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Abstract

Motivation: Glycan identification has long been hampered by complicated branching patterns and

various isomeric structures of glycans. Multistage mass spectrometry (MSn) is a promising glycan

identification technique as it generates multiple-level fragments of a glycan, which can be explored

to deduce branching pattern of the glycan and further distinguish it from other candidates with

identical mass. However, the automatic glycan identification still remains a challenge since it main-

ly relies on expertise to guide a MSn instrument to generate spectra.

Results: Here, we proposed a novel method, named bestFSA, based on a best-first search algo-

rithm to guide the process of spectrum producing in glycan identification using MSn. BestFSA is

able to select the most appropriate peaks for next round of experiments and complete the identifi-

cation using as few experimental rounds. Our analysis of seven representative glycans shows that

bestFSA correctly distinguishes actual glycans efficiently and suggested bestFSA could be used in

practical glycan identification. The combination of the MSn technology coupled with bestFSA

should greatly facilitate the automatic identification of glycan branching patterns, with significantly

improved identification sensitivity, and reduce time and cost of MSn experiments.

Availability and implementation: http://glycan.ict.ac.cn

Contact: yanli@ibp.ac.cn or dwsun@ict.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A large number of technologies have been proposed for glycan iden-

tification, among which mass spectrometry is one of the most specif-

ic and sensitive techniques without requirement of glycan standards

(Reinhold et al., 2013; Smit et al., 2015; Zhang et al., 2016). Similar

to peptide identification, the existing MS-based methods explore

MS1 or MS2 information for glycan identification (Dwek et al.,

1995; Hänsler et al., 1995; Malhotra et al., 1995; Rademacher

et al., 1994; Youings et al., 1996).

However, MS1 or MS2 cannot provide sufficient information to elu-

cidate complicated branching patterns of glycans, rendering limitation of

the existing approach for glycan identification (Ashline et al., 2017).

There are two reasons: first, identifying the highly branched glycans

requires more information than identifying linear peptides (Gi�ndzie�nska-

Sie�skiewicz et al., 2016; Pekelharing et al., 1988). Second, the number of

different mass components of glycans is much fewer than that of pepti-

des, it makes the informative points in the spectrum is less than that of

peptides. Superior to MS1 and MS2, multiple-stage MS experiments
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(MSn) can provide various insights into a glycan structure (Ashline et al.,

2005, 2007, 2017; Reinhold et al., 2013; Sun et al., 2018; Zaia, 2008).

Briefly, MSn refers to the concatenation of MS experiments, where a

peak is selected from the existing spectra as precursor ion to feed into the

mass spectrometer to undergo another round of fragmentation, and the

produced ions are reported in the form of a mass spectrum. MSn cleaves

the glycan molecule into much smaller fragments, and thus has the po-

tential to reveal more detailed information of the glycan.

As described above, most existing bioinformatics studies related to

glycan identification focus on the analysis of MS2 data while tools for

the MS3 or even more stages of mass spectrum for glycan identification

are relatively rare (Goldberg et al., 2005; Hu et al., 2015; Kameyama

et al., 2005; Reinhold et al., 2013; Tang et al., 2005; Yu et al., 2013).

Given the fact that the MSn technique provides far more detailed infor-

mation on glycan structures, such tools are timely needed.

The process using MSn to identify glycans begins with MS2.

Peaks in MS2 can be selected to execute a new round of experiment

and produce new spectra. If more rounds of experiments are needed,

all existing peaks which have not been fragmented can be selected

for the next round of experiment. This process continues until the

sample runs out. A more efficient strategy is checking after each

round of experiment, and the process stops if the spectra you have

got can pick the actual glycan out.

The automatic identification of glycan branching patterns

poses great challenges to the MSn technique in guiding MSn spectra

generation and glycan branching pattern identification. Specifically,

the successful application of the MSn technique heavily relies on the

spectra producing sequence because in real scenarios the sample of

glycans is usually in trace amount and more rounds of experiment

means failure. For the sake of efficiency and saving labor cost, it is

also meaningful to complete the identification with a least rounds of

experiments. Kameyama et al. (Kameyama et al., 2005) reported a

strategy to select peaks for the next round of experiment based on a

comparison of signal intensity profiles of spectra between the analyte

and a library of observational mass spectra acquired from structurally

defined glycans prepared using glycosyl transferases. It relies on a

large amount of standards to construct mass spectra database and it is

infeasible to acquire reference mass spectra for all glycans in libraries.

In our opinion, the process of the producing MSn spectra can be

regarded as a process of traversing a spectra tree. In this tree, each node

is a spectrum and edge is referring to a node (spectrum) produced by its

parent node (spectrum containing its precursor peak). A peak selected to

produce a new spectrum means a new node (the new spectrum) is trav-

ersed. The cost of every edge is 1, referring to a round of experiment.

Finding a spectra generation process that can complete the identifi-

cation with least rounds of experiments is similar to traverse the spectra

tree with least steps to get to a predefined target. The selection of peak

as precursor ion at every round of experiment is decisive for the result.

There are two common strategies modeling for execution. The highly

non-trivial strategy is manual selection and it heavily relies on expertise of

MS operators (Ashline et al., 2005; Lapadula et al., 2005; Zhang et al.,

2005). Another strategy is to select peaks based on the intensity of peaks.

The peak with the high intensity will be selected preferentially. Based on

this strategy, two alternative methods, with reference to tree-traversal,

can be used to guide the peak selection in MSn. The first one is breath-

first search (BFS) algorithm for tree-traversal. From MS2, peaks in MS2

are further fragmented and get their MS3 spectra step by step in order of

their intensities, then all peaks in the MS3 are further fragmented and get

MS4, and so on until MS5. The second one is depth-first search (DFS) al-

gorithm for tree-traversal. It begins with MS2 and selects the peak with

highest intensity in MS2 to produce MS3, then selects the highest peak in

MS3, and so on. The process continues until MS5, then backtrack.

Manual selection requires considerable expertise and time, whereas

product-ion spectrum generated based on intensity may not be structur-

ally informative and therefore need many rounds of experiment to pick

the actual glycan out. New strategies that can guide the MSn experi-

ment procedure to complete the identification in the most efficient way

is important for the popularization of the MSn technique in glycomics.

Here, we propose to solve the peak selection problem using best-

first search algorithm (bestFSA) by defining a virtual target state and

the distance from each peak to this target state. The algorithm, also

named GIPS (Glycan Intelligent Peak Selection), was designed to min-

imize the number of MSn experiment rounds required to pick the ac-

tual glycan out from candidates. We evaluated the algorithm on seven

glycan standards. The experimental results show that our algorithm

could correctly distinguish the actual glycans for all standard samples

within a very few rounds of MSn experiments. It suggests that

bestFSA can guide identification experiments in a very efficient way

and greatly help facilitate the automatic glycan MSn identification.

2 Materials and methods

2.1 Scoring function based on spectrum-tree
Calculating the probability of each candidate glycan to be the actual

one based on the MSn spectra has the following challenges:

• how to integrate the information from all experimental spectra

of a sample to assign the actual glycan;
• how to transform the information to an appropriate form such

that we can set a universal termination threshold for reliable

identification.

The basic idea of our model is to regard each peak in an experi-

mental mass spectrum as a clue to the actual glycan; thus, the candi-

date that has the most supporting clues is likely to be the actual

glycan. We then integrate these clues into a score using an empirical

scoring function and normalize it into [0, 1] using the softmax func-

tion, therefore enabling setting a universal termination threshold.

To integrate the clues to each candidate Gi provided by experimen-

tal mass spectra S1; S2; � � � ; Sm, we use an empirical scoring function:

f ðGi; S1; � � � ; SmÞ ¼
Xm

k¼1

XjSk j

l¼1

IðGi; S
ðlÞ
k Þ: (1)

where IðGi; S
ðlÞ
k Þ ¼ 1 if S

ðlÞ
k can be explained by Gi and 0 otherwise.

Since Sk is an experimental spectrum generated by selecting a peak

in S1; S2; � � � ; Sk�1 as the precursor ion, we pose a recursive restric-

tion that the fragments matching the l – th peak of Sk should be parts

of certain larger fragments of Gi that have identical mass as the pre-

cursor ion of Sk.

A universal termination threshold for f ðGi; S1; � � � ; SmÞ that

applies to various samples is difficult to set. The reason is that the

candidates of a sample with large precursor mass are prone to gather

more clues than the ones of another sample with small precursor

mass. Our solution is that for each candidate glycan Gi, we normal-

ize the scores f ðGi; S1; � � � ; SmÞ into candidate probability

pðGi; S1; � � � ; SmÞ using softmax function, i.e.

pðGijS1; � � � ; SmÞ ¼
ef ðGi ;S1 ;���;SmÞ

Xn

j¼1

ef ðGj ;S1 ;���;SmÞ
: (2)

The scores are thus normalized into real values that sum up to 1,

making it possible to set a universal termination threshold for
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reliable identification. Although a termination threshold of 0.50 can

be sufficient, 0.70 is used to allow robust and reliable identification

in our work. The score function f ðGi; S1; � � � ; SmÞ has another advan-

tage in its additivity property, i.e. when we get a new spectrum

Smþ1, can be calculated as f ðGi; S1; � � � ; S mþ 1Þ ¼ f ðGi; S1; � � �; SmÞþ
XjSmþ1 j

l¼1
IðGi; S

ðlÞ
mþ1Þ, which will greatly simplify the calculation

process.

2.2 BestFSA
The process of the MSn experiment is like a tree-traversal problem.

During the experiment, the spectrum-tree can be expanded further

by any of the peaks in existing spectra. Each peak can be seen as a

next feasible step of tree-traversal, and traversal of a peak means the

peak is selected to execute a new round of experiment and get a new

spectrum.

The desired spectrum-tree should be able to pick the actual gly-

can out and has the least number of the nodes. Best-first search algo-

rithms for tree-traversal is very suited to our problem (Dechter and

Pearl, 1985).

Best-first search is a search strategy which explores a graph by

gradually expanding the most promising node chosen according to

how close the end of a path is to a solution. The path which is

judged to be closest to a solution is extended first.

In order to apply best-first-search algorithms to this problem, we

need to first resolve two issues:

2.2.1 Target state

In most situations of best-first search, there is a target node. But in

this problem, our aim is not to get to a certain spectrum, but rather

to get a smallest spectrum-tree that can distinguish the actual glycan

from other candidates. We consider the optimal outcome as the

target state, its probability vector is a one hot vector that one of the

values is 1, the others are 0. The entropy of this state is 0. Notice

that we cannot always get this target state, but we can use it to guide

our direction.

2.2.2 Distance

For the definition of distance, the difficulties are two folds. Firstly,

an effective score needs to be designed to measure the distance of a

peak to the target state using its experimental product-ion spectrum.

In this work, the distance is defined to measure how much extra

information is still needed in subsequent experiments to reach the

target state after combining the peak’s spectrum into spectrum-tree.

After updating candidates’ probabilities according to existing ex-

perimental spectrum-tree, we use entropy of the probability vector

to measure how much more information is still needed to collect

from subsequent experiments. Intuitively, the more uniformly

distributed the probability is, the more information is still needed

in upcoming rounds of experiments. A peak will be given a short

distance if its product-ion spectrum has potential to enlarge the

difference of the candidates’ probabilities. On the other hand, a

peak with a short distance implies there is significant difference

among the corresponding fragment ions labeling this peak from dif-

ferent candidates.

In addition, that in the real scenario, experimental spectra of

peaks are unavailable when the distances of peaks to the target

state need to be measured. Thus, a statistical estimation method is

used to estimate the distances of existing peaks by simulating all of

its possible product-ion spectra. Process of possible spectra

generation is described in detail in Section 2.2.3. The distance of

every possible mass spectrum is calculated by entropy of the

updated probability vector after virtually adding the possible spec-

trum into existing spectrum-tree. Then the mean of distance of all

possible spectra is used as the expected distance of the target peak

to the target state.

The details of the distance computation are described in

Algorithm 1.

Algorithm 1. Estimation the distance for peaks in a

spectrum Si

1: Existing spectrum tree as Tree0

2: Candidates set as G ¼ fG1;G2; � � � ;Gk; � � �}
3: for each peak pj 2 Si do

4: Set distancepj
¼ 0

5: Initialize an empty set A

6: for every candidate Gk in the candidate set C do

7: Label pj with Gk and add all ions of Gk that can ex-

plain pi in set A

8: end for

9: Initialize an empty set T

10: for every ions Im 2 A do

11: Enumerate all possible combinations of theoretical

peaks of Im as a theoretical spectrum and add it into

set T

12: end for

13: for every possible spectrum tl 2 T do

14: Add tl into the Tree0 separately and update the prob-

ability vector of all candidates

15: Computing the entropy of the resulting vector and

add it to distance0.

16: end for

17: distancepj
¼ distancepj

=jTj
18: end for

2.2.3 Enumeration

When to select an appropriate peak as precursor-ion, its experi-

mental spectrum is unavailable; thus, the distance of this peak to

target state cannot be computed directly and an effective approach

is needed to estimate distance considering all possible spectra of

the peak. These possible spectra are simulated by computer pro-

gram. The first step is to construct a set of possible spectra of the

peak to be evaluated, pj, by computer simulation. The word ‘pos-

sible’ has two meanings. The first meaning is that for every candi-

date glycan, its fragment ion (or fragments) that can explain the

peak pj are listed and for each of possible fragments, we simulate

its fragmentation process and list all of its peaks. Another meaning

is since each peak may or may not appear in the final product-ion

spectrum, we enumerate all combinations of all these possible

peaks and simulated a large set of possible spectra. If there are n

possible peaks, there will be 2n possible spectra. It seems that com-

bination blast will happen when n increases, but in a real imple-

mentation, most of the peaks are shared by different fragments,

according to formula (1), these peaks has no effect on the probabil-

ity value of candidates. Some peaks shared by the same fragments

group, they have the same effect on the probability value of candi-

dates. Taking all these into consideration, the number of simulated

possible spectra can be reduced greatly. Simulated spectra from all
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candidates are merged together and form whole set of possible

spectra of the peak to be evaluated.

Then the distance of peak to the target state can be estimated

using its possible spectra set T ¼ ft1; t2; � � � ; tl; � � �g as

Disðpj; S1; S2; � � �Þ ¼
1

jTj
Xl

k¼1

Disðtk; S1; S2; � � � ; SlÞ � 0: (3)

After defining the target state and the definition of distance, we

developed a new method, named bestFSA, based on Best-first search

to guide MSn experiment process.

The detail of the algorithm is described in Algorithm 2:

Algorithm 2. The bestFSA algorithm for glycan identification

1: Initialize the mass spectrum-tree with only one root node

that corresponds to the input MS2 spectrum;

2: Initialize the active ion set A ¼ fall peaks in the MS2

spectrumg;
3: while A is not empty do

4: For each peak pi 2 A, calculate its expected distance

dðpiÞ to the target state;

5: Extract the peak pmin with the minimal expected distance;

6: Inject the ion pmin into the mass spectrometer to acquire

its experimental spectrum, denoted as Spmin
;

7: Add Spmin
as a child node of the spectrum that pmin

belongs to;

8: if the highest probability�predefined-threshold then

9: return the glycan with the highest likelihood in LðImaxÞ;
10: else

11: Delete pmin from A

12: Add the peaks in SImax
into A;

13: end if

14: end while

3 Results

3.1 Reference glycan database
There has been a considerable increase in the number of glycan data-

bases since 2000, e.g. the KEGG GLYCAN (Hashimoto et al., 2006),

GlycomeDB (Ranzinger et al., 2011) and EUROCarbDB (Al Jadda

et al., 2015). We selected the most widely-used and well-documented

one, CarbBank(Doubet et al., 1989) (also known as CCSD), devel-

oped by the Complex Carbohydrate Research Center, University of

Georgia (Athens) which consists of 7837 glycan structures.

3.2 Materials and reagents
To demonstrate the feasibility of this strategy, seven glycans were

purcharsed from Elicityl (Crolles, France), as shown in Table 1.

Permethylation and purification were performed as previously

reported (Schiel et al., 2013). Briefly, methyl iodide was added to

2 nmol standard glycans released in the presence of slurry mixture of

dimethyl sulfoxide/sodium hydroxide (DMSO/NaOH), and then the

sample was agitated on an automatic shaker at the room tempera-

ture for 20 min. Next, the reaction was quenched by adding water,

and permethylated glycans were extracted with chloroform twice

and then washed four times with water. The chloroform layer was

dried in a centrifugal vacuum concentrator. Finally, glycans were

purified on a Sep-Pak C18 cartridge and then dried.

3.3 Acquiring of MSn spectra
Permethylated glycan standards were analyzed on an Axima

MALDI Resonance Mass Spectrometer with a QIT-TOF configur-

ation (Shimadzu). A nitrogen laser was used to irradiate samples at

337 nm, with an average of 200 shots accumulated. Permethylated

glycan standards dissolved in methanol were applied to a lfocus

MALDI plate target (900 lm, 384 circles, HST). A matrix solution

(0.5lL) of 2,5-dihydroxybenzoic acid (20 mg/mL) in a mixture of

methanol/water (1:1) containing 0.1% trifluoroacetic acid and

1 mM NaCl was added to the plate and mixed with samples. The

mixture was air dried at the room temperature before analysis.

Among the four different resolution settings (FWHM 70, 250, 500

and 1000) for precursor isolation, the window at FWHM 500 with

a width of 3–5 mass units was considered appropriate and used for

the present study.

The product-ion spectrum acquired at each stage was introduced

into the our program as an mzXML file (Shimadzu) for peak evalu-

ation, using a signal-to-noise ratio 3:1 as the filtering parameter.

Candidate glycans were extracted from CarbBank. The probability

and distances were calculated, and the results were manually fed

back to the mass spectrometer data system. The node (peak) with

the shortest distance to target state was selected to execute next

round of experiment (traveled) until the probability of one candidate

glycan exceeded the pre-defined threshold of 0.70.

For MSn using the depth-first-search and breadth-first-search,

peaks were selected in the order of intensity.

3.4 Outlines of the strategy
In order to test the performance of our algorithm, we performed

identification for seven standard glycan samples, including high-

mannose-type glycans, complex-type glycans and hybrid glycans.

First, we used Man6 as a concrete example to explain the run-

ning process of the bestFSA approach. As shown in Figure 1, the

identification process of Man6 contains the following three steps:

• The MS1 spectrum of the Man6 sample exhibited a significant

peak with a mass of 1783, then a total of 12 candidate glycans

(including the actual glycan Man6 and 11 false-positive candi-

dates) with the same mass were extracted from the Carbbank

glycan database. Initially, all of these 12 candidate glycans were

Table 1. Standard glycan samples

Man-5D1 Man-6 Man-7D3 Bi-AntiA2 Hybrid-Octa NGA3 NGA4
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assigned with identical probability of 1/12 since we have no prior

knowledge regarding the actual glycan.
• Based on MS2, we updated probabilities of these candidate

glycans. Note that none of probabilities reached the predefinied

threshold of 0.7, and thus MS3 was required. Unlike MS2, which

uses the only peak MNaþ in the MS1 spectrum as the precursor,

multiple peaks were present in the MS2 spectrum (Fig. 1).

At this stage, BSF and DSF selected the highest peak,

mass¼ 1506, in the MS2 spectrum as the precursor ion for the next

round of experiment. Instead, bestFSA selected the peak with the

shortest distance. Distance is a calculated measure of a peaks’s abil-

ity to produce a product-ion spectrum containing distinctive struc-

tural information to be used in differentiating it from other isomers.

The smaller the value, the more distinctive-structural information it

can produce. Peak, mass¼ 1084 (distance¼0.97), has the expected

shortest distance to the target state and was selected as precursor ion

to yield the MS3 spectrum.

• Based on existing spectrum-tree, MS1, MS2 and MS3 (precursor

mass¼1506), of BFS and DFS, the probabilities of all candidates

were updated and there was still no candidate whose probability

exceeding 0.7. BSF selected the second highest peak, mass ¼
1280, in MS2 and DSF selected the highest peak in MS3,

mass¼ 839, to execute a next round of experiment.

Based on existing spectrum-tree, MS1, MS2 and MS3 (precursor

mass¼1084), of bestFSA, probabilities of all candidates were

updated again and still there was no candidate whose probability

exceeding 0.7. Thus bestFSA proceeded to calculate distance to the

target state of each peak in the MS2 and MS3 spectra except 1084 in

MS2, and selected the peak mass¼ 667 in MS3 with the shortest dis-

tance (0.90) to yield the MS4 spectrum.

• Based on updated spectrum-tree (MS1, MS2 and MS3, MS4), the

probability for G1 increased to 0.75, which means a sufficiently

confident identification. The experiment stopped and reported

G1 as the identification result. In fact, G1 is Man6, which is the

actual glycan of the sample and the output means a successful

identification.

Using bestFSA, we needed three rounds of experiments (not

including MS1) to pick the actual glycan out.

3.5 Uniqueness of the bestFSA
To demonstrate the feasibility of this strategy, we compared

bestFSA with DFS and BFS using seven glycans as representatives.

Table 2 summarizes the results of these experiments.

• For Hybrid-Octa and NGA3, all three algorithms selected the

same peaks in MS3, so they all needed two rounds of

Fig. 1. Identification process of Man6 using bestFSA. Four rounds of mass spectrometric scanning (MS1, MS2, MS3, MS4) were required to assign Man6 from the

12 candidate glycans G1 to G12 (structures together with CarbBank ID numbers listed in the box at the bottom). Middle column: mass spectrometry process; left

column: calculated probabilities; and right column: distance calculation process. The fragment ion shown in red was selected as the precursor for the next round

of product-ion scanning. The calculated distances are in brackets along the virtual path to the target state

Glycan identification 2995

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/17/2991/5299995 by guest on 10 April 2024



experiments. For Bi-AntiA2, MS2 was enough for the identifica-

tion and peak selection was not needed.
• For high-mannose-type glycan samples and complex-type glycan

samples, bestFSA successfully identified Man-5D1, Man-6, Man-

7D3, NGA3, NGA4 and Bi-AntiA2 samples with high confi-

dence using up to three round of experiments. DFS could identify

all seven glycans too. BFS identified six but failed at Man-6.

However, they both used more rounds of experiments.
• For Hybrid-Octa (mass: 1824), best-first-search correctly

reported the actual glycan with a high confidence of 0.82 using

two rounds of experiments (MS2 and MS3), in contrast, BFS and

DFS incorrectly reported another glycan as the prediction.

These results clearly demonstrate the advantage of the proposed

bestFSA over BFS and DFS for improved experimental efficiency,

time saving and sample consumption.

We also examined the reproducibility of the results and pos-

sible factors which may affect the bestFSA results. The complete

identification procedure, including the acquisition of MSn spectra

guided by bestFSA, for seven samples was repeated at least twice

(four or five times for selected samples). The results were reprodu-

cible. For the present work, a mass tolerance was set at 0.5 al-

though a value between 0.5 and 1.0 does not affect the results,

and a medium/standard (fwhm 250) mass resolution was used

for optimum sensitivity although other resolution settings gave

similar results. The collision energy was between 100 and 400 mV,

and within this range the relative intensities of fragment ions var-

ied, but the identification results remained largely the same

(Supplementary Table S3–S5).

4 Conclusion and discussion

Glycan branching patterns, although important, cannot be easily

elucidated by most of the existing glycan profiling methods. We

developed a strategy based on bestFSA to provide an automatic, sen-

sitive and rapid way for identification of glycan branching patterns.

BestFSA reduces the expertise required to perform MS experiments

by making recommendations to MS operators the peaks which are

most likely to select the actual glycan out.

For the glycan samples used in this study, the branching patterns

were successfully identified using 10–50 ng samples within 5–10 min

and used the information of at most 4 MSn spectra (using less than

three rounds of MSn experiments). Compared with breadth-first-

search and depth-first-search, bestFSA significantly shortened the

analysis time and reduced sample consumption more than 1–2

orders of magnitude.

The approach is preferable to static MALDI-MS because of the

interative process. Calculation must be performed before next-stage

acquisition, and repeat scanning of existing experimental spectra is

required, which leads to the incompatible utilization for dynamic

Liquid Chromatography Mass Spectrometry (LC-MS).

It is also important to recognize the another limitation of our

approach in the identification of linkage information of glycans.

The underlying reason is that all of our experiments were per-

formed using MALDI mass spectrometry with the -ion mode.

Under this model, the major generated ions are B, C, Y, Z types,

which cannot provide the linkage information between monosac-

charides. In order to distinguish linkage information, the A and X

ions are necessary which contain the information of cross-ring

fragments. Therefore, a possible solution to identify the linkage

sites is to using alternative instrument setting to generate A, X

ions, for example, under the negative-ion mode or using ETD/ECD

fragmentation instrument. By combining the additional fragment

ion information, bestFSA may have the potential to deduce the

linkage sites of glycan.

It should also be pointed out that our bestFSA is a database

search approach, and thus the identification results are limited to

the glycans recorded in the database we used in the study. The ex-

tension of database to include more glycans will broaden the appli-

cation range of our approach. In principle, de novo approach has

the potential to identify glycans not recorded in database but the

existing algorithms are slow and prone to error.

Overall, our bestFSA can greatly facilitate the automatic identifi-

cation of glycan branching patterns, and the basic idea can be

extended to the identification of other important molecules, such as

lipids and metabolic molecules.
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