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Abstract

Motivation: The significance of long non-coding RNAs (lncRNAs) in many biological processes and

diseases has gained intense interests over the past several years. However, computational identifi-

cation of lncRNAs in a wide range of species remains challenging; it requires prior knowledge of

well-established sequences and annotations or species-specific training data, but the reality is that

only a limited number of species have high-quality sequences and annotations.

Results: Here we first characterize lncRNAs in contrast to protein-coding RNAs based on feature re-

lationship and find that the feature relationship between open reading frame length and guanine-

cytosine (GC) content presents universally substantial divergence in lncRNAs and protein-coding

RNAs, as observed in a broad variety of species. Based on the feature relationship, accordingly, we

further present LGC, a novel algorithm for identifying lncRNAs that is able to accurately distinguish

lncRNAs from protein-coding RNAs in a cross-species manner without any prior knowledge. As

validated on large-scale empirical datasets, comparative results show that LGC outperforms exist-

ing algorithms by achieving higher accuracy, well-balanced sensitivity and specificity, and is ro-

bustly effective (>90% accuracy) in discriminating lncRNAs from protein-coding RNAs across di-

verse species that range from plants to mammals. To our knowledge, this study, for the first time,

differentially characterizes lncRNAs and protein-coding RNAs based on feature relationship, which
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is further applied in computational identification of lncRNAs. Taken together, our study represents

a significant advance in characterization and identification of lncRNAs and LGC thus bears broad

potential utility for computational analysis of lncRNAs in a wide range of species.

Availability and implementation: LGC web server is publicly available at http://bigd.big.ac.cn/lgc/

calculator. The scripts and data can be downloaded at http://bigd.big.ac.cn/biocode/tools/

BT000004.

Contact: malina@big.ac.cn or zhangzhang@big.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Long non-coding RNAs (lncRNAs) are prevalently expressed in

a large number of organisms (Carninci et al., 2005; Djebali et al.,

2012; Kapranov et al., 2007; Liu et al., 2015; Pennisi, 2010).

Evidence has accumulated that lncRNAs play vital roles in

biological processes including transcriptional regulation, post-

transcriptional interference, translational control (Chen et al.,

2017; Mercer et al., 2009; Quek et al., 2015; Rinn and Chang,

2012; Wilusz et al., 2009) and are implicated in the development

of a variety of human diseases (Alam et al., 2017; Chen et al.,

2013; Fang and Fullwood, 2016; Ma et al., 2015; Salhi et al.,

2017). Although the rapid advancement in DNA sequencing

technologies has led to an exponential increase in the number of

lncRNAs (Iyer et al., 2015; Ma et al., 2015; Volders et al., 2015;

Zhao et al., 2016), lncRNAs are often tissue/cell-specific (Alam

et al., 2017; Cabili et al., 2011; Derrien et al., 2012) and lineage/

species-specific (Derrien et al., 2012; Paralkar et al., 2014; Zheng

et al., 2016) and thus a large number of novel lncRNAs are yet

to be discovered. Experimental approaches (such as ribosome

profiling and mass spectrometry) for coding potential detection

could provide the most direct evidence but are very time-

consuming and expensive yet with limited throughput. Therefore,

computational approaches are in great demand for better charac-

terizing the landscape of lncRNAs and identifying lncRNAs in a

wide variety of species.

Over the past few years, several computational algorithms have

been proposed to identify lncRNAs, which fall roughly into two

classes: alignment-based algorithms (Achawanantakun et al.,

2015; Hu et al., 2017; Kong et al., 2007; Lin et al., 2011; Liu

et al., 2006; Sun et al., 2013a; Washietl et al., 2011) and

alignment-free algorithms (Li et al., 2014; Sun et al., 2013b; Wang

et al., 2013). Representative alignment-based algorithms include

CPC (Coding Potential Calculator) (Kong et al., 2007), PhyloCSF

(Phylogenetic Codon Substitution Frequencies) (Lin et al., 2011)

and COME (coding potential calculation tool based on multiple

features) (Hu et al., 2017). To distinguish lncRNAs from protein-

coding transcripts, specifically, CPC uses sequence alignments

against known proteins (Kong et al., 2007), PhyloCSF relies on

multiple alignments of sequences from closely related species (Lin

et al., 2011) and COME integrates multiple sequence-derived and

experiment-based features (including DNA conservation, protein

conservation, RNA structure conservation, guanine-cytosine (GC)

content, expression, histone methylation) (Hu et al., 2017).

Clearly, alignment-based algorithms are limited by the complete-

ness of known proteins and the accuracy of DNA alignments and

some of them are highly dependent on experiment-based features.

Most importantly, they are incapable of identifying lncRNAs

that are lineage/species-specific and become unreliable when no

high-quality genome annotation is available. Additionally,

alignment-based algorithms require prior sequence alignments and

thus are exceedingly time-consuming, especially when more and

more known sequences become available.

In contrast, alignment-free algorithms do not need any alignment

but require high-quality protein-coding RNAs and lncRNAs as

training data (Alam et al., 2014; Li et al., 2014; Sun et al., 2013b;

Wang et al., 2013). Representative algorithms include CPAT

(Coding Potential Assessment Tool) (Wang et al., 2013), CNCI

(Coding-Non-Coding Index) (Sun et al., 2013b) and PLEK (predict-

or of lncRNAs and messenger RNAs based on an improved k-mer

scheme) (Li et al., 2014). However, most of these algorithms are

species-specific. These algorithms become unreliable when they are

trained on data from one species and applied to data from another

species (Achawanantakun et al., 2015; Li et al., 2014; Sun et al.,

2013b). Moreover, alignment-free algorithms are heavily dependent

on high-quality training data, but in reality, many species have low-

quality or even no annotations, especially for newly sequenced spe-

cies. It is reported that there are �8.7 million eukaryotic species on

Earth and �90% species’ genomes are still waiting to be deciphered

(Mora et al., 2011). Therefore, it is desirable to develop a more ro-

bust and effective algorithm that is able to accurately distinguish

lncRNAs from protein-coding RNAs without the need of any prior

information on alignment or training.

It would be straightforward to classify lncRNAs and protein-

coding RNAs by taking account of sequence features. Although se-

quence features have already been factored in existing algorithms,

for instance, ORF (open reading frame) length and coverage

(Achawanantakun et al., 2015; Kong et al., 2007; Liu et al., 2006;

Sun et al., 2013a; Wang et al., 2013), sequence similarity and con-

servation (Achawanantakun et al., 2015; Kong et al., 2007; Lin

et al., 2011; Liu et al., 2006; Sun et al., 2013a; Washietl et al.,

2011), nucleotide composition and codon usage (Achawanantakun

et al., 2015; Hu et al., 2017; Li et al., 2014; Liu et al., 2006; Sun

et al., 2013b; Wang et al., 2013), existing algorithms regard se-

quence features as independent variables and do not consider their

potential biological relationship. Here we characterize lncRNAs in

contrast to protein-coding RNAs based on a feature relationship be-

tween ORF length and GC content. As this feature relationship

presents universally substantial divergence between lncRNAs and

protein-coding RNAs as observed in a wide variety of species, we

further propose LGC (ORF Length and GC content), a novel algo-

rithm for robust and effective discrimination of lncRNAs from

protein-coding RNAs. As testified on large-scale empirical datasets,

LGC represents a significant advance over existing algorithms by

identifying lncRNAs in a wide range of species not only effectively

but also robustly. To our knowledge, this is the first to differentially

characterize lncRNAs and protein-coding RNAs based on feature re-

lationship, which is further applicable and effective in accurate iden-

tification of lncRNAs.
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2 Materials and methods

2.1 Modelling the relationship between ORF length and

GC content
It has been reported that in an ORF with random distribution of nu-

cleotide, the expected ORF length increases with its GC content

(Oliver and Marı́n, 1996). More specifically, in an unbiased se-

quence, where the frequency of adenine is equal to that of thymine,

and the frequency of guanine is equal to that of cytosine, i.e. PA ¼
PT and PG ¼ PC (Supplementary Fig. S1), the probability of observ-

ing a stop-codon (f) as reported in (Oliver and Marı́n, 1996), can be

expressed as

f ¼ 1

3
PTP2

A þ
2

3
PTPAPG ¼

1

24
1� PGC � P2

GC þ P3
GCÞ

�
(1)

where PGC is the GC content and equals to PG þ PC. However, the

presence of intron (Senapathy, 1986), mutation pressure on different

exons (Xia et al., 2003), and selection against cytosine (C) usage

(Xia et al., 2006) will modulate the relationship between ORF

length and GC content, so that the stop-codon probability can hard-

ly be inferred from Equation (1). Therefore, we compose a more

flexible equation (Equation 2), which utilizes four parameters (a0,

a1, a2, a3) to reflect the different relationship between GC content

and stop-codon probability (f) in different genomic background

f ¼ a0 þ a1PGC þ a2P2
GC þ a3P3

GC (2)

Accordingly, the expected length of ORF is 3/f. Because of a po-

tential bias from short sequences, we consider only ORFs longer than

100 nt and thus, the expected ORF length (E(l)) can be expressed as

EðlÞ ¼ 3

a0 þ a1PGC þ a2P2
GC þ a3P3

GC

�
X100

i¼1
i� Pi (3)

where Pi is the frequency of ORFs with the length of i nt (ranging

from 1 to 100). Then we use polynomial function of GC content to

approximate
P100

i¼1 i� Pi.

To investigate the relationship between ORF length and GC con-

tent, we choose the top three longest ORFs (longer than 100 nt) for

each sequence, as the transcribed ORFs are most likely from the top

three. We divide ORFs into 100 groups based on their GC contents.

Mean estimates of ORF length and GC content are used to estimate

the parameters of Equation (3) by the least square method. Root

mean square error (RMSE) is used as the criterion function for fit-

ting the model of the expected ORF length from Equation (3) for

both protein-coding RNAs and lncRNAs (Table 1).

2.2 Maximum likelihood estimation of coding potential
Protein-coding RNAs and lncRNAs are used to fit Equation (3) to

estimate parameters a0, a1, a2 and a3, and these estimates are then

applied to Equation (2), from which the probability of stop codon

can be derived. For any given transcript that has n sense codons, its

coding potential score (L) can be estimated by the maximum likeli-

hood method through calculating the log likelihood ratio based on

Equation (4)

L ¼ log2
Pc

Pnc
¼ log2

ð1� fcÞn�1fc

ð1� fncÞn�1fnc

(4)

where Pc is the probability of ORF in coding sequence, Pnc is the

probability of ORF in non-coding sequence, fc is the probability of

finding a stop codon in coding sequence, and fnc is the probability of

finding a stop codon in non-coding sequence. L > 0 indicates it is a

protein-coding RNA and L < 0 indicates that it is a non-coding

RNA. Symbols used in calculating coding potential score are listed

in Table 2.

2.3 Performance evaluation of LGC
Protein-coding RNAs (38 811 transcripts) and lncRNAs (27 669

transcripts) of human (Supplementary Table S1) are used to build

LGC. Ten-fold cross-validation shows that LGC achieves very high

accuracy on human data, with an AUC of 0.981 (Supplementary

Fig. S2). LGC is evaluated by comparison with several existing

popular algorithms, including CPC (Kong et al., 2007), CPAT

(Wang et al., 2013), CNCI (Sun et al., 2013b) and PLEK (Li et al.,

2014). LGC, CPC and PLEK can be used in a cross-species manner

that do not require any training or specific model. CNCI is also used

in a cross-species manner, but uses two specific models, namely, ‘ve’

and ‘pl’, to identify lncRNAs in animals (human, mouse, zebrafish

and worm) and plants (rice and tomato), respectively.

Table 1. Parameters for species-specific model

Species Protein-coding RNA lncRNA

a0 a1 a2 a3 RMSEa a0 a1 a2 a3 RMSEa

Homo sapiens 0.0247 –0.1109 0.1781 –0.0933 106.14 0.0018 0.0256 –0.0577 0.0356 24.94

Mus musculus 0.0295 –0.1241 0.1773 –0.0776 109.30 0.0064 –0.0035 0.0024 –0.0043 21.36

Danio rerio 0.0499 –0.2116 0.2772 –0.0941 188.41 0.0200 –0.0705 0.0919 –0.0315 53.81

Caenorhabditis elegans 0.0707 –0.4205 0.8338 –0.5340 136.26 0.0067 –0.0069 0.0084 –0.0001 16.97

Oryza sativa 0.0246 –0.1130 0.1803 –0.0933 114.11 0.0177 –0.0773 0.1568 –0.1033 27.48

Solanum lycopersicum 0.0649 –0.3437 0.5536 –0.2249 177.46 –0.0478 0.3571 –0.7745 0.5419 66.07

aRMSE, root-mean-square error; see Equation (2) for more information on parameters (a0, a1, a2, a3).

Table 2. Symbols used in calculating coding potential score

Symbol Definition

PA Probability of adenine

PT Probability of thymine

PG Probability of guanine

PC Probability of cytosine

PGC GC contenta

F Stop-codon probability

fc Stop-codon probability in coding sequence

fnc Stop-codon probability in non-coding sequence

E(l) Expected ORF lengtha

Pi Frequency of ORFs with the length of i nt

pc Probability of ORF in coding sequence

pnc Probability of ORF in non-coding sequence

L Coding potential score

aPGC and E(l) were used to train the model of LGC.
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Contrastingly, CPAT uses species-specific training data to build spe-

cific models. Specifically, it adopts species-specific logistic regression

models to calculate coding probability and sets different cut-offs,

viz., 0.36 for human, 0.44 for mouse, 0.38 for zebrafish and 0.39

for worm. Due to the lack of a prebuilt model for plant, the logistic

regression model of human is additionally applied to rice and to-

mato during performance comparison. We compare LGC with algo-

rithms that can be used in a cross-species manner or adopt specific

models. All datasets used for comparisons are summarized in

Supplementary Table S1. To reduce any bias from unequal sampling

size of lncRNAs and protein-coding RNAs, we randomly

select protein-coding RNAs with the equal number of lncRNAs.

To compare the performance of different algorithms in distin-

guishing lncRNAs from protein-coding RNAs, protein-coding

RNAs and lncRNAs are denoted as positive and negative samples,

respectively. As a result, accuracy, sensitivity and specificity can

be estimated according to Equations (5–7), which take account of

true positive (TP), true negative (TN), false positive (FP) and false

negative (FN) predictions.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
(5)

Sensitivity ¼ TP

TPþ FN
(6)

Specificity ¼ TN

TN þ FP
(7)

2.4 Data collection
A total of six representative organisms are used in this study, includ-

ing two mammals (human and mouse), one vertebrate (zebrafish),

one invertebrate (worm) and two plants (rice and tomato). Protein-

coding RNAs for human and mouse are both collected from NCBI

RefSeq (Pruitt et al., 2007) and their corresponding lncRNAs are

obtained from GENCODE version 22 (Harrow et al., 2012) and

GENCODE version M7 (Mudge and Harrow, 2015), respectively.

For the remaining organisms, both protein-coding RNAs and

ncRNAs are downloaded from Ensembl (Cunningham et al., 2015).

To obtain lncRNAs, ncRNAs < 200 nt are excluded. All detailed

information of these datasets is summarized in Supplementary

Table S1.

Also, to examine the robustness of LGC for a wider diversity of

species that range from plants to mammals, we set up a more com-

prehensive dataset by collecting all curated protein-coding RNAs

(accession prefixed with NM) and ncRNAs (accession prefixed with

NR) from NCBI RefSeq (Pruitt et al., 2007).

2.5 Availability
The package of LGC can be downloaded for academic use only at

BioCode (a source code archive for bioinformatics software tools;

http://bigd.big.ac.cn/biocode) in the BIG Data Center (2018), with

accession number BT000004. In addition, a web server is publicly

available at http://bigd.big.ac.cn/lgc/calculator.

3 Results and discussion

3.1 Characterization of protein-coding RNAs and

lncRNAs based on feature relationship
It is extensively documented that in protein-coding sequences ORF

length is dominantly determined by GC content, since base

composition of translational stop codons (TAG, TAA and TGA) is

biased toward low GC content (Oliver and Marı́n, 1996; Xia et al.,

2003, 2006). If a sequence is AT-rich, it is most likely that stop

codons would appear earlier, resulting in a shorter ORF; conversely,

a GC-rich sequence tends to have longer ORF because it is less likely

to have stop codons earlier (Oliver and Marı́n, 1996). Considering

that protein-coding RNAs differ from lncRNAs in possessing signifi-

cantly longer ORFs (Achawanantakun et al., 2015; Kong et al.,

2007; Sun et al., 2013a; Wang et al., 2013), it is possible that

protein-coding RNAs and lncRNAs may present different relation-

ships between GC content and ORF length. Of course, ORF length,

as one of the important features, has been widely used by the exist-

ing algorithms in coding potential prediction (Achawanantakun

et al., 2015; Kong et al., 2007; Liu et al., 2006; Sun et al., 2013a;

Wang et al., 2013). However, the two features—ORF length and

GC content—are often regarded as independent, and their relation-

ship has not been well characterized in protein-coding RNAs and

lncRNAs. Therefore, we model the relationship between ORF length

and GC content and hypothesize that this relationship can be used

to differentially characterize protein-coding RNAs and lncRNAs. In

addition to ORF length and GC content, undoubtedly, it cannot rule

out the possibility that other features [such as, codon usage bias and

gene length (Eyre-Walker, 1996) codon usage bias and GC content

(Novembre, 2002; Plotkin and Kudla, 2011)] may present a similar

relationship that can be used for lncRNA identification.

To test the hypothesis, we collect protein-coding RNAs and

lncRNAs from six representative organisms (Supplementary Table

S1) and examine their corresponding relationships between ORF

length and GC content (based on Equation 3; see Section 2).

Consistent with our expectations, protein-coding RNAs and

lncRNAs present strikingly different relationships in all investigated

organisms (Fig. 1). An obvious inverted V-shape curve is observed in

protein-coding RNAs, i.e. ORF length increases with GC content

for low-GC genes, while decreases for high-GC genes. This is well

consistent with pervious findings that selection against cytosine

usage (prone to mutation to T/U; e.g. CAR to TAR and CGA to

TGA) (Xia et al., 2006) in GC-rich genes may contribute to negative

correlation between GC content and ORF length. When compared

with protein-coding RNAs, contrastingly, curves are extremely flat

in lncRNAs. Overall, these results show that protein-coding RNAs

and lncRNAs exhibit significant and universal heterogeneity in the

relationship between ORF Length and GC content (LGC model).

Thus, based on the LGC model, we further explore whether such

heterogeneity can be used to effectively distinguish lncRNAs from

protein-coding RNAs for a wide variety of species.

3.2 Application of the LGC model in lncRNA

identification
To apply the LGC model in the identification of lncRNAs, we first

estimate parameters in Equations (2) and (3) (see Section 2) using all

lncRNAs and protein-coding RNAs for each species and build

species-specific LGC (Table 1). We then employ these parameters’

estimates to calculate the coding potential score (Equation 4), which

is an indicator to distinguish lncRNAs from protein-coding RNAs.

As validated on empirical datasets from six representative species

(Table 3), we find that species-specific LGC model achieves high ac-

curacy (>0.88) in each species and performs well in the identifica-

tion of both protein-coding RNAs and lncRNAs as indicated by

well-balanced sensitivities and specificities in most datasets. These

results suggest that the LGC model is indeed applicable for identify-

ing lncRNAs in a wide range of species.
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To further test the universality of the LGC model across different

species, we compare the performances of species-specific LGC

model against the LGC model built based merely on human data

(whose quality is believed to be relatively higher). Strikingly, the

LGC model based on human data overall shows better performances

than the species-specific LGC models in terms of accuracy, specifi-

city and sensitivity (Table 3); it achieves higher accuracies (>0.9) in

all six organisms, with both sensitivities and specificities >0.9 in

most datasets. Although the LGC model is built based on human

data, high accuracy is achieved not only for mammals and verte-

brates but also for invertebrates and plants. This is most likely

caused by both larger-quantity and higher-quality of human data.

Accordingly, the LGC model built by human data is superior to that

based on species-specific data, as testified on multiple empirical real

datasets (Table 3). These results suggest that the LGC model is uni-

versally applicable, guaranteeing that the LGC model can be used in

a cross-species manner without requiring species-specific data.

3.3 Effective discrimination of lncRNAs from protein-

coding RNAs
To test the effectiveness of the LGC model and to examine its per-

formance in discriminating lncRNAs from protein-coding RNAs, we

further evaluate it on data from the six representative organisms by

comparison with several popular algorithms including CPC (Kong

et al., 2007), CNCI (Sun et al., 2013b) and PLEK (Li et al., 2014)

that can be used in a cross-species manner (see Section 2). In what

follows, the LGC model built on human data (as detailed earlier), is

used in all comparisons.

Comparative evaluations regarding accuracy, specificity and sen-

sitivity show that LGC outperforms existing algorithms, significant-

ly and robustly across different species (Fig. 2). Specifically, LGC

overall achieves higher accuracies for all six organisms (>0.9); it

outperforms PLEK in non-human species, CNCI in non-mammal

species, and CPC in human, mouse, zebrafish and rice. Considering

the average accuracy over all six species (Table 4), LGC obtains the

highest average accuracy (0.936) compared with CPC (0.906),

CNCI (0.896) and PLEK (0.848). Moreover, LGC yields better aver-

age specificity of 0.954 across all six species than the other algo-

rithms (Table 4); it outperforms CNCI and PLEK in zebrafish and

rice, and CPC in human, mouse, zebrafish and rice (and performs

comparably in the remaining cases) (Fig. 2). Regarding sensitivity,

LGC achieves the average sensitivity at 0.918 (just follows CPC at

0.994), better than CNCI at 0.850, and PLEK at 0.760 (Table 4); it

outperforms CNCI in human, mouse, worm and tomato, and PLEK

in non-human species (Fig. 2).

Strikingly, LGC provides well-balanced sensitivity and specificity

(both higher than 82%), which is consistently observed for all exam-

ined species (Fig. 2). Contrary to this, existing algorithms show poor

balance between sensitivity and specificity; CPC yields extremely

unbalanced sensitivity and specificity in human, mouse and zebrafish

(for instance, 0.998 and 0.651 in human, respectively), CNCI presents

unbalanced sensitivity and specificity in worm and tomato (for in-

stance, 0.764 and 0.993 in worm, respectively) (consistent with the

previous study in Sun et al., 2013b), and PLEK exhibits unbalanced

sensitivity and specificity in worm and tomato (for instance, 0.535

and 0.980 in worm, respectively). Taken together, these results clearly

show that LGC achieves a good balance between sensitivity and speci-

ficity and is capable of discriminating lncRNAs from protein-coding

RNAs more accurately than the existing algorithms.

To further evaluate the performance of LGC, we also compare it

with CPAT (Wang et al., 2013), which requires appropriate training

to build specific models with different cut-off values (see details in

Section 2). Albeit CPAT uses species-specific models, we find that

LGC overall performs better than CPAT (Fig. 2 and Table 4).

Specifically, it performs comparably with CPAT in human, mouse,

and worm (with the accuracy around 0.94), and outperforms CPAT

in zebrafish, tomato, and rice (Fig. 2). Although CPAT builds

species-specific models for human, mouse, zebrafish and fly, it does

Fig. 1. Relationship between ORF length and GC content for protein-coding

RNAs (red circles) and lncRNAs (blue dots), respectively. For each transcript,

the top three longest ORFs (longer than 100 nt) are used. ORFs are grouped

into 100 bins based on their GC contents and each dot represents the average

estimate for each bin (Color version of this figure is available at

Bioinformatics online.)

Table 3. Performance of LGC based on species-specific model and

human model

Species Species-specific model Human model

Acc Sen Spe Acc Sen Spe

H.sapiens 0.945 0.964 0.925 0.945 0.964 0.925

M.musculus 0.936 0.948 0.924 0.938 0.960 0.916

D.rerio 0.884 0.881 0.906 0.920 0.945 0.895

C.elegans 0.933 0.870 0.996 0.946 0.900 0.991

S.lycopersicum 0.887 0.778 0.995 0.907 0.818 0.996

O.sativa 0.963 0.927 0.999 0.961 0.923 0.999

Note: The species-specific model indicates that LGC is built based on spe-

cies-specific protein-coding RNAs and lncRNAs. The human model indicates

that LGC is built based only on human protein-coding RNAs and lncRNAs.

These models are compared in terms of accuracy, sensitivity and specificity,

where numbers in bold represent the better performance.

Acc, accuracy; Sen, sensitivity; Spe, specificity.
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not perform well as expected. In zebrafish, CPAT shows poor bal-

ance between sensitivity (0.988) and specificity (0.817), whereas

LGC yields sensitivity at 0.945 and specificity at 0.895. This may

because that training data of different models show unequal qual-

ities, and the robust performance of human, mouse and fly models

of CPAT are attributable to the high quality of training datasets.

Also, it is noted that species-specific algorithms have significant

limitation in application. As no prebuilt models are available for

plants, we apply human model of CPAT to tomato and rice.

However, the human model of CPAT presents unbalanced sensitiv-

ity (at 0.784) and specificity (at 0.994) in tomato, whereas LGC

yields sensitivity at 0.818 and specificity at 0.996. Given that CPAT

is heavily dependent on high-quality training data and many species

presently may still have low-quality or even no training data, LGC

bears broad utility for computational analysis of lncRNAs in a wide

range of species.

3.4 Robustness in a wide diversity of species
To further examine the robustness of LGC for a wider diversity of

species, we set up a more comprehensive dataset by collecting all

curated protein-coding RNAs (accession prefixed with NM) and

ncRNAs (accession prefixed with NR) from NCBI RefSeq (Pruitt

et al., 2007). All protein-coding RNAs and ncRNAs are classified

into: mammals (127 903 protein-coding RNAs from 81 species and

23 644 ncRNAs from 26 species), vertebrates (53 239 protein-

coding RNAs from 59 species and 2582 ncRNAs from 9 species),

invertebrates (68 229 protein-coding RNAs from 42 species and 29

527 ncRNAs from 11 species) and plants (97 119 protein-coding

RNAs from 34 species and 1795 ncRNAs from 10 species).

We test the performance of LGC on this more comprehensive

dataset derived from a larger number of species and compare it

against existing algorithms that can be used in a cross-species man-

ner without requiring any species-specific training or model.

Accordingly, only PLEK, albeit built on human data, can be used for

a wide range of species (Li et al., 2014), whereas other algorithms

are unsuitable for this comparison [as CNCI is limited to two specif-

ic models, namely, ‘ve’ for vertebrates, and ‘pl’ for plants (Sun et al.,

2013b), CPC depends on sequence alignments against known pro-

teins (Kong et al., 2007), which are completely identical to the data-

set obtained from NCBI RefSeq (Pruitt et al., 2007)]. Comparative

results show that in general LGC performs more stable and achieves

higher accuracy (>0.9 for most datasets) in the identification of

both protein-coding and ncRNAs (Fig. 3). In contrast, PLEK, based

on a k-mer scheme and a support vector machine algorithm

(Li et al., 2014), performs poorly and shows an obvious imbalance

in its ability to identify both protein-coding and non-coding RNAs

for all investigated cases (Fig. 3). In addition, PLEK presents un-

stable varied performances among species within groups of plants,

invertebrates, vertebrates and mammal, whereas LGC achieves ro-

bust higher accuracies in almost all datasets (Fig. 3, Supplementary

Tables S2 and S3). Collectively, these results indicate that LGC is

robust in accurately discriminating lncRNAs from protein-coding

RNAs in a wide variety of species.

4 Conclusion

To our knowledge, our study is the first to differentially characterize

lncRNAs and protein-coding RNAs based on a feature relationship

between ORF length and GC content, on the grounds that lncRNAs

and protein-coding RNAs present considerable divergence in terms

of this relationship, which is consistently and universally detected in

a wide range of species. Hence, we further present LGC, a novel al-

gorithm to discriminate lncRNAs from protein-coding RNAs based

on this feature relationship. As demonstrated in multiple empirical

datasets across a wide diversity of species, LGC is superior to exist-

ing algorithms by achieving higher accuracy and well-balanced sen-

sitivity and specificity. In addition, LGC is able to accurately and

robustly distinguish lncRNAs from protein-coding RNAs in a cross-

species manner without the need for species-specific adjustments.

Overall, LGC represents a simple, robust and powerful algorithm

for characterization and identification of lncRNAs in a wide range

of species, providing a significant advance for computational ana-

lysis of lncRNAs.

Fig. 2. Performances of LGC, CNCI, CPAT, CPC and PLEK. LGC, CPC, CNCI and

PLEK can be used in a cross-species manner, while CPAT uses specific mod-

els and cut-offs for different species (see Section 2)

Table 4. Estimates of accuracy, sensitivity and specificity averaged

over six representative organisms

Algorithm LGC CNCI CPAT CPC PLEK

Accuracy 0.936 0.896 0.927 0.906 0.848

Sensitivity 0.918 0.850 0.914 0.994 0.760

Specificity 0.954 0.942 0.940 0.819 0.935

Note: Numbers in bold represent the better performance.
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