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Abstract

Motivation: Single cell RNA-Seq (scRNA-Seq) facilitates the characterization of cell type heterogen-

eity and developmental processes. Further study of single cell profiles across different conditions

enables the understanding of biological processes and underlying mechanisms at the sub-

population level. However, developing proper methodology to compare multiple scRNA-Seq data-

sets remains challenging.

Results: We have developed ClusterMap, a systematic method and workflow to facilitate the com-

parison of scRNA-seq profiles across distinct biological contexts. Using hierarchical clustering of

the marker genes of each sub-group, ClusterMap matches the sub-types of cells across different

samples and provides ‘similarity’ as a metric to quantify the quality of the match. We introduce a

purity tree cut method designed specifically for this matching problem. We use Circos plot and

regrouping method to visualize the results concisely. Furthermore, we propose a new metric ‘sep-

arability’ to summarize sub-population changes among all sample pairs. In the case studies, we

demonstrate that ClusterMap has the ability to provide us further insight into the different molecu-

lar mechanisms of cellular sub-populations across different conditions.

Availability and implementation: ClusterMap is implemented in R and available at https://github.

com/xgaoo/ClusterMap.

Contact: gaoxin1@ihcams.ac.cn or hul@stowers.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single cell RNA sequencing (scRNA-Seq) is an advanced technology

that sheds light on the high-resolution heterogeneity and dynamics

of the transcriptome. Following massive studies on cell sub-types

under static conditions, researchers are starting to pursue high-

resolution mechanisms of different biological processes. With more

complicated experimental designs that include different treatment

conditions, different developmental time points, or different tissue

types, researchers seek information on heterogeneous changes of

sub-populations of cells.

There are many existing methods and packages for identification

of cellular sub-types, developmental trajectory and differential expres-

sion analysis in single cell expression analysis (Angerer et al., 2016;

Bacher and Kendziorski, 2016; Finak et al., 2015; Haghverdi et al.,

2015; Hart et al., 2015; Ji and Ji, 2016; Kharchenko et al., 2014;

Macosko et al., 2015; Pierson and Yau, 2015; Trapnell et al., 2014).
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However, most of them are either restricted to one single cell dataset

or focused on batch effect correction across datasets (Haghverdi

et al., 2018; Shaham et al., 2017). Methods for directly comparing

multiple scRNA-Seq datasets across biological conditions to study

heterogeneity of changes of cell sub-types are still under develop-

ment. One of the current common strategies is to combine multiple

datasets and then analyze it as a single dataset, which might miss

critical information at the cell sub-type level. The other typical ap-

proach is to check the expression of one or a few known marker

genes and use that to match the corresponding sub-groups (Kang

et al., 2018; Pal et al., 2017; Zheng et al., 2017). This manual step

biases the matching towards several pre-selected genes and might

not be accurate. Some recently published methods attempt to ad-

dress similar issues (Butler et al., 2018; Kiselev et al., 2018). Butler

et al. (2018) attempt to align scRNA-seq datasets using canonical-

correlation analysis (CCA) so that shared subpopulations across

datasets can be compared directly. CCA analysis resembles batch ef-

fect removal methods, which assume the overall differences among

samples are technical. However, the batch effects are always con-

founded with the biological conditions and hard to be removed.

Besides, CCA may reduce the difference of some sub-groups within

the same sample. Scmap (Kiselev et al., 2018) maps a single scRNA-

seq sample to reference datasets to annotate the new dataset, which

assign cells to known populations as a traditional classification

problem. Scmap maps each cell to either the cluster centroid or the

nearest cell in the reference. Scmap uses absolute expression value as

the cluster centroid for cell assignments. Although it claimed that

scmap can overcome batch effect, when the batch effect shifts the

expression dramatically, scmap may assign the cells to a wrong clus-

ter. We will show this in the following case study.

Here we present ClusterMap, a tool to match and compare mul-

tiple single cell expression datasets at the cluster level. ClusterMap

uses binary expression patterns of marker genes of each sub-group

as features for comparison. The binary marker genes are relatively

different between sub-groups within each sample, which will over-

come the batch effects directly. Besides, for the particular multi-

sample matching problem, we developed a purity tree cut method to

partition the sub-groups of samples into new matched groups.

ClusterMap provides the quantification indexes ‘similarity’ and ‘sep-

arability’ to assess the confidence of the matching and the changes

within each sub-group across samples. As a systematic workflow,

ClusterMap also provides convenient visualization of the results.

Overall, ClusterMap provides an easy-to-use and reliable work-

flow to compare multiple single cell RNA-Seq datasets with com-

plex experimental designs: across various treatments, across time

points and across tissues. We demonstrate the usage and advantages

of ClusterMap in several case studies and compare it to CCA and

scmap analysis. Our analysis shows precise alignment of the sub-

groups in different conditions, accurate characterization of differen-

ces between matched sub-groups, and identification of unique sub-

groups of cells. Our method is a valuable tool for comparison of

complex scRNA-seq datasets with multiple treatments or timepoints

and offers a deeper understanding of the biological processes at the

cellular sub-population level.

2 Materials and methods

2.1 Workflow overview
ClusterMap focuses on the analysis of sub-group matching and com-

parison across single cell RNA-Seq samples. ClusterMap analysis is

based on the pre-analysis of each individual dataset. The sub-group

definitions, identification of marker genes for each group, and di-

mension reduction are generated in the pre-analysis step and used as

input to ClusterMap. This step can be achieved using the Seurat

package (Macosko et al., 2015), 10� Genomics Cell Ranger, or

other single cell analysis methods. The summarized workflow of

ClusterMap is shown in Figure 1.

ClusterMap uses identified marker genes for each sub-group of

each sample as the basic input to match clusters. Through hierarch-

ical clustering analysis of the binary expression patterns of marker

genes and the purity tree cut method, the sub-groups identified in

the pre-analysis step for each individual dataset will be matched and

grouped together with the most similar sub-groups in the other sam-

ples. This could result in groups matching in a one-to-multiple, mul-

tiple-to-multiple, or singleton fashion, which enables the detection

of unique or novel sub-types of cells. The similarity of the matched

groups is extracted from the clustering results. With the number of

cells (cell percentage) in each sub-group as an additional input,

ClusterMap generates a Circos plot (Kryzwinski et al., 2009; Gu et

al., 2014) to show matched sub-groups between datasets and the

compositional changes of the sub-groups across datasets (Fig. 3E).

The chords link the matched sub-groups. Different chord colors in-

dicate different regroups, while the transparency of the chord color

indicates the similarity of matched groups (more transparent indi-

cates less similar). The widths of the black sectors represent the per-

centage of the number of cells in each sample. Thus, the sub-

population size change is reflected by comparing the sector size of

linked groups. New cluster labels will be assigned according to the

cluster matching results. If 2D coordinates from a dimensional re-

duction t-distributed Stochastic Neighbor Embedding (t-SNE) plot

are provided for each cell, ClusterMap will re-color the plot to co-

ordinate the colors for the matched groups in different samples (Figs

1 and 4A–C). This will facilitate the visualization of the matching

sub-groups. Finally, ClusterMap will calculate the separability to

characterize the property changes across samples for each set of

matched groups (Figs 1 and 3F). This measurement enables quick

and unbiased identification of the most highly affected cell sub-types

across all the sample comparisons.

Following ClusterMap, differential expression analysis for the

most affected group might be a common following step to investi-

gate the difference further. Since many methods have been well

established, such as DESeq2, SCDE and BASiCS (Kharchenko et al.,

2014; Love et al., 2014; Soneson and Robinson, 2018; Vallejos

et al., 2016), this aspect of analysis is not included in ClusterMap.

2.2 Binary hierarchical clustering
The sub-groups are matched using hierarchical clustering (Figs 1

and 3D). The presence (binary) of the marker genes in each group is

Fig. 1. Diagram of the workflow of ClusterMap
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used to measure the distance between the sub-groups across the sam-

ples. The union of all marker genes is used for clustering. We con-

struct a matrix showing expression of all identified marker genes for

all sub clusters across multiple datasets. The value of a marker gene

is assigned as 1 or 0, depending on whether this gene is identified as

the marker gene for a specific sub-cluster or not. Hierarchical clus-

tering of this binary matrix is performed using average linkage and

Jaccard distance. The similarity of the matched groups is defined as

1 minus the height of the merging node of the matched groups in the

dendrogram, which is the Jaccard index at that node (Figs 1 and

3F). It measures the percentage of marker genes that overlap be-

tween the matched groups.

Using the binary value of marker genes is superior to using the ac-

tual expression level to match sub-groups across samples for a few

reasons. First, the expression level of a gene across cells or samples

may vary a lot under different conditions. Without proper normaliza-

tion methods, its direct use will be subject to noise. Binarizing expres-

sion tolerates global shifts of the transcriptome, or possible systematic

batch effect across datasets. Second, given the high drop-out rate of

current scRNA-seq technology, using binary values is more reliable

and robust. Consequently, using Jaccard distance as a measure of

similarity of sub-groups is more reasonable than Euclidian distance.

2.3 Purity tree cut
The purity tree cut algorithm is designed to match the most similar

sub-groups from different samples, while avoiding forming large

clusters of sub-groups that come from the same sample. Traditional

clustering assessment methods, such as the Elbow method,

Silhouette index, Dunn index or other indexes, are not optimal for

this purpose, because the origin of samples is disregarded. Our algo-

rithm decomposes the clustering dendrogram from the bottom-up

based on both the distance between branches and the purity of the

node (Fig. 2A). The purity tree cut algorithm decides to keep or trim

a given node by checking the following three aspects.

First, we consider the purity of the node. In a dendrogram, the sam-

ple set of a node is the set of samples that all its offspring nodes come

from. If all the offspring nodes are from the same sample (only one sam-

ple is in its sample set), then the node is considered pure, and treated as

a singleton node. For example, in Figure 2D, the offspring of node n1

are S1_1 and S2_2. They are from sample S1 and S2. Thus, the sample

set of node n1 is {S1, S2} and n1 is not a pure node. For node n2.1.1,

the offspring S2_1 and S2_3 are from the same sample S2, thus n2.1.1

is a pure node and is treated as a singleton node (Fig. 2D).

Second, we consider the edge length of the two branches. The

edge length in a dendrogram is the height difference between the

upper node (such as N) and the lower node (such as n1 in Fig. 2D).

An edge length cutoff controls whether two branches of a node should

be merged into one group. If an edge is longer than the cutoff, then

one branch is quite different from the other branch, and it will not be

merged. The default cutoff is set to 0.1, so <10% of the marker genes

can be different in order to continue merging two branches.

Third, we consider the overlap between the sub-samples of the

two branches.

We search through all the nodes in the dendrogram from the bot-

tom up. For a given node N with two direct sub-nodes n1 and n2,

and edges E1 and E2, N will be kept only under one of the three

conditions:

1. n1 and n2 are both singleton or pure (Fig. 2B).

2. n1 is singleton or pure, AND the edge E2 is shorter than the

edge cutoff, AND n2 is not cut based on the sub-nodes of n2

(Fig. 2C).

3. Both edge E1 and E2 are shorter than the edge cutoff, AND the

two sample sets SG1 and SG2 are not subsets of each other

(SG16�SG2 AND SG26�SG1), AND none of n1 or n2 is trimmed

(Fig. 2D).

In all other conditions, node N will be removed, and n1 and n2

will form two different groups. Using Figure 2D as an example,

based on condition 1, node n1 will be kept, because both S1_1 and

S2_2 are singletons. So S1_1 and S2_2 are matched and form a new

group Node n2.1.1 is equivalent to a singleton, thus node n2.1 will

be kept with two singleton sub-nodes based on condition 1. S2_1,

S2_3 and S3_3 will form one matched group. Due to condition 2,

node n2 will be trimmed if the edge between n2 and n2.1 is longer

than the cutoff, and S1_2 will not be grouped together with the

other branch. Node N violates condition 3 and will be trimmed, be-

cause SG1 is a subset of SG2.

We generated a random tree with four samples and 10 sub-

groups in each sample to test the purity tree cut algorithm

(Supplementary Fig. S1A). The results were as expected, similar sub-

groups are grouped together but avoid forming big groups from the

same sample (Supplementary Fig. S1B). If we increase the edge cut-

off, more sub-groups merge into bigger groups but with lower simi-

larity (Supplementary Fig. S1C). A random tree of 10 samples with

10 sub-groups each was shown as well (Supplementary Fig. S2A and

B). We also used our method on a real dataset with T cells from 12

patients. Each sample contains about 12 T cell sub-types (Zhang

Fig. 2. Diagram of the dendrogram tree cut algorithm. (A) Purity tree cut algo-

rithm. Examples of the three conditions in the tree cut. (B) Two singletons. (C)

One singleton. (D) No singleton
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et al., 2018). We matched the pre-defined sub-types using marker

genes and purity tree cut. The majority of the corresponding sub-

types were matched (Supplementary Fig. S2C and Supplementary

Table S1), except the sub-types with less distinct boundaries in the

original definition (Supplementary Fig. S9B, Zhang et al., 2018).

The following case studies also suggest that the tree cutting results

match the underlying biological expectations.

The purity tree cut algorithm will match a group with its most

closely related sub-group from another sample. Whether the

matched group is best or not is relative to other groups. Thus, sub-

groups with low similarity may be grouped together when there are

no better options. It’s reasonable to filter out low similarity groups

and treat them as unmatched groups for downstream analysis.

Refining the marker genes list might improve the similarity between

matched groups.

2.4 Separability
We propose ‘separability’ to quantify the difference in matched sub-

groups using the expression level of genes after dimensional reduc-

tion. Separability can be defined for the entire transcriptome or the

set of highly variable genes from the pre-analysis. Separability is

defined based on the distance of the K-nearest neighbors intra- and

inter-samples in a 2D space including all cells from datasets (2D

space such as the combined t-SNE plot, Supplementary Fig. S1D).

For each new group and each pair of two samples in the group, the

separability index is defined as the median difference of intra- and

inter-sample distance of each cell within the new group. Assume

C
ð1Þ
i is a cell from sample 1 with n1 cells, we search for the k nearest

cells to C
ð1Þ
i for all cells within sample 1, represented by C

ð1Þ
ik . We

also search for the k nearest cells to C
ð1Þ
i for all cells within sample

2, represented by C
ð2Þ
ik , sample 2 with n2 cells. We define

Intra-sample distance for cell C
ð1Þ
i as

DIntra
i ¼ mediankjj C

ð1Þ
i – C

ð1Þ
ik
jj; for k ¼ 1; 2; 3; . . . ; K

Inter-sample distance for cell C
ð1Þ
i as

DInter
i ¼ mediankjj C

ð1Þ
i – C

ð2Þ
k
jj; for k ¼ 1; 2; 3; . . . ; K

The separability of sample1 to sample2 as

SEP1 ¼ medianiðDInter
i – DIntra

i ; for i ¼ 1; 2; 3; . . . ; n1

For every cell in the second sample, C
ð2Þ
j , the separability of each

cell is calculated similarly. The separability of sample2 to sample1 as

SEP2 ¼ medianjðDInter
j – DIntra

j Þ; for j ¼ 1; 2; 3; . . . ; n2

Then the separability of sample1 versus sample2 in this new

group is defined as

Separability ¼ mean ðSEP1; SEP2Þ

Using median instead of mean will reduce variation due to out-

liers. Increasing K will improve accuracy but slow down computa-

tion. Practically, the default K is 5, and using K > 20 improves the

accuracy only slightly. Separability is calculated for a pair of sam-

ples. Pairwise separability will be measured if there are more than

two samples.

3 Results

3.1 Epithelial cells in different estrus cycle phases
We first applied ClusterMap to compare sub-population changes in

two different biological phases using the epithelial datasets that

were generated in the study of Pal et al. (2017). Cells were collected

from mammary glands of adult mice during different phases of the

estrus cycle. By pooling the glands from two mice, scRNA-Seq of

2729 epithelial cells in estrus and 2439 cells in diestrus was per-

formed using the 10� Chromium platform.

We first analyzed individual datasets and identified marker genes

for 13 sub-groups in diestrus and 10 sub-groups in estrus (Fig. 3A and

B). To match between the set of 13 diestrus groups and the set of 10

estrus groups, ClusterMap clustered the sub-groups based on all

marker genes (Fig. 3C). The clustering dendrogram (Fig. 3D) was

decomposed using purity tree cut algorithm to form new matched

groups (Section 2, Fig. 3F). Matched sub-groups are connected with

chords in the Circos plot (Fig. 3E). The similarity of matched groups

ranges from 0.29 to 0.65 (Fig. 3F) and is shown by the transparency

of the chords in the Circos plot. This indicates that the sub-groups

were matched with different percentages of marker genes overlapped.

The population size changes were shown by the cell percentage in

Figure 3F and indicated by the black sectors in the Circos plot. The

Regroup 2, 3 and 9 were obviously increased in estrus (14–24, 8–35

and 1–5%, respectively, Fig. 3F). ClusterMap recolored the t-SNE

plots of each sample (Fig. 4A and B) and the combined samples

Fig. 3. Cluster match of mammary gland epithelial cells at different phases of

the estrus cycle. (A) Pre-analysis of cells from diestrus phase. (B) Pre-analysis

of cells from estrus phase. (C) Heat map of the hierarchical clustering of sub-

groups by the existence of marker genes. Each column is a marker gene for

one of the subgroups. (D) Dendrogram of the hierarchical clustering. (E)

Circos plot of the matched subgroups. The 13 black sectors highlighted by

the red sector represent 13 groups in diestrus as in Figure 3A, while the 10

sectors highlighted by the green sector represent 10 groups in estrus as in

Figure 3B. The width of the black sectors represents the percentage of cells in

each sample. Matched groups are linked by chord, and the transparency rep-

resents the similarity of the matched groups, with less transparency indicat-

ing more similar. (F) ClusterMap results for the quantification of the sample

comparisons
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(Fig. 4C) with the new group assignments. Matched groups are

shown in the same color and with the same new group label. Note

that cells with the same color were clustered together in the combined

sample, which confirmed our matching results. Additionally, the sep-

arability for each new group further highlighted the most affected

sub-groups. The higher the separability value, the more drastically the

group was changed, such as Regroup 6, 8 and 3, in addition to the

groups unique to one sample (Fig. 3F).

In this case, there are three types of matching sub-groups: one-

to-one, one-to-multiple, and singleton. For example, Regroup 1

matched p7d_4 and p7e_1, which are tightly clustered together in

the combined sample (Fig. 4D). Regroup 2 and 3 matched more

than one sub-group from the estrus sample to a single group in the

diestrus sample. For both cases, we can see cells in these two sub-

groups (p7e_3 and p7e_4, p7e_0 and p7e_2) in estrus are closely

related and adjacent to each other (Fig. 3B). Regroup 7, 10 and 11

only include sub-groups from diestrus with no matching sub-groups

from estrus, suggesting these sub-groups uniquely exist in diestrus.

Based on known markers (Supplementary Fig. S3A and B), we

can label Regroup 2, 5, 6 and 10 as mature luminal (ML), Regroup

1, 11 and 12 as luminal progenitors (LPs), Regroup 9 as luminal

intermediate (Lum Int), and Regroup 3, 4, 7 and 8 as basal cells

(Fig. 4A–D). In line with Pal’s observations, we note that the basal

population increases slightly in estrus (43–47%), ML becomes two

major sub-types (Regroup 2 and 10) and the Lum Int is substantially

reduced (5–1%) in the diestrus phase. However, ClusterMap unveils

more detailed changes between diestrus and estrus that were not

identified previously. We found that in basal, Regroup 3 was

increased substantially in estrus (8–35%) with large separability

(2.93), whereas Regroup 7 is missing in estrus (Figs 3F and 4A–D).

Also, Regroup 8 in basal is substantially altered between the two

phases with a separability of 7.13. In the ML population, we noticed

that although both Regroup 2 and 10 are ML, Regroup 2 in diestrus

resembles ML in estrus more closely than Regroup 10 (Fig. 3D and

F). Although cells in Regroup 2 are a mixture of both phases, cells in

Regroup 10 are exclusively from the diestrus phase (Fig. 4C and D).

These suggest that a subset of ML cells in diestrus begin to diverge,

but ML cells in estrus are more homogenous. Pal et al. also observed

that one of the ML subtypes was tightly associated with ML signa-

ture genes such as PgR, but they neglected to identify that there were

different relationships between the two ML subtypes in diestrus and

the ML in estrus. One of the ML subtypes in diestrus is much closer

to the ML in estrus. For the LP population (Regroup 1, 11 and 12),

our analysis suggests Regroups 11 and 12 are unique sub-types in di-

estrus (Fig. 4A–D), while Pal et al.’s analysis concluded that the LP

population was unaltered.

We further characterized the unique groups (7, 10 and 11) in the

diestrus phase through gene ontology and pathway analysis

(Tripathi et al., 2015). We found that the marker genes of these

groups were extremely enriched for the terms of ribosome biogen-

esis, oxidative phosphorylation and metabolic process of ribonu-

cleotides (Fig. 4E and F, Supplementary Fig. S3C and D). These

findings reflect the increased levels of progesterone in diestrus,

which functions as a potent mitogen to stimulate expansion of mam-

mary epithelia at this stage. Only some subpopulations of basal, ML

and LP in diestrus responded to progesterone to undergo rapid cell

cycle progression, potentially suggesting the existence of differential

regulation of mitogen-related cell signaling among sub-populations

of the same cell type. Intriguingly, we noted Regroup 10 cells in dies-

trus are associated with the development of mammary gland alveoli,

indicating that some of the cells within this group possess trans-

differentiation potential for alveolar development (Fig. 4F,

Visvader, 2009). In addition, we observed a drastic increase in the

number of Regroup 3 cells with characteristics of smooth muscle in

estrus, indicating there may be a contractile switch of myoepithelial

cells for lactation preparation during this period (Supplementary

Fig. S3D, Sopel, 2010).

For comparison with ClusterMap, we also performed CCA

(Butler et al., 2018, Fig. 4G and Supplementary Fig. S4A–D) and

scmap (Kiselev et al., 2018, Supplementary Fig. S4E and F) on the

epithelial cell datasets. In the CCA analysis, the two samples mixed

more evenly under canonical correlation vector space

(Supplementary Fig. S4B). Note that the two separated groups,

Regroup 2 and 10 (Fig. 4A) of ML (marked by Prlr) in diestrus were

not separated into sub-groups after the CCA analysis (Fig. 4G and

Supplementary Fig. S4A and B). This indicated that CCA reduced

the difference between sub-groups even in the same sample, which

led to existing sub-groups becoming less distinguishable. Butler

et al. (2018) observed this effect as well for rare populations and

suggested using PCA for further analysis. However, the sub-group

10 in the diestrus phase (Fig. 4A and C) was not a rare population.

With CCA only, we may miss the detection of these sample specific

Fig. 4. Regrouping of mammary gland epithelial cells. (A) Re-colored t-SNE

plot based on matching results for diestrus phase. (B) Re-colored t-SNE plot

based on matching results for estrus phase. (C) Re-colored t-SNE plot based

on matching results for the combined dataset. Matched groups were recol-

ored in the same color and with the same label through all three t-SNE plots.

(D) t-SNE plot with cells colored by sample. (E and F). Gene ontology and

pathway analysis for the new marker genes of Regroup 2 and 10 in the com-

bined sample (C) using Metascape. (G) t-SNE plot of CCA analysis. Cells of

Regroup 2 and 10 in diestrus, defined as in Figure 4A are highlighted in green

and red
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sub-groups identified by ClusterMap. Thus, CCA and ClusterMap

provide different views of comparing multiple scRNA-Seq datasets.

In the scmap, we first mapped cells in estrus to the sub-groups of di-

estrus. With stringent threshold 0.7, it shows largely unassigned cells

(Supplementary Fig. S4E, right). After we loosed the threshold to

0.5 (Supplementary Fig. S4E, left), the results is much more similar

to ClusterMap, which confirmed our matching results again.

However, when we mapped cells in diestrus back to estrus, some

results of scmap become confused. There are very few cells in p7e_3

mapped to p7d_1 (Supplementary Fig. S4E), but many cells in

p7d_1 are mapped to p7e_3 (Supplementary Fig. S4F, purple dots).

Another example, while cells in p7d_0 are mapped to both p7e_2

and p7e_6, but p7e_2 are mapped to p7d_5 and p7e_6 are mapped

to p7d_7, p7d_8, nothing to p7d_0. Taken together, scmap can pro-

vide higher resolution of sample matching, but might have difficulty

to coordinate the results across multiple samples.

3.2 Peripheral blood mononuclear cells under immune

stimulus
We next applied ClusterMap to compare effects of experimental

treatments on each cellular population. The datasets we used were

generated in the study of Kang et al. (2018). Peripheral blood mono-

nuclear cells (PBMCs) from each of eight patients were either un-

treated as a control or activated with recombinant interferon-beta

(IFN-b) for 6 h. The same number of IFN-b-treated and control cells

from each patient was pooled and subjected to single-cell sequencing

on a 10� Chromium instrument. Transcriptomes of 14 619 control

and 14 446 IFN-b-treated single cells were obtained.

The pre-analysis defined 11 and 13 sub-groups for the control and

stimulated conditions respectively (Supplementary Fig. S5A). With

hierarchical clustering and the purity tree cut approach

(Supplementary Fig. 5A and B), ClusterMap matched most sub-

groups, except the Regroups 10, 11 and 12 (Fig. 5C, Supplementary

Fig. S5B). We confirmed that the matched groups expressed the same

known marker genes, demonstrating that matching worked correctly

(Supplementary Fig. S5E and F). There is no obvious change in the

percentage of each cell type after stimulation, which is consistent with

Kang et al.’s conclusion. For Regroup 10 and 12, although both

groups express some megakaryocyte marker genes, such as PPBP

(Supplementary Fig. S5E and F), other marker genes of Regroup 10

and 12 do not overlap with each other very well, placing them in dis-

tantly related clusters (Fig. 5A, arrows). Thus, ClusterMap considered

these two sub-groups to be distinct new groups. However, Regroup

10 and 12 partially overlap in the combined analysis (Fig. 5D). We

suspect that this inconsistency might be due to the relatively small

population size in both sub-groups. The small population size

increases the false positive rate of identified marker genes, which

negatively affects the performance of ClusterMap.

Based on known marker genes, we assigned new Group 1, 2, 3

to CD4þ T cells, Group 5 to B cells, Group 6 to CD14þCD16–

monocytes, Group 4 to CD14þCD16þ monocytes, Group 7 and 8

to dendritic cells (DCs), Group 10 and 12 to megakaryocytes,

Group 11 to erythroblast and Group 9 to a mixture of natural killer

cells and CD8þ T cells (Supplementary Fig. S5E and F). We observe

a wide range of separability measures across matched sub-clusters,

indicating the different sub-groups responds to IFN-b stimulation

very differently. For instance, the Regroup 1, 2, 3 and 9 of T cells

and NK cells was less affected, while the IFN-b stimulation affected

monocytes and DCs (Regroup 4, 6 and 7) much more than the other

immune cells (Fig. 5C red-dashed boxes, D and E). This is confirmed

in the t-SNE plot from the combined analysis, the distance of cells

from the two conditions in Regroup 4, 6 and 7 are much farther

than the other groups (Fig. 5D and E). In addition, we note that al-

though Regroup 5 and 6 match with comparable similarity (0.48

and 0.45), the separability of the two groups is quite different (0.55

and 11.03) (Fig. 5C). This suggests that the overlapping of marker

genes is similar for the two regroups, but the changes in transcrip-

tome expression levels may be drastically different.

Butler et al. (2018) applied CCA to analyze the same immune

stimulated dataset. By aligning each cell, the samples are scaled to

become as similar as possible. The global differences in the original

datasets were treated as a batch effect instead of biological effect.

However, the IFN-b stimulus was expected to trigger a widespread

immune response of PBMCs (Kang et al., 2018). It is hard to deter-

mine if the effect is due to actual biological treatment or technical

issues. Additionally, we observed DCs (Regroup 7) and monocytes

(Regroup 4 and 6) respond to IFN-b the most (Fig. 5D and E), while

Butler et al. observed plasmacytoid DC respond to the stimulus the

most, but did not see an obvious response for the myeloid and

lymphoid cells.

We also performed scmap analysis for comparison with

ClusterMap. We mapped the stimulated condition to the control

Fig. 5. ClusterMap analysis of PBMCs datasets with immune stimulation. (A)

Heat map of marker genes. (B) Dendrogram of the hierarchical clustering of

marker genes. (C) Quantitative comparison of the sub-groups between sam-

ples by ClusterMap. (D) Re-colored t-SNE plot based on matching results for

the combined dataset. (E) t-SNE plot with cells colored by sample. (F) Pre-

analysis of the control condition. (G). scamp results of mapping stimulated

condition to control at threshold 0.3 and 0.5. Cells are colored the same as

their assigned sub-groups in (F)
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first (Fig. 5F and G). We had to decrease the threshold to 0.3 to re-

duce the number of unassigned cells due to the existence of global

effect (Fig. 5G). Most of the matches are the same as the results in

ClusterMap, except for the CD14þ monocytes. Scmap assign

stim_0 to ctrl_8 instead of ctrl_0 (Fig. 5G and Supplementary Fig.

S5A). This is due to the stimulation affecting the CD14þ monocytes

the most (Fig. 5D and E) and shifting the group stim_0 towards the

centroid of ctrl_8. By using the absolute expression level of the cen-

troid of cells, scmap did not capture the relative structure of the sub-

groups within one sample. In other words, although CD14þ mono-

cytes were affected dramatically under stimulation, the molecular

features of CD14þ monocytes still identify them as CD14þ mono-

cytes when compared with other sub-groups in the same condition.

ClusterMap was able to use this relative information to match the

sub-types correctly.

3.3 PBMCs replicates and negative controls
To determine if our method introduced any spurious matches, we

used ClusterMap to compare (i) two replicated datasets, (ii) datasets

from totally different tissues and (iii) datasets with no shared marker

genes at all. Ideally, clusters in replicated data should match each

other in a one-to-one manner with minimal differences observed as

a true positive control. The 4K and 8K PBMC datasets were down-

loaded from the 10� Genomics public datasets (https://support.

10xgenomics.com/single-cell-gene-expression/datasets/). They are

PBMCs from the same healthy donor. The two datasets are repli-

cates with different cell numbers examined, each contains about

4000 and 8000 cells, respectively.

The group matching results demonstrate that the sub-groups in

the 4K PBMCs match with the 8K PBMCs in a one-to-one manner

(Supplementary Figs S6 and S7). The similarity values between

matched groups are also much higher than in the previous two data-

sets in the Sections 3.1 and 3.2 (Supplementary Fig. S6F). The chord

color in the Circos plot is hence much darker (Supplementary Fig.

S6E). The majority of the cell percentages of sub-groups are not

changed. The separability values demonstrate that there are no obvi-

ous differences between the two samples in any of the matched pairs

(Supplementary Fig. S6F). This matches the original expectation as

4K and 8K PBMCs are replicates.

Next, we downloaded a dataset of brain tissue from 10�
Genomics public datasets (https://support.10xgenomics.com/single-

cell-gene-expression/datasets/2.1.0/neurons_2000). This dataset

contains 2022 cells of a combined cortex, hippocampus and sub

ventricular zone of an E18 mouse. Pre-analysis clustered the cells

into 8 sub-groups of different types of neurons (Supplementary Fig.

S8A). We tried to match this dataset to the estrus phase of epithelial

cells as shown in Section 3.1 (Supplementary Fig. S8B). Only 8.6%

of total marker genes were overlapped between the two datasets.

We found most of the sub-groups from the same tissue clustered to-

gether. Several sub-groups matched between tissues with very low

similarity (0.08, 0.04, Supplementary Fig. S8C), which should be

considered as unmatched groups. As an additional check, we

removed the overlapping genes between the two datasets from the

marker gene list of the estrus sample (12.1%) to generate an artifi-

cially mutually exclusive dataset. As a result, the two datasets clus-

tered totally independently (Supplementary Fig. S8D). In this case,

ClusterMap will return nothing and suggest no matched groups.

Together, these three cases show that ClusterMap will not find

spurious relationships where they do not exist in the data. In sum-

mary, we demonstrated the sensitivity and the specificity of

ClusterMap using both positive and negative datasets.

3.4 Smart-seq2 dataset
To test the scope of our method, we also applied ClusterMap to a

Smart-seq2 dataset. The dataset contains different sub-types of T cells

from 12 patients (Zhang et al., 2018). The number of cells in each pa-

tient range from 210 to 1253. The cell sub-types are pre-defined in

the original study. We tried to match the pre-defined sub-types

(Supplementary Fig. S9B) across patients to test whether our method

can match the sub-types correctly. To simplify the comparison, we

kept the sub-types of CD4 and CD8 T cells only and the sub-types

with more than 20 cells in a patient. Marker genes were filtered by

False Discovery Rate (FDR) < 0.05. The results of 12 patients are

shown in Supplementary Figure S2C and Supplementary Table S1.

We also took two patients out as an example, and compare the two

samples (Supplementary Fig. S9A and C). ClusterMap performed well

on both 12 and 2 samples, matching most of the corresponding sub-

types correctly. Compare to 10x genomics datasets, Smart-seq2 data-

sets tend to contain much smaller number of cells, and are less power-

ful for defining sub-groups and enriched marker genes for each group.

As long as the marker genes can be defined confidently, ClusterMap

processes it the same as 10� datasets.

4 Discussion

Although CCA analysis is convenient to merge multiple samples for

comparison, it may ignore the confounding of batch and biological

effect and shrink the difference between sub-groups. Scmap is useful

for mapping a new dataset to known reference datasets, but may be

not easy for the comparison across multiple samples from different

conditions. In addition, its performance may be affected by large

global effects. Using marker genes and purity tree cut, ClusterMap

match multiple samples reliably at cluster level and overcomes batch

effects directly. There is no need to remove batch effects across sam-

ples before matching sub-groups by ClusterMap. Meanwhile,

ClusterMap provides useful quantification and clear visualization as

a whole workflow, which are convenient for interpretation and

downstream analysis.

Due to the limitation of current scRNA-seq experimental design,

batch effects and biological effects are always confounded. It is chal-

lenging to distinguish batch effect from treatment effect. During the

matching step of ClusterMap, batch effects will not affect the match-

ing results. Because marker genes for each sub-group are identified

relative to the rest of the sub-groups within a given sample, matching

based on the existence (binary) of marker genes will overcome the

batch effect. Separability can indicate the existence of batch effects or

systematic variation, if large separability values are observed over all

matched groups. There are many studies on comparison of multiple

scRNAseq datasets from different batches, such as the mutual nearest

neighbors method (Haghverdi et al., 2018) or the distribution-

matching residual networks method (Shaham et al., 2017). If neces-

sary, separability can be applied after batch effect correction.

As a downstream analysis approach of scRNA-seq, ClusterMap

relies on the pre-analyzed data. The clustering analysis of each single

sample and the marker genes identified for each sub-group will af-

fect the quality of the matching results. Refining marker gene lists

will certainly improve the sub-group matching. It is important to de-

fine meaningful sub-groups for each sample first before starting a

cluster comparison. The regroup step in ClusterMap refines the clus-

tering based on the matched results, possibly merging some similar

sub-groups in the same sample.

Similarity measures how well a pair matches with each other com-

pared with other groups based on the marker genes. Separability
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measures how much the group properties change between paired

groups. They can both reflect the relationship of the paired groups, but

in different ways. Typically, as similarity rises, separability decreases.

However, it is possible that a pair has similar marker genes, but sepa-

rates far apart (Regroup 6 and Fig. 5C, F and G). This is due to the use

of binary values of marker genes to compare between groups while ab-

solute expression level is used to compare cell distance within paired

groups.

The clustering analysis may be performed on the combined sam-

ples as well. Better resolution will be gained by the increased cell

numbers of the pooled dataset. However, the new clustering results

will be hard to match back to the sub-groups in each single sample.

The regrouping results in ClusterMap keep the grouping informa-

tion for the single samples. It also makes sense to compare the

match-defined new groups and the clustering-analysis-defined new

groups in the combined sample.

An R package and documentation for ClusterMap is available on

GitHub (https://github.com/xgaoo/ClusterMap). The code and results

for the pre-analysis of the datasets in this study are also available.

The epithelial datasets, immune stimulated datasets and the Smart-

seq2 of T cells datasets were downloaded from Gene Expression

Omnibus under accession numbers GSE103272, GSE96583 and

GSE108989. The PBMC replicates datasets and the brain cells dataset

were downloaded from the 10� Genomics support datasets website at

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/

2.1.0/pbmc4k, https://support.10xgenomics.com/single-cell-gene-ex

pression/datasets/2.1.0/pbmc8k and https://support.10xgenomics.com/

single-cell-gene-expression/datasets/2.1.0/neurons_2000).
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