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Abstract

Motivation: Recent sequence-based analyses have identified a lot of gene variants that may con-

tribute to neurogenetic disorders such as autism spectrum disorder and schizophrenia. Several

state-of-the-art network-based analyses have been proposed for mechanical understanding of gen-

etic variants in neurogenetic disorders. However, these methods were mainly designed for model-

ing and analyzing single networks that do not interact with or depend on other networks, and thus

cannot capture the properties between interdependent systems in brain-specific tissues, circuits

and regions which are connected each other and affect behavior and cognitive processes.

Results: We introduce a novel and efficient framework, called a ‘Network of Networks’ approach, to

infer the interconnectivity structure between multiple networks where the response and the pre-

dictor variables are topological information matrices of given networks. We also propose Graph-

Oriented SParsE Learning, a new sparse structural learning algorithm for network data to identify a

subset of the topological information matrices of the predictors related to the response. We dem-

onstrate on simulated data that propose Graph-Oriented SParsE Learning outperforms existing

kernel-based algorithms in terms of F-measure. On real data from human brain region-specific

functional networks associated with the autism risk genes, we show that the ‘Network of Networks’

model provides insights on the autism-associated interconnectivity structure between functional

interaction networks and a comprehensive understanding of the genetic basis of autism across di-

verse regions of the brain.

Availability and implementation: Our software is available from https://github.com/infinite-point/

GOSPEL.

Contact: kawakubo@med.nagoya-u.ac.jp or shimamura@med.nagoya-u.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Neurodevelopmental disorders are characterized by impaired func-

tions of the central nervous system that can appear early in develop-

ment and often persist into adulthood (Tollefsbol, 2017). The

spectrum of developmental impairment varies and includes intellec-

tual disabilities, communication and social interaction challenges

and attention and executive function deficits (American Psychiatric

Association, 2013). Prototypical examples of neurodevelopmental

disorders are intellectual disability, autism spectrum disorder (ASD),

epilepsy and schizophrenia (SCZ).

Recent sequence-based analyses have unraveled a complex, poly-

genic and pleiotropic genetic architecture of neurodevelopmental

disorders, and have identified valuable catalogs of genetic variants
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as genetic risk factors for neurodevelopmental disorders (Gratten

et al., 2014). However, it remains unknown if and how genetic var-

iants interact with environmental and epigenetic risk factors to im-

part brain dysfunction or pathology.

For a mechanical understanding of specific genetic variants in

neurodevelopmental disorders, integrative network approaches have

attracted much attention in recent years due to their interdisciplin-

ary applications. Several state-of-the-art network-based analyses

provide an organizational framework of functional genomics and

demonstrate that they will enable the investigation of relationships

that span multiple levels of analysis (Gandal et al., 2018; Krishnan

et al., 2016; Parikshak et al., 2013). These methods were mainly

designed for modeling and analyzing single networks that do not

interact with or depend on other networks. However, the brain con-

sists of a system of multiple interacting networks and must be

treated as such. In multiple interacting networks, the failure of nodes

in one network generally leads to the failure of dependent nodes in

other networks, which in turn may cause further damage to the first

network, leading to cascading failures and catastrophic consequen-

ces (Gao et al., 2012). It is known, e.g. that different kinds of brain-

specific tissues, circuits and regions are also coupled together and af-

fect behavior and cognitive processes, and thus dysfunctions of the

central nervous system in neurodevelopmental disorders have been

the result of cascading failures between interdependent systems in

the brain. However, no systematic mathematical framework is cur-

rently available for adequately modeling and analyzing the conse-

quences of disruptions and failures occurring simultaneously in

interdependent networks.

We address this limitation by developing a novel and efficient

framework, called the ‘Network of Networks’ (NoN) approach,

that will provide useful insights on the properties and topological

structure of the inter-correlations between functional interaction

networks (Fig. 1). Motivated by a perspective on structural equation

models, we model the topological information of each network as a

weight sum of the topological information of all other networks.

Our NoN model enables the exploitation of the interconnectivity

structure between complex systems. It has shown to be effective in

aiding the comprehensive understanding of the genetic basis of neu-

rodevelopmental disorders across diverse tissues, circuits and

regions of the brain.

Our main contributions are summarized as follows:

1. We define a statistical framework of structural equation models

for inferring the interconnectivity structure between multiple

networks where the response and the predictor variables are

given networks which have topological information. Structural

equation modeling is a statistical method used to test the rela-

tionships between observed and latent variables (Civelek, 2018).

We extend the structural equation models for modeling the

effects of network–network interactions.

2. In order to accomplish this, we propose a sparse learning algo-

rithm for network data, called Graph-Oriented SParcE Learning

(GOSPEL), to find a subset of the topological information matri-

ces of the predictor variables (networks) related to the response

variable (network). More specifically, we propose to use particu-

lar forms of diffusion kernel-based centered kernel alignment

(Cortes et al., 2012) as a measure of statistical correlation be-

tween graph Laplacian matrices, and solve the optimization

problem with a novel graph-guided generalized fused lasso. This

new formulation allows the identification of all types of correla-

tions, including non-monotone and non-linear relationships, be-

tween two topological information matrices.

3. We use a Bayesian optimization-based approach to optimize the

tuning parameters of the graph-guided generalized fused lasso

and automatically find the best fitting NoN model with an acqui-

sition function. The software package that implements the pro-

posed method in the R environment is available from https://

github.com/infinite-point/GOSPEL.

We describe our proposed framework and algorithm, and discuss

properties in Section 2. Section 3.1 contains a simulation study

which demonstrates the performance of the proposed method. We

use human brain-specific functional interaction networks and

known risk genes with strong prior genetic evidence of ASD and

identify the interconnectivity between these networks in Section 3.2.

Section 4 provides concluding remarks.

2 Materials and methods

Our goal is to infer the interconnectivity structure between multiple net-

works from topological information matrices of given networks. To do

this, we make the assumption that each topological information matrix

for a given network can be expressed by the linear combination of the

topological information matrices of the other given networks. Sparse re-

gression is performed on each of the given networks in order to identify

a subset of the topological information matrices of the predictors related

to the response. After this computation, NoN model is constructed

from the obtained regression coefficients. In this section, we first explain

the problem setting, and then present our method, GOSPEL.

2.1 Problem setting
Suppose that we are given p undirected networks consisting of n ver-

tices (nodes) VðiÞ ¼ fvðiÞ1 ; . . . ; v
ðiÞ
n g ði ¼ 1; . . . ; pÞ linked by edges. The

i-th adjacency matrix AðiÞ 2 R
n�n associated with the i-th undirected

network is defined as

A
ðiÞ
j;k ¼

w
ðiÞ
j;k if j 6¼ k and v

ðiÞ
j links with v

ðiÞ
k ;

0 otherwise;

(

where w
ðiÞ
j;k 2 ½0;1� denotes the probability of connectivity between

v
ðiÞ
j and v

ðiÞ
k in the i-th network. Here, we compute graph Laplacian

matrix LðiÞ:

L
ðiÞ
j;k ¼

deg
�

v
ðiÞ
j

�
if j ¼ k;

�w
ðiÞ
j;k if j 6¼ k and v

ðiÞ
j links with v

ðiÞ
k ;

0 otherwise;

8>>>><>>>>:
where deg

�
v
ðiÞ
j

�
denotes the weighted degree of v

ðiÞ
j , the sum of the

j-th row of AðiÞ. Then let us kernelize the graph Laplacian matrix.

Let KðiÞ be the diffusion kernel matrix for LðiÞ:

KðiÞ ¼ exp f�LðiÞ=cðiÞg;

where cðiÞ is a kernel parameter. This kernel matrix is centered and

normalized as follows:

K
ðiÞ ¼ HKðiÞH;

eKðiÞ ¼ K
ðiÞ
=jjKðiÞjjF;

where jj � jjF denotes the Frobenius norm, H indicates the centering
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matrix H ¼ In � 1
n 1n1>n , In is an n � n identity matrix, and 1n is an

n-dimensional vector with all ones.

We assume that the diffusion kernel matrix of the i-th network

can be represented by the linear combinations of centered and

normalized diffusion kernel matrices of the other networks as

follows:

eKðiÞ ¼Xp

j¼1

bðiÞj
eKðjÞ þ eðiÞ;

where fbðiÞj j j ¼ 1; . . . ;p; bðiÞi ¼ 0g denotes a regression coefficient

corresponding to predictor eKðjÞ and response eKðiÞ, and eðiÞ 2 R
n�n is

a Gaussian noise matrix whose elements follow Nð0; r2
i Þ.

The estimation for the network structure of the given networks

is available by applying GOSPEL to all the cases where i ¼ 1; . . . ; p.

Note that, in an ordinary regression problem for n samples and p

predictors, both the predictors and the response are given as n-di-

mensional vectors. In our problem setting, however, they are given

as n � n networks.

2.2 Graph Oriented Sparse Learning (GOSPEL)
The optimization problem of GOSPEL is as follows:

min
bðiÞ

1
;...;bðiÞp

jjeKðiÞ �Xp

j¼1

bðiÞj
eKðjÞjj2F þ kðiÞ1

Xp

j;k¼1

R
ðiÞ
j;k jb

ðiÞ
j � bðiÞk j þ kðiÞ2

Xp

j¼1

jbðiÞj j;

(1)

where kðiÞ1 ; k
ðiÞ
2 are regularization parameters, and j � j indicates the ‘1

norm. RðiÞ 2 R
p�p ði ¼ 1; . . . ; pÞ expresses a matrix whose elements

consist of correlations between predictors, where

R
ðiÞ
j;k ¼

1 if jCKAðeKðjÞ; eKðkÞÞj � sðiÞ and j 6¼ k;

0 otherwise:

8<:
CKAðeKðjÞ; eKðkÞÞ denotes a correlation between kernel matrices eKðjÞ
and eKðkÞ; this measure is called the Centered Kernel Alignment

(CKA) (Cortes et al., 2012), and sðiÞ indicates a threshold. CKA cap-

tures the non-linear relationship between two matrices if such a rela-

tionship exists.

The definition of CKA is as follows:

CKAðeK ðjÞ; eK ðkÞÞ ¼ heK ðjÞ; eK ðkÞiF
where h�; �iF indicates the Frobenius inner product. The Frobenius

inner product can be interpreted as an inner product of two vector-

ized matrices, and thus we can apply the properties of Pearson’s cor-

relation coefficient (Sharma, 2005) to CKA. Unless the elements ofeKðjÞ or eKðkÞ are all zero (we omit such cases in the computation of

GOSPEL), this definition implies that the value of CKA becomes

zero when eKðjÞ and eKðkÞ have no correlation and the CKA value

takes 61 when the two matrices are strongly correlated. In practice,

the value of the diffusion kernel-based CKA ranges from �1 to 1 be-

cause of the positive semi-definiteness of the diffusion kernel matrix

(Lafferty and Kondor, 2002).

GOSPEL optimization Equation (1) consists of the squared

Frobenius norm term, the graph-guided-fused-lasso regularization

term (Chen et al., 2012), and the lasso regularization term

(Tibshirani, 1996). If R
ðiÞ
j;k of the graph-guided-fused-lasso

Fig. 1. Overview of GOSPEL, an example for the case where n ¼ 10;p ¼ 8. Assume that we are given the human brain region-specific networks associated with a

disease. As input, GOSPEL requires p adjacency matrices generated from p networks with n nodes, where n and p indicate the number of nodes (genes) and fea-

tures (brain regions), respectively. Block ‘A’ shows that GOSPEL estimates the brain regions which are related to ‘Brain region 1’ by performing a graph-oriented

sparse regression. In this example, ‘Brain region 2’ and ‘Brain region 8’ are related to ‘Brain region 1’. Block ‘B’ illustrates that a regression is performed on each

of the brain regions. As with block ‘A’, block ‘B’ estimates the relationship between the target brain region and the other brain regions. Block ‘C’ expresses that

the output of GOSPEL, the ‘Network of Networks’ model related to the disease genes, is constructed from the obtained regression coefficients
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regularization term is zero, the equation becomes solely dependant

on the lasso regularization term. Table 1 summarizes the behavior

of bðiÞj and bðiÞk in GOSPEL optimization. The table shows that

GOSPEL estimates all the relevant predictor-networks to the

response-network, and also eliminates irrelevant predictor-networks

to the response-network. For more detail on the behavior of the re-

gression coefficients, see Section 1 in the Supplementary Material.

The sparsity of the elements of bðiÞ helps to facilitate the interpret-

ation of the computation results. By extension, the interpretation of

the network structure of given networks is also facilitated.

Finally, we construct a NoN model utilizing the obtained regres-

sion coefficients fbbðiÞj g
p
i;j¼1. Let E � CðpÞ � CðpÞ be an edge set for a

NoN model, where C ¼ f1; . . . ;pg is a node set. We employ the

edge set estimation defined by Meinshausen and Bühlmann (2006):

E ¼ fði; jÞj bbðiÞj 6¼ 0 _ bbðjÞi 6¼ 0g;

where (i, j) indicates the pair of the i-th and the j-th nodes. Based on

the graphical model G ¼ ðC;EÞ, the NoN model is constructed as

the output of GOSPEL.

2.3 Computation of GOSPEL
To solve the GOSPEL optimization problem, Equation (1), we first

vectorize all the kernel matrices. This produces an n2-dimensional

vector associated with the response-network, and n2-dimensional

vectors corresponding to p � 1 predictor-networks. This form is the

same problem setting of the graph-guided generalized fused-lasso

(Chen et al., 2012), G3FL, with n2 samples and p � 1 features.

Therefore, we employ G3FL to solve our optimization problem.

Regularization parameters kðiÞ1 ; k
ðiÞ
2 , threshold sðiÞ and kernel par-

ameter cðiÞ are decided by the Bayesian Optimization (Mockus, 2012).

We apply the Bayesian Information Criterion (BIC) (Schwarz, 1978) as

an acquisition function of the Bayesian Optimization. The BIC score

for the case where the response is the i-th network is defined as

BICðiÞ ¼ �2cLL
ðiÞ
þ bdf

ðiÞ
� logðn2Þ;

where cLL
ðiÞ

is the log-likelihood function:

cLL
ðiÞ
¼ n2

2
log

2p
n2
jjeK ðiÞ �Xp

j¼1

bbðiÞj
eK ðjÞjj2F

0@ 1Aþ 1

0@ 1A;
and bdf

ðiÞ
is the degree of freedom of the fused lasso (Tibshirani

et al., 2005):

bdf
ðiÞ
¼ p� ]fbbðiÞj ¼ 0g

�]fbbðiÞj � bbðiÞk ¼ 0 j j < k; bbðiÞj ;
bbðiÞk 6¼ 0g:

In the Bayesian Optimization, we select the set of parameter val-

ues which minimizes the BIC score.

3 Results

3.1 Simulations
We generate synthetic data and evaluate the performance of

GOSPEL in order to gain insight into feature selection in the regres-

sion problem for network data. As synthetic data, we prepare three

representative complex network models which have different struc-

tures: random networks (Erdös and Rényi, 1959), scale-free net-

works (Barabási and Albert, 1999) and small-world networks

(Watts and Strogatz, 1998).

For each network model, 30 predictor-networks are prepared so

that the first four predictors have the following linear or non-linear

relationships:

A
ðjÞ
k;l ¼

A
ð1Þ
k;l j ¼ 2; and k 6¼ l;

sin
�
pA
ð1Þ
k;l

�
j ¼ 3; and k 6¼ l;

4
�

A
ð1Þ
k;l � 0:5

�3

þ 0:5 j ¼ 4; and k 6¼ l;

0 j ¼ 1; . . . ;30 and k ¼ l:

8>>>>>><>>>>>>:
After this operation, we randomly shuffle 5% of the rows and col-

umns of fAðjÞg4
j¼1, and 100% of the rows and columns of fAðjÞg30

j¼5,

in order to confirm whether GOSPEL can select only the relevant

(similar) predictor-networks to the response-network.

Using the four predictors, we generate the following two signal

types of response-networks.

• Additive type: AðiÞ ¼ 1
4

P4
j¼1

AðjÞ;

• Non-additive type: AðiÞ ¼ 1
2

P2
j¼1

Að2j�1Þ
� Að2jÞ;

where � indicates the element-wise product. Figure 2 shows plot

examples of these adjacency matrices. As shown in Figure 2, we set

the first four predictor-networks as similar to the two types of

responses, and as relevant to these responses. This setting expresses

our assumption; a disease cascades along the networks which have

overall topological similarity but not necessarily identical structures.

The diffusion kernel corresponding to the response-network is

set as eKðiÞ þ eðiÞ with a signal-to-noise ratio ¼1.

We run the simulations 100 times for each combination of the

network model and the signal type, varying the number of vertices

as n ¼ f500; 1000; 2000g. We compare GOSPEL to Hilbert-

Schmidt Independence Criterion Lasso (HSIC Lasso) (Yamada et al.,

2014), one of the feature selection methods by the feature-wise ker-

nelized lasso. We note that HSIC Lasso is not designed for network

data and cannot be directly applied. In these simulations, HSIC lasso

is applied to the centered and normalized kernel matrices as follows:

min
aðiÞ
jjeKðiÞ �Xp

j¼1

aðiÞj
eKðjÞjj2F þ k

Xp

j¼1

jaðiÞj j; (2)

where faðiÞj j i; j ¼ 1; . . . ;p; aðiÞi ¼ 0g.

Table 1. Behavior of bðiÞj and bðiÞk in GOSPEL optimization

Correlations Regression coefficients

eKðiÞ; eKðjÞ eKðjÞ; eKðkÞ bðiÞj bðiÞj ; b
ðiÞ
k

Correlated Uncorrelated A real value except zero —

Uncorrelated Uncorrelated Zero —

Correlated Correlated — Real values except zero

Uncorrelated Correlated — Zeros

Note: When eKðjÞ and eKðkÞ are uncorrelated, i.e. R
ðiÞ
j;k ¼ 0, the value of bðiÞj is estimated depending on the correlation between response eKðiÞ and predictor eKðjÞ.

Similarly, the value of bðiÞk is computed depending on the correlation between the response and the k-th predictor. On the other hand, when eKðjÞ and eKðkÞ are corre-

lated, i.e. R
ðiÞ
j;k ¼ 1, bðiÞj and bðiÞk tend to take similar values depending on the correlation between the response and the i-th predictor.
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To assess each method’s ability to obtain true fractions of predic-

tors related to the response, we compare true predictors to the pre-

dictors with non-zero coefficients estimated by GOSPEL and HSIC

Lasso. The results were analyzed for F-measure. Table 2 shows the

F-measures calculated for the 18 different settings with varying sam-

ple size and network types. The results highlight the efficacy of the

graph-guided fused-lasso regularization.

We can particularly see the importance of graph-guided fused-

lasso regularization when we compare GOSPEL with the similar

HSIC Lasso, which does not use graph-guided fused-lasso regular-

ization. GOSPEL succeeds in all sample sizes, network types and sig-

nal types. On the other hand, HSIC Lasso performs poorly except in

the cases of additive scale-free networks. As shown in Figure 2,

scale-free networks have a clear structure, and the response-

networks for additive and non-additive cases, are both similar to

fAðjÞg4
j¼1. Since the additive cases may be easy to solve, HSIC Lasso

works perfectly. However, regardless of the visually easy settings,

HSIC Lasso fails in the non-additive cases.

It appears that the success of GOSPEL in all settings can be attrib-

uted to the graph-guided fused-lasso regularization. The graph-guided

fused-lasso regularization term of GOSPEL, the second terms of

Equation (1), helps to select the predictors which have similar struc-

tures to the response, by introducing the correlations between predic-

tors into the optimization problem. The failed HSIC Lasso, on the

other hand, does not use information on the correlations between pre-

dictors, and attempts to express the response through summation of

the predictors alone. This operation of HSIC Lasso without the

graph-guided fused-lasso regularization results in selecting non-

relevant (dissimilar) predictors, and leads failures.

3.2 Real data
3.2.1 Analysis of a network of networks related to the ASD risk

genes

ASD is a complex neurodevelopmental disorder driven by a multitude

of genetic variants across the genome that appear as a range of devel-

opmental and functional perturbations, often in specific tissues and

cell types (Vorstman et al., 2017). To construct human brain region-

specific networks associated with the ASD risk genes, we adopt a

manner of data construction introduced in recent studies (Duda et al.,

2018; Krishnan et al., 2016). We use 17 human brain region-specific

functional interaction networks (Greene et al., 2015) and 1030

known risk genes with strong genetic evidence of ASD association

annotated in the Human Gene Mutation Database Professional

2017.1 (http://hgmd.cf.ac.uk/) to evaluate our proposed method.

The purpose of our analysis is to investigate how the ASD risk genes

may be coupled in each of the brain region-specific networks and

what interconnectivity structure between these networks can be

formed.

The 17 human brain regions are taken from the whole brain: the

frontal lobe (the cerebral cortex), the occipital lobe (the cerebral cor-

tex), the parietal lobe (the cerebral cortex), the temporal lobe (the

cerebral cortex), the amygdala (the limbic system), the dentate gyrus

(the limbic system), the hippocampus (the limbic system), the caud-

ate nucleus (the basal ganglia), the caudate putamen (the basal gan-

glia), the subthalamic nucleus (the basal ganglia), the substantia

nigra (the basal ganglia), the thalamus (the diencephalon), the hypo-

thalamus (the diencephalon), the cerebellar cortex (the cerebellum),

the hypophysis (the cerebellum), the nucleus accumbens (the brain

ventricle) and the pons (the brain stem).

Fig. 2. Plot example of adjacency matrices in simulation, in the case where network type is scale-free. Two plots on the left end indicate the response-networks

whose signal types are additive and non-additive, respectively. Að1Þ; . . . ;Að4Þ are the predictor-networks relevant to the response-networks, and the rest 26 non-

relevant predictor-networks are set like Að5Þ

Table 2. The F-measure of the simulations

Network model

Random Scale-free Small-world

n Signal type GOSPEL HSIC Lasso GOSPEL HSIC Lasso GOSPEL HSIC Lasso

500 Additive 1.000 0.273 1.000 0.964 1.000 0.238

(0.000) (0.149) (0.000) (0.069) (0.000) (0.008)

Non-additive 0.999 0.288 1.000 0.235 1.000 0.256

(0.014) (0.161) (0.000) (0.001) (0.000) (0.047)

1000 Additive 1.000 0.276 1.000 1.000 1.000 0.248

(0.000) (0.168) (0.000) (0.000) (0.000) (0.082)

Non-additive 1.000 0.246 1.000 0.235 1.000 0.251

(0.000) (0.078) (0.000) (0.000) (0.000) (0.109)

2000 Additive 1.000 0.244 1.000 1.000 1.000 0.243

(0.000) (0.077) (0.000) (0.000) (0.000) (0.076)

Non-additive 1.000 0.245 1.000 0.241 1.000 0.235

(0.000) (0.079) (0.000) (0.057) (0.000) (0.001)

Note: ð�Þ denotes the standard deviation of the F-measure. The predictor-networks are generated according to the representative three network models. n indi-

cates the number of vertices, and the response-network is generated based on the signal type. ‘HSIC Lasso’ does not mean the original one but the variant one.
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These 17 human brain region-specific functional interaction net-

works are built by integrating thousands of gene expressions,

protein–protein interactions, and regulatory-sequence data sets

using a regularized Bayesian integration approach (Greene et al.,

2015). Once built, they are used as reference networks in our ana-

lysis. This network information can be downloaded from the

Genome-scale Integrated Analysis of gene Networks in Tissues web

site (http://giant.princeton.edu/).

We first calculate local enrichment scores for the ASD risk genes

across all nodes (25 825 genes) in the network by using the Spatial

Analysis of Functional Enrichment algorithm (Baryshnikova, 2016),

which measures the proximity of the ASD risk genes in the neighbor-

hood of each node. Next, in order to reconstruct the 17 human brain

region-specific networks associated with the ASD risk genes, 4756 genes

with highly significant local enrichment scores for the ASD risk genes

(P-value <0.001) in any of the 17 networks are selected as the nodes,

and the interactions between these genes are given. We apply GOSPEL

to the 4756 � 4756 adjacency matrices of the 17 brain-specific regions

and construct the NoN model related to the ASD risk genes.

Figure 3 shows a NoN model related to the ASD risk genes. It

illustrates the relation between the functional networks of the subre-

gions. In Figure 3, we can observe how the gene co-expression pat-

terns related to ASD propagate across the brain. In other words, our

NoN model suggests how ASD cascades through the brain.

One may assume that measuring every pair of subregion net-

works is enough for this estimation. To demonstrate the necessity of

GOSPEL, we compare the result of the pair measurements with the

NoN model, which proves that GOSPEL correctly and

automatically tunes the parameters. For details, see Section 2.1 in

the Supplementary Material.

Below, we evaluate the resulting model both quantitatively and

qualitatively.

(i) Quantitative interpretation of the result. For the quantitative

interpretation of the resulting model, we adopt the categorization of

brain function from BRENDA Tissue Ontology (BTO) (http://purl.

bioontology.org/ontology/BTO), and the 3-dimensional coordinates

of subregions from Talairach coordinates (TC) in the Brede

Database (http://hendrix.imm.dtu.dk/services/jerne/brede/brede.

html). We create the networks from BTO and TC, and compare

these with our result.

Figure 4 denotes the networks generated from BTO, TC and

GOSPEL. The network for BTO expresses that the subregions in the

same function category link together. For more detail, see

Supplementary Figure S2. The network for TC expresses that the

subregions physically located near each other are linked. Note that

the subregions are displayed by category from the outer part moving

in to the deep part of the brain. The color and ID associated with

each subregion is described in Table 3.

In Figure 4, the network of GOSPEL shows that the links in the

resulting model are common with BTO in the cerebral cortex and

the basal ganglia. This is expected since the Genome-scale

Integrated Analysis of gene Networks in Tissues data which we used

in this experiment adopts the hierarchical structure determined by

BTO in the process of data construction. On the other hand, it is

surprising that the links in GOSPEL are common with TC between

the limbic system, the basal ganglia and the diencephalon, even

though we did not consider locational information in this experi-

ment. Table 4 indicates the consistency of links in BTO, TC and the

NoN model. This table actually shows that the NoN model is simi-

lar to both BTO and TC with around 70% consistency.

There are 14 unique links obtained by GOSPEL. Half of these

exist between the cerebral cortex and the other subregions. This is a

main feature of our result. For the observation, let us imagine that

the graphs for BTO and TC (the left and the center images in Fig. 4)

are overlapped. One can find that there are no links between the

cerebral cortex and the other regions, except for the links between

the temporal lobe and the hippocampus. This is because the distan-

ces between the cerebral cortex and the other regions are far apart,

since the cerebral cortex is locate in the outermost part of the brain

while the other regions are locate close together in the deep part of

the brain (see TC network in Fig. 4). Therefore, it is significant that

half of the unique links derived from the NoN model appeared be-

tween the outer part of the brain and the deep part.

(ii) Qualitative interpretation of the result. For the qualitative inter-

pretation of the resulting model, we investigate the NoN model in

two different ways; one is by examining the structure of the NoN

model, and the other is by comparing our result with the 16 abnor-

mal functional connections identified in Yahata et al. (2016) using

functional magnetic resonance imaging.

To simplify the structure of our model, first we performed a

community extraction method based on random walks (Pons and

Latapy, 2006). Table 3 indicates the mean value of the enrichment

score and the community ID for each subregion. It also divides the

resulting model into three communities according to the results of

the community extraction. Let us inspect each group.

Group A is grouped around the amygdala and the thalamus.

Group B is small, however, it has the interesting feature that two

Fig. 3. The NoN model related to the ASD risk genes. The size of the node

expresses the mean value of the enrichment score associated with the brain

subregion (node). The smallest, middle and the largest sized nodes express

below the 30-th percentile, between the 30-th and the 60-th percentiles, and

above the 60-th percentile of the enrichment score, respectively. The color of

the node indicates the categorization of brain function as determined by BTO.

The thickness of the edge denotes the strength of the relation between two

brain subregions. The thinnest, middle and the thickest edges express the 70-

th–80-th percentiles, the 80-th–90-th percentiles and above the 90-th percent-

ile of the whole coefficients obtained by performing GOSPEL, respectively.

For details, see Supplementary Table S2
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out of the three subregions belong to cerebral cortex. Group C con-

sists of subregions which have low enrichment sores, and thus

we consider this group as not relating to ASD and ignore it in

our results.

Let us observe groups A and B in detail. In group A, the amyg-

dala has the largest number of the thickest edges. This indicates that

the gene co-expression patterns of the amygdala are reflected in the

gene co-expression patterns of all the other regions within the group.

As shown in Table 5, the amygdala has largely been the focus of

ASD research. However, our model suggests a need to look at the re-

lation between the other subregions and the amygdala instead of the

amygdala alone.

While the amygdala may be thought of as the center of function-

al abnormality within the brain, it is closely connected to the thal-

amus that is known to act as an information relay station (hub)

between the subcortical areas and the cerebral cortex (Gazzaniga

et al., 2009). This suggests that if there is a problem in the amygdala,

the problem will not only be reflected in the other subregions in

Group A, but the problem will be relayed to other parts of the brain

via the thalamus.

Group B is constructed of the subregions related to the cerebral

cortex. Table 5 shows that the most prominently studied subregion

in this group in ASD research is the frontal lobe. Although the caud-

ate putamen does not belong to the cerebral cortex, it may regulate

threshold potential in the brain by measuring the whole activity of

cerebral cortex in order to prevent explosive activation of the brain’s

excitatory synapses (Braitenberg, 1986).

GOSPEL suggests that ASD cascades not only within groups A and

B, but also between them from the temporal lobe or the hypophysis.

The next step is to confirm the validity of our model against the

results of other accepted studies. To classify the differences between

ASD and typically developed persons, Yahata et al. (2016) identified

16 abnormal functional connections using functional magnetic reson-

ance imaging. In order to compare consistency with the results of

Yahata et al. (2016), we first investigate the common subregions used

in both Yahata et al. (2016) and our experiment. While the majority

of the functional connections explored in Yahata et al. (2016) are not

drawn from brain subregions used in our experiment, there are five

connections composed of subregions also contained in the NoN

model. These are: the amygdala and the caudate nucleus, the frontal

lobe and the occipital lobe, the frontal lobe and the temporal lobe,

Fig. 4. Networks created from BTO, TC and the NoN model (GOSPEL). The left image shows a network created from BTO. Up to three vertices connected along

the shortest-path from the origin are linked and colored red. The center image is a network created from TC. The distances below the 35-th percentile of the

Euclidean distances between two vertices (subregions) are linked and colored blue. The gray rows and columns are the subregions with no available TC. For the

subregions with two coordinates (the left side and right side), we adopt the ‘Mean coordinate with ignored left/right’ according to the Brede Database. The right

image is a network constructed from GOSPEL. To create this network, we ignored the links associated with the pons, the parietal lobe, the nucleus accumbens,

the dentate gyrus and the hypothalamus. Since these subregions’ enrichment scores in Table 3 are low, we regarded them as not related to ASD. The red cells

and the blue cells in the right image are the links which match BTO and TC, respectively. This suggests a moderate level of agreement with BTO and TC. The yel-

low and the orange cells are the unique links obtained by GOSPEL. The white cells in all the networks indicate ‘no link’

Table 3. Information on the 17 subregions

ID Subregion Enrich.score Com.ID

4 Temporal lobe 10.322 A

7 Hippocampus 10.320 A

15 Hypophysis 10.261 A

8 Caudate nucleus 9.890 A

12 Thalamus 9.386 A

5 Amygdala 9.259 A

11 Substantia nigra 7.967 A

10 Subthalamic nucleus 7.955 A

1 Frontal lobe 8.130 B

2 Occipital lobe 7.212 B

9 Caudate putamen 5.476 B

14 Cerebeller cortex 5.402 C

6 Dentate gyrus 3.879 C

13 Hypothalamus 3.485 C

16 Nucleus accumbens 3.290 C

17 Pons 2.849 C

3 Parietal lobe 1.318 C

Note: ‘Enrich.score’ denotes the mean value of the enrichment score.

‘Com.ID’ indicates the community ID given by the community extraction.

Table 4. Link consistency between BTO, TC and the NoN model

#Regions TP FP TN FN Consistency

BTO 17 6 20 98 12 0.765

TC 14 7 10 53 21 0.659

Note: TP, FP, TN and FN are true positive, false positive, true negative and

false negative, respectively.
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the frontal lobe and the hippocampus and the frontal lobe and the

parietal lobe (see Supplementary Table S3 for further information).

As shown in Table 5, four out of the five connections are directly

or proximately linked in our NoN model. These resulting connec-

tions show that even though the methodology used in GOSPEL is

different from that of Yahata et al. (2016), they share a commonal-

ity that suggests GOSPEL is an accurate and valid method.

Furthermore, while Yahata et al. (2016) examined the subregion

pairs individually, our GOSPEL infers the interconnectivity structure

between all the subregions, therefore our NoN model also contains

the information on how these four connections link with each other.

In our model, the link between the amygdala and the caudate nu-

cleus is in group A, and the caudate nucleus connects to the hippo-

campus. The link between the hippocampus and the frontal lobe

passes via the link between the temporal lobe and the frontal lobe,

and this links group A and B. The link between the frontal lobe and

the occipital lobe is in group B. In short, the four abnormal connec-

tions construct a long path from the amygdala to the occipital lobe

in our NoN model (See Supplementary Figure S3). One can confirm

that the gene co-expression patterns in the diffusion kernels of the

six subregions included in the long path show an evolving similarity

in Supplementary Figures S4–S9. This new insight obtained by

GOSPEL may encourage the further research on ASD within brain

networks.

Finally, let us observe the correspondence between the four ab-

normal connections consistent with Yahata et al. (2016), BTO and

TC. Two among the four connections: the frontal lobe and the oc-

cipital lobe, and the frontal lobe and the temporal lobe, match BTO.

Of the other two abnormal connections, the frontal lobe and the

hippocampus are linked through the connection between the hippo-

campus and the temporal lobe in TC and then the temporal lobe and

the frontal lobe in BTO.

As for the amygdala and the caudate nucleus, they are too far

apart to be linked by either BTO or TC. However, the connection of

the caudate nucleus with the amygdala may be one that has import-

ant implications for ASD, since the amygdala and the caudate nu-

cleus are the regions individually already acknowledged as being

Table 5. Samples of the evidence for a single brain subregion associated with ASD, and consistency between our resulting model and the

abnormal functional connections in Table 1 of Yahata et al. (2016)

Com.ID Subregion Consistency Samples of the evidence for a single brain subregion

A Temporal lobe � Zilbovicius et al. (2000); Lee et al. (2007); Neeley et al. (2007)

Hippocampus � Schumann et al. (2004); Endo et al. (2007); Conturo et al. (2008)

Hypophysis Iwata et al. (2011); Ćurin et al. (2003)

Caudate nucleus � Silk et al. (2006); Turner et al. (2006); Voelbel et al. (2006); Langen et al. (2007)

Thalamus Tsatsanis et al. (2003); Hardan et al. (2006); Hardan et al. (2008); Tamura et al. (2010)

Amygdala � Schumann et al. (2004); Schumann and Amaral (2006); Endo et al. (2007); Conturo et al. (2008);

Schumann et al. (2009); Kleinhans et al. (2010); Nordahl et al. (2012); Kliemann et al. (2012)

Substantia nigra Caria et al. (2011)

Subthalamic nucleus Rojas et al. (2014)

B Frontal lobe � � � Hardan et al. (2004); Schmitz et al. (2007); Scott-Van Zeeland et al. (2010); Jeong et al. (2011)

Occipital lobe � Hardan et al. (2009)

Caudate putamen Kumra et al. (2000)

Note: ‘�’ and ‘�’ denote a direct and a proximate connection, respectively.

Table 6. Link consistency between the NoN models of the three

brain diseases

ASD and SCZ ASD and ND SCZ and ND

Consistency 0.809 0.544 0.632

Fig. 5. The NoN models related to ASD, SCZ and ND risk genes. The size of the node expresses the mean value of the enrichment score associated with the brain

subregion (node). The smallest, middle and the largest sized nodes express below the 30-th percentile, between the 30-th and the 60-th percentiles, and above

the 60-th percentile of the enrichment score across the three brain diseases, respectively. The links associated with the nodes whose enrichment scores are below

the 30-th percentile are removed, as we regard them as non-related subregions. The color of the node indicates the categorization of function as determined by

BTO. The thickness of the edge denotes the strength of the relation between two brain subregions. The thinnest, middle and the thickest edges express the 70-th–

80-th percentiles, the 80-th–90-th percentiles and above the 90-th percentile of the coefficients across the three brain diseases, respectively
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closely related to autism as seen in Table 5. Furthermore, as the

caudate nucleus works together with the caudate putamen to control

the threshold potential in the cerebral cortex (Braitenberg, 1986),

this connection generated by the NoN model may assist with the

goal for researchers who have been looking for ASD related prob-

lems within the cerebral cortex. Further exploration on these con-

nections is expected.

3.2.2 Application of GOSPEL

As the validity of the GOSPEL method has been established, we can

go on to demonstrate a potential real-world application of

GOSPEL. We infer the NoN models of three brain diseases: ASD,

SCZ and neurodegenerative diseases (ND), and compare them.

We construct human brain region-specific networks associated

with the ASD risk genes, SCZ risk genes and ND risk genes, in the

same manner as the experiments in Section 3.2.1. Specifically, we

compute local enrichment scores using 1030, 844 and 334 known

risk genes with strong genetic evidence of each disease (see List 1�
3 in the Supplementary Material), and select 4756 genes with highly

significant local enrichment scores (P-value <0.001) in any of the 17

networks as the nodes.

The resulting models are shown in Figure 5, and Table 6 indi-

cates link consistency between the three diseases’ NoN models. The

link consistency between ASD and SCZ is about 80%, and this value

is much higher than those of ASD and ND, and SCZ and ND. ASD

and SCZ are diagnostically different brain diseases, however, these

diseases have a comorbid association (Chisholm et al., 2015), a high

level similarity of transcriptomic overlap (Gandal et al., 2018), and

have a significant level of the overlapping of pathogenic copy-

number variations (Kushima et al., 2018). The usage of GOSPEL

may be helpful for further investigation of comorbid association be-

tween ASD and SCZ, since GOSPEL captures how the gene co-

expression patterns related to each disease spread in the brain.

4 Discussion

In order to improve the understanding of brain-specific complex sys-

tems related to disease and to break through the limitation of

network-based analyses which estimate functional single networks,

we proposed a ‘Network of Networks’ approach inspired by struc-

tural equation models. In this paper, we sought to estimate the topo-

logical structure of the correlations between functional interaction

networks of human brain region-specific networks associated with

ASD risk genes.

To the best of our knowledge, the sparse regression for networks

in GOSPEL is the first feature selection method where the features

are not vectors but instead are networks. In order to construct a

NoN model, GOSPEL estimates all the predictor-networks relevant

to the response-network even when they have non-linear correla-

tions. All the parameters in GOSPEL are automatically optimized by

the Bayesian Optimization based on the BIC. Though there is room

for improvement in that GOSPEL cannot reflect the information of

the vertices (nodes), the outputted NoN model is interpretable by

combining the information on the vertices and the result of commu-

nity extraction, as shown in Section 3.2.1 (ii). A further limitation of

GOSPEL is that all the networks must be of the same size in order to

measure the correlations between networks using diffusion kernels.

While overcoming this limitation is a goal for future work, we con-

sider GOSPEL to still be useful at this stage of brain research.

We demonstrated the effectiveness of GOSPEL in simulations,

and tackled the exploration of the NoN model of human brain

region-specific networks related to ASD. The result was the success-

ful production of a NoN model which shows the subregions of the

brain which relate to ASD and how they functionally relate to each

other. This model is consistent with previous ASD research.

Although the accuracy of our model is yet untested, we hope that it

will provide useful insight for ASD researchers, and that further re-

search will prove its accuracy.

Finally, while this research was limited to the study of subregions

of the brain in connection to ASD, we believe that GOSPEL will

prove useful to other studies seeking to find relationships between

illness and bodily organs or regions, therefore, GOSPEL may be of

great use to those studying the systems of biology.
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