

RNAstructure is a software package for RNA secondary structure

analysis, which also includes a tool for single RNA structure predic-

tion based on the nearest-neighbor thermodynamic model and the

sequence alignment derived from a pair-HMM (Harmanci et al.,

2008; Reuter and Mathews, 2010). Previously, the PARTS algo-

rithm utilized precomputed base-pairing and alignment probabilities

to evaluate the pseudo-free energy, and in a similar way, TOPAS

utilizes the probabilistic models in RNAstructure for predicting the

RNA structural alignment based on topological networks.

3.2 Parameters for network-based structural alignment

using TOPAS
Equation (3) estimates the overall similarity between nodes (which

correspond to bases) across networks (which represent the RNA

sequences to be aligned), where the parameter a weights the topo-

logical similarity RS and the parameter b weights the connected

similarity RC. In addition, the sequence similarity RE should be

included to avoid symmetric structural ambiguity (i.e. aþ b < 1),

but the contribution from the sequence similarity should be kept at a

relatively low level so that it does not dominate the final alignment

result when analyzing sequences with low sequence identity (SI). We

illustrate the effect of the weight parameters ða; bÞ on the structural

alignment accuracy based on two pairs of tRNAs obtained from the

Fig. 2. Pseudocode of the proposed RNA structural alignment algorithm
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Rfam database (Griffiths-Jones et al., 2003): (i) the first tRNA pair

(X14835.1/6927-7002, M32222.1/12777-1363) has been selected

to illustrate the high sequence identity case (SI¼0.77) and (ii) the

other tRNA pair (X14835.1/6927-7002, M86496.1/1024-1089) has

been selected to illustrate the low sequence identity case (SI¼0.24).

The respective secondary structures of these three tRNAs are shown

in Figure 3(a–c), which have been drawn using VARNA (Darty

et al., 2009). The accuracy of the structural alignment algorithm is

assessed in terms of sensitivity (SEN) ¼ TP
TPþFN and positive predictive

value (PPV) ¼ TP
TPþFP. TP, FP and FN are the number of true posi-

tives, false positives and false negatives, respectively, and they are

calculated by comparing the predicted alignment edges with those in

(a) (b)

(d) (e)

(f) (g)

(c)

Fig. 3. Illustration of the effect of the parameters a and b on the alignment accuracy. (a) Secondary structure of the tRNA X14835.1/6927-7002. (b) Secondary struc-

ture of the tRNA M32222.1/1277-1363. (c) Secondary structure of the tRNA M86496.1/1024-1089. (d) Sensitivity (SEN) for a tRNA pair with high sequence identity.

(e) Positive predictive value (PPV) for a tRNA pair with high sequence identity. (f) Sensitivity for a tRNA pair with low sequence identity. (g) Positive predictive

value for a tRNA pair with low sequence identity

TOPAS: network-based RNA sequence alignment 2945
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the true alignment. The F-Score¼ 2= 1
SEN þ 1

PPV

� �
is also measured

for performance evaluation and comparison.

For the first pair with high SI, the performance of the proposed

network-based structural alignment is not very sensitive to the

choice of the parameters ða;bÞ as can be seen in Figure 3(d) and (e).

In this case, sequence similarity provides sufficient clues for predict-

ing a relatively accurate alignment, although the alignment quality

can be further improved by considering the structural similarity be-

tween the RNAs. However, for RNAs with relatively low SI, the se-

quence similarity between the RNAs is not sufficient per se for

finding an accurate alignment. This is illustrated in Figure 3(f) and

(g) based on the tRNA pair with low SI. As we can see from these

plots, in this case, placing a larger weight on topological similarity

generally leads to a higher SEN and a higher PPV. In practice, the

weight parameters a and b can be estimated through a grid search

based on the available training data, to strike a balance between

structural similarity and sequence similarity for reliable and accurate

prediction of RNA structural alignments.

3.3 Performance evaluation
In order to evaluate the performance of our proposed structural

alignment method TOPAS, we used the sequence pairs in the

BRAliBase 2.1 dataset K2 (Wilm et al., 2006) as the benchmark for

performance assessment and comparison. In the dataset, there were

389 sequence pairs that contained unknown bases. These sequence

pairs were excluded in our performance assessment, and the final

size of the test dataset was about 95.67% of the size of the original

BRAliBase 2.1 dataset K2. The benchmark consists of RNA sequen-

ces from 36 RNA structural families, including 8587 RNA sequence

pairs with an average length of 109 bases and an average sequence

identity of 0.67. For comparison, we also assessed the performance

of several widely used Sankoff-style structural alignment algorithms

based on the same benchmark. Table 1 lists the structural alignment

algorithms that were considered in our performance evaluation and

comparison.

The performance evaluation results based on BRAliBase 2.1

dataset K2 are summarized in Table 2. The parameters of TOPAS

were set to ða;b;NIt;PThÞ¼ (0.40, 0.56, 30, 0.01). All experiments

were performed on an iMac (3.5GHz CPU, 32 GB RAM, OS X

10.9.5) and the computational time was measured in seconds for all

algorithms. The overall computation time of TOPAS consists of two

major parts: the time needed for computing the base-pairing proba-

bilities using the RNAstructure package (Reuter and Mathews,

2010) and the computation time for constructing the topological

networks and predicting the structural alignment of RNAs based on

the constructed networks. The base-pairing probabilities used as the

input for the TOPAS algorithm can also be computed by other RNA

folding packages, such as the popular ViennaRNA package

(Hofacker, 2009), based on one’s preference. In Tables 2 and 3, the

computation time shown for TOPAS corresponds to the time needed

for the network-based structural alignment and it does not include

the time for computing the input base-pairing probabilities using

RNAstructure.

The computation time of TOPAS for network-based structural

alignment depends on the length of the RNA sequences to be aligned

and the number of probabilistic interaction edges inferred by the

probabilistic model for secondary structure prediction. As we can

see in Table 2, TOPAS yields highly accurate structural alignment

results, outperforming previous structural alignment algorithms in

terms of accuracy. In terms of alignment speed, TOPAS was also

among the fastest among the compared algorithms. The total com-

putation time of TOPAS for aligning all sequence pairs in the bench-

mark was comparable to that of SPARSE, which was the fastest

among all algorithms. However, SPARSE resulted in the lowest SEN

and PPV as a trade-off.

In order to find out how the sequence similarity of the RNAs

affects the alignment accuracy of different structural alignment algo-

rithms, we grouped the RNA pairs in the benchmark based on their

sequence identity (SI). Figure 4 shows the alignment accuracy (i.e.

SEN and PPV) as a function of SI (RNA pairs have been grouped

based on their rounded SI). As we can see in Figure 4(a) and (b),

TOPAS consistently outperforms other structural alignment algo-

rithms at most SI levels. For sequences with very low SI (20–30%),

the alignment accuracy of TOPAS tended to degrade and TOPAS

did not perform as well as some of the other Sankoff-style algo-

rithms like FoldAlign. The structural alignment predicted by TOPAS

relies on effective estimation of the topological similarity. We sus-

pect that the degradation of alignment accuracy for low SI sequence

pairs is likely due to the quality degradation of the topological simi-

larity estimated by the probabilistic models utilized by TOPAS.

Table 1. List of RNA structural alignment algorithms that were considered in this work for performance comparison with TOPAS

Program Version/Package Commanda (Configure file) Reference

PARTS RNAstructure 5.8 parts default.conf Harmanci et al. (2008)

Dynalign2 RNAstructure 5.8 dynalign_ii default.conf Fu et al. (2014)

Foldalign 2.1.0 foldalign -global seq_files Havgaard et al. (2005) and Sundfeld et al. (2016)

LocARNA LocARNA 1.9.2 locarna seq_files Will et al. (2007)

SPARSE LocARNA 1.9.2 sparse seq_files Will et al. (2015)

RAF 1.0.0 raf predict seq_files Chuong et al. (2008)

aNote that the ‘Command (Configure file)’ column describes the command that was used to run the algorithm. In all cases, default configurations were used for

performance evaluation. Here, the performance of Foldalign 2.1 is compared as the accuracy of Foldalign 2.1 is better than Foldalign 2.5 for the test dataset.

Table 2. Performance evaluation results based on the BRAliBase

2.1 K2 dataset

SEN PPV F-Score Log10(Time)

TOPAS 0.878 0.938 0.907 3.349

PARTS 0.860 0.931 0.894 5.625

Foldalign 0.860 0.923 0.891 5.657

Dynalign2 0.706 0.914 0.797 5.803

LocaRNA 0.862 0.922 0.891 4.128

SPARSE 0.848 0.931 0.888 3.653

RAF 0.865 0.938 0.900 3.200

Note: Accuracy is measured by comparing the predicted alignment edges

against the true edges in the benchmark. Total computation time was meas-

ured for completing the structural alignment of all sequence pairs in the

benchmark (in seconds) Best performance is shown in bold.
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In order to evaluate the performance of structural alignment for

RNAs with pseudoknots, we used sequences from two RNA fami-

lies—Downstream-peptide RNA and wcaG RNA—in the Rfam

database. For each family, 2000 pairs were randomly selected for

performance assessment. Table 3 summarizes the alignment results

for the two RNA families with pseudoknots. We can again see from

Table 3 that TOPAS generally outperforms other structural align-

ment algorithms in terms alignment speed and accuracy.

The performance of TOPAS can be further improved if the base-

pairing probabilities for RNAs with pseudoknots could be better

estimated. In Table 3, TOPAS (PK) shows the results obtained by

TOPAS when the minimum interleaved base pairs of pseudoknots in

the RNA structure are corrected. This experiment was carried out to

verify the potential improvement that could be attained through bet-

ter estimation of base-pairing probabilities for crossing base-pairs in

RNAs with pseudoknots. There are six interleaved base-pairs in

wcaG RNA and five interleaved base-pairs in Downstream-peptide

RNA that are corrected to test the improvement for TOPAS (PK).

Currently, most RNA secondary structure prediction packages ex-

clude pseudoknots, as allowing secondary structures with crossing

base-pairs would lead to a sharp increase in computational cost and

memory requirement. More accurate estimation of the base-pairing

probabilities for RNA pseudoknots would improve the quality of

the topological networks, and TOPAS could take direct advantage

of such improvement as the network-based approach adopted by

TOPAS is not restricted to nested RNA secondary structures.

4 Conclusions

Various methods have been developed for RNA structural alignment

to date, where Sankoff-style algorithms that simultaneously predict

the optimal alignment and folding have been especially popular.

Although such Sankoff-style algorithms are known to yield accurate

alignment results, especially for RNAs with relatively low sequence

similarity, they typically suffer from high complexity in time and

space. In this paper, we proposed TOPAS, a novel algorithm for

pairwise structural alignment of RNAs based on an innovative

network-based approach. Given two RNAs with unknown struc-

ture, TOPAS first constructs topological networks for the respective

RNAs by incorporating their structural information extracted

through probabilistic base-pairing models. The resulting networks

are then aligned through an efficient network alignment technique,

thereby predicting the best structural alignment of the given RNAs

in a way that sensibly integrates their sequence similarity as well as

their structural similarity. As shown by extensive performance

evaluation based on several RNA families and the BRAliBase 2.1

K2 dataset, the proposed algorithm TOPAS outperforms popular

Sankoff-style RNA structural alignment algorithms in many cases,

resulting in comparable or higher alignment accuracy at a signifi-

cantly reduced computational cost. Moreover, owing to the flexibil-

ity of the network-based alignment approach adopted by TOPAS,

the proposed RNA structural alignment algorithm is not restricted

to nested folding structures and it can effectively align RNAs with

pseudoknots. To the best of our knowledge, TOPAS is the first RNA

Table 3. Performance evaluation results for RNA families with pseudoknots

wcaG RNA Downstream-peptide RNA

SEN PPV F-Score Log10(Time) SEN PPV F-Score Log10(Time)

TOPAS 0.847 0.911 0.878 2.410 0.861 0.899 0.880 1.908

TOPAS (PK) 0.854 0.912 0.882 2.401 0.866 0.901 0.883 1.903

PARTS 0.839 0.908 0.872 4.401 0.827 0.895 0.860 3.879

Foldalign 0.834 0.905 0.868 3.381 0.805 0.890 0.845 2.725

Dynalign2 0.413 0.806 0.546 3.979 0.438 0.797 0.565 3.266

LocaRNA 0.824 0.902 0.861 2.816 0.827 0.897 0.861 2.190

SPARSE 0.766 0.903 0.828 2.732 0.854 0.907 0.880 2.140

RAF 0.841 0.913 0.876 2.322 0.821 0.900 0.859 2.201

Note: Accuracy is measured by comparing the predicted alignment edges against the true edges. Total computation time was measured for completing the struc-

tural alignment of all sequence pairs in the given family (in seconds). Best performance is shown in bold.

(a) (b)

Fig. 4. Performance evaluation results based on the BRAliBase 2.1 K2 dataset. (a) Sensitivity (SEN) of different algorithms is shown as a function of sequence

identity (SI). (b) Positive predictive value (PPV) of different algorithms are shown as a function of sequence identity (SI)
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structural alignment algorithm that explicitly adopts a network-

based approach. As we have shown in this paper, the topological

networks constructed by TOPAS lead to accurate alignment results.

However, we would like to note that the approach introduced in our

paper is by no means the only—and not necessarily the optimal—

way of constructing such networks. We expect that the overall ac-

curacy of the RNA structural alignment may be further improved in

the future by constructing topological networks that are further

enriched with additional information that may be useful in predict-

ing the RNA alignment. The scheme that was adopted by TOPAS

for computing the overall similarity R between nodes across differ-

ent networks can be viewed as performing a random walk with re-

start. In fact, random walk based models have been shown to be

useful for comparative network analysis, and several different mod-

els have been proposed to date (Jeong and Yoon, 2015; Jeong et al.,

2016; Sahraeian and Yoon, 2013; Singh et al., 2008). Devising and

incorporating novel random walk models that are optimized for

network-based structural alignment of RNAs may potentially en-

hance the speed and accuracy of the RNA structural alignment algo-

rithm even further.

Funding

This work was supported by the National Science Foundation Awards CCF-

1149544, CCF-1447235; United States Department of Agriculture National

Institute of Food and Agriculture competitive grant USDA-NIFASCRI-2017-

51181-26834 through the National Center of Excellence for Melon at the

Vegetable and Fruit Improvement Center of Texas A&M University; and by

the TEES-AgriLife Center for Bioinformatics and Genomic Systems

Engineering.

Conflict of Interest: none declared.

References

Chuong,B.D. et al. (2008) A max-margin model for efficient simultaneous

alignment and folding of RNA sequences. Bioinformatics, 24, i68–i76.

Darty,K. et al. (2009) VARNA: interactive drawing and editing of the RNA

secondary structure. Bioinformatics, 25, 1974–1975.

Flamm,C. et al. (2000) RNA folding at elementary step resolution. RNA, 6,

325–338.

Freyhult,E.K. et al. (2006) Exploring genomic dark matter: a critical assess-

ment of the performance of homology search methods on noncoding RNA.

Genome Res., 17, 117–125.

Fu,Y. et al. (2014) Dynalign II: common secondary structure prediction for

RNA homologs with domain insertions. Nucleic Acids Res., 42,

13939–13948.

Gardner,P.P. et al. (2005) A benchmark of multiple sequence alignment pro-

grams upon structural RNAs. Nucleic Acids Res., 33, 2433–2439.

Glotz,C. et al. (1981) Secondary structure of the large subunit ribosomal RNA

from Escherichia coli, Zea mays chloroplast, and human and mouse mito-

chondrial ribosomes. Nucleic Acids Res., 9, 3287–3306.

Greenleaf,W.J. et al. (2008) Direct observation of hierarchical folding in single

riboswitch aptamers. Science, 319, 630–633.

Griffiths-Jones,S. et al. (2003) Rfam: an RNA family database. Nucleic Acids

Res., 31, 439–441.

Gursoy,A. et al. (2008) Topological properties of protein interaction networks

from a structural perspective. Biochem. Soc. Trans., 36, 1398–1403.

Hamada,M. et al. (2009) CentroidAlign: fast and accurate aligner for struc-

tured RNAs by maximizing expected sum-of-pairs score. Bioinformatics,

25, 3236–3243.

Harmanci,A.O. et al. (2008) PARTS: probabilistic alignment for RNA joinT

secondary structure prediction. Nucleic Acids Res., 36, 2406–2417.

Havgaard,J.H. et al. (2005) Pairwise local structural alignment of RNA

sequences with sequence similarity less than 40%. Bioinformatics, 21,

1815–1824.

Hofacker,I.L. (2009) RNA secondary structure analysis using the Vienna

RNA package. Curr. Protoc. Bioinformatics, 26, 12–12.

Hofacker,I.L. et al. (2004) Alignment of RNA base pairing probability matri-

ces. Bioinformatics, 20, 2222–2227.

Jeong,H. and Yoon,B.-J. (2015) Accurate multiple network alignment through

context-sensitive random walk. BMC Syst. Biol., 9, S7.

Jeong,H. et al. (2016) Effective comparative analysis of protein–protein inter-

action networks by measuring the steady-state network flow using a

Markov model. BMC Bioinformatics, 17, 395.

Johnsson,P. et al. (2014) Evolutionary conservation of long non-coding

RNAs; sequence, structure, function. Biochim. Biophys. Acta, 1840,

1063–1071.

Liao,C.-S. et al. (2009) IsoRankN: spectral methods for global alignment of

multiple protein networks. Bioinformatics, 25, i253–i258.

Mathews,D.H. (2004) Using an RNA secondary structure partition function

to determine confidence in base pairs predicted by free energy minimization.

RNA, 10, 1178–1190.

Mathews,D.H. and Turner,D.H. (2002) Dynalign: an algorithm for finding

the secondary structure common to two RNA sequences. J. Mol. Biol., 317,

191–203.

McCaskill,J.S. (1990) The equilibrium partition function and base pair bind-

ing probabilities for RNA secondary structure. Biopolymers, 29,

1105–1119.

Mount,D.W. (2009) Using hidden Markov models to align multiple sequences.

Cold Spring Harb. Protoc., 2009, pdb–top41.
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