
Sequence analysis

SMuRF: portable and accurate ensemble

prediction of somatic mutations

Weitai Huang1,2, Yu Amanda Guo1, Karthik Muthukumar1,

Probhonjon Baruah1, Mei Mei Chang1 and

Anders Jacobsen Skanderup1,*

1Department of Computational and Systems Biology, Agency for Science Technology and Research, Genome

Institute of Singapore, Singapore 138672, Singapore and 2Graduate School of Integrative Sciences and

Engineering, National University of Singapore, Singapore 117456, Singapore

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on August 1, 2018; revised on November 26, 2018; editorial decision on December 31, 2018; accepted on January 7, 2019

Abstract

Summary: Somatic Mutation calling method using a Random Forest (SMuRF) integrates predic-

tions and auxiliary features from multiple somatic mutation callers using a supervised machine

learning approach. SMuRF is trained on community-curated matched tumor and normal whole

genome sequencing data. SMuRF predicts both SNVs and indels with high accuracy in genome or

exome-level sequencing data. Furthermore, the method is robust across multiple tested cancer

types and predicts low allele frequency variants with high accuracy. In contrast to existing

ensemble-based somatic mutation calling approaches, SMuRF works out-of-the-box and is orders

of magnitudes faster.

Availability and implementation: The method is implemented in R and available at https://github.

com/skandlab/SMuRF. SMuRF operates as an add-on to the community-developed bcbio-nextgen

somatic variant calling pipeline.

Contact: skanderupamj@gis.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of somatic mutations from matched tumor and normal

samples is challenged by sequencing noise and alignment ambiguities

as well as the heterogeneous composition of tumors. Recent studies

have revealed low concordance between existing methods for somatic

variant calling (Hwang et al., 2015; Kroigard et al., 2016; O’Rawe

et al., 2013; Roberts et al., 2013). Additionally, a benchmark study

demonstrated that the accuracy of a given somatic mutation calling al-

gorithm can vary extensively across different workflows and pipelines

(Alioto et al., 2015). Parameters influencing this variation may be

choice of alignment algorithm, use of local re-alignment, as well as

configuration of a multitude of post-processing filters. The consensus

of multiple callers have been used to improve the accuracy of

somatic variant calling (Callari et al., 2017; Ellrott et al., 2018;

Rashid et al., 2013). Taking this one step further, a machine learn-

ing based ensemble method may combine multiple mutation callers

with auxiliary sequence and alignment features to improve mutation

calling accuracy (Ding et al., 2012; Fang et al., 2015; Wood et al.,

2018). While such approaches may improve accuracy, they are gen-

erally not portable: The end-user must obtain suitable training and

testing datasets and need to have knowledge of machine learning

(Supplementary Fig. S1A ). There is therefore a need for accurate

and pre-trained ensemble approaches for somatic mutation calling

that can be ported between research groups. Here, we developed a

Somatic Mutation calling method using a Random Forest (SMuRF),

which combines predictions from four mutation callers with auxil-

iary alignment and mutation features using supervised machine

learning (Supplementary Fig. S1B).
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2 Implementation

SMuRF is available as an R package. Briefly, the bcbio-nextgen

framework (https://github.com/chapmanb/bcbio-nextgen) is used to

generate somatic variant calls from 4 different methods: MuTect2

(Cibulskis et al., 2013), Freebayes somatic (ArXiv: https://arxiv.org/

abs/1207.3907), VarDict (Lai et al., 2016) and VarScan (Koboldt

et al., 2012). Variant and auxiliary features are extracted from the

VCF files. The SMuRF random forest model is pre-trained on a gold

standard set of mutation calls curated by the International Cancer

Genome Consortium (ICGC) community using deep (>100�) whole

genome sequencing (WGS) of two tumors (Alioto et al., 2015).

Feature extraction and prediction of somatic variants takes �10 min

for tumor-normal WGS data on a standard computer (4 CPUs,

16GB RAM).

3 Overview

SMuRF SNV and indel models were trained on matched tumor-

normal WGS data from a chronic lymphocytic leukemia (CLL) pa-

tient and a medulloblastoma (MB) patient, where the true somatic

mutations have been identified and curated by the International

Cancer Genome Consortium (ICGC) (Alioto et al., 2015). The train-

ing data was augmented to expose the model to additional variation

in sequencing coverage, tumor purity and tumor/normal coverage

Recall

Pr
ec

is
io

n

SNVA

Recall

Pr
ec

is
io

n

INDELB

Medulloblastoma

70%

30%70%

30%

Chronic Lymphocytic Leukemia

0.840.82
0.89

0.82

0.00

0.25

0.50

0.75

1.00

SMuRF SomaticSeq

F1
 s

co
re

SNV

0.650.63
0.73

0.48

0.00

0.25

0.50

0.75

1.00

SMuRF SomaticSeq

F1
 s

co
re

Comparison
Train on CLL− Test on MBL
Train on MBL− Test on CLL

INDEL

C D

E F

36               69              34               64             152 

      no. of mutations in each bin

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9

SMuRF
4 callers

≥ 3 callers

≥ 2 callers

≥ 1 caller

MuTect2

FreeBayes

VarDict

VarScan

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f=0.1

f=0.2

f=0.3

f=0.4

f=0.5

f=0.6

f=0.7

f=0.8

f=0.9SMuRF4 callers

≥ 3 callers

≥ 2 callers

≥ 1 caller

MuTect2

FreeBayes
VarDict
VarScan

0.00

0.25

0.50

0.75

1.00

<0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5
Variant Allele Frequency

F1
 S

co
re

Caller
SMuRF
Mutect2
Varscan
Vardict
Freebayes

Fig. 1. Performance of SMuRF. Precision-recall profiles for individual somatic mutation callers and SMuRF evaluated on (A) SNV and (B) indels using 20% with-

held test data. Curves show the performance of the individual algorithms under different variant score thresholds (MuTect2 tumor log-odds score, Freebayes log-

odds score, VarDict SSF score, VarScan SSC score and SMuRF confidence score). Solid points refer to the default performance of the caller in the bcbio-nextgen

workflow. Black solid points denote the accuracy of calls identified by the majority-voting scheme in bcbio-nextgen (at least 1, 2, 3 or 4 callers). The grey contours

indicate F1 scores as a function of recall and precision. (C) Accuracy of SMuRF and individual callers as a function of somatic variant allele frequency in the test

set; F1 scores evaluated for each variant allele frequency bin. (D–F) Evaluation of SMuRF and SomaticSeq performance when trained and tested across different

cancer types. (D) Models were trained on 70% of CLL data and tested on 30% of MB data (and vice versa). F1 scores were recorded for SMuRF and SomaticSeq

SNV (E) and indel (F) predictions. Error bars represent the standard deviation of the mean across 10 random training/test data splits (same splits for both

methods)
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imbalance (Supplementary Fig. S1C and Supplementary Methods).

SMuRF was trained on 80% of the data, with 20% of the data with-

held as a test set. Highly predictive features were mostly somatic

variant scores provided by individual methods as well as mapping

and base quality estimates (Supplementary Table S1). SMuRF

achieved F1-scores of 0.88 and 0.74 for SNVs and indels, respective-

ly (Fig. 1A and B, Supplementary Tables S2 and S3 and

Supplementary Fig. S3 for SNV coding regions). Importantly,

SMuRF showed improved accuracy over the best mutation calling

submissions reported in the benchmark by Alioto et al. using the

same dataset (best reported F1-scores 0.79 and 0.65 for SNV and

indels, respectively) (Alioto et al., 2015). In our analysis, while indi-

vidual methods could recover most of the true SNVs, this came at

the cost of very low precision (<40% precision at 80% recall)

(Supplementary Table S2). In contrast, SMuRF could recover 86%

of the true SNVs (recall) at 92% precision on the withheld test set.

While a simple consensus approach using the intersection of individ-

ual methods performed well (F1¼0.82), SMuRF achieved markedly

higher recall (86% versus 74%) at a similar level of precision. All

methods, including SMuRF, were mostly robust when tested under

different levels of tumor purity (Supplementary Fig. S4). However,

SMuRF showed substantially improved accuracy at low somatic

variant allele frequencies (VAFs) as compared to individual methods

(Fig. 1C), which is particularly important in the setting of tumor het-

erogeneity inference (Shi et al., 2018). We further benchmarked

SMuRF SNV calling using independent data from the DREAM

Somatic Mutation Challenge where artificial tumor data has been

generated using an in-silico approach (Ewing et al., 2015). While the

performance of individual methods varied across these datasets,

SMuRF was highly accurate across all synthetic tumors (F1>0.8)

(Supplementary Fig. S5). Overall, these results support that SMuRF

is robust and can generalize to unseen data.

Analysis of indel prediction accuracy showed that individual mu-

tation callers could recover most of the true indels (64–94% recall),

but only at the cost of very low precision (<8%). Interestingly, simple

consensus approaches performed well for indel prediction (F1 0.46

and 0.66 for 3 and 4-caller consensus, respectively). However, while

consensus methods suffered from either low recall (0.55) or precision

(0.31), SMuRF obtained high indel prediction accuracy (F1¼0.74)

with both high recall (0.74) and precision (0.75) (Fig. 1B,

Supplementary Table S3). We also analyzed the extent that SMuRF

predicts the same somatic mutations in tumor samples profiled with

both (>200� coverage) WES and (<100� coverage) WGS. When

restricting analysis to variants in coding regions, SMuRF predicted

somatic SNVs and indels with comparable or higher concordance

than individual methods (Supplementary Figs S6 and S7).

Finally, we compared SMuRF to two existing machine learning-

based methods. The first was MutationSeq, a pre-trained ensemble

SNV caller (Ding et al., 2012), which achieved an F1-score of 0.68,

similar to the other individual SNV callers in our analysis

(Supplementary Fig. S8). Next, we compared the performance of

SomaticSeq (Fang et al., 2015), a method that required users to train

their own predictive model (see Supplementary Methods). The trained

SomaticSeq model had slightly increased test set prediction accuracy

over SMuRF for both SNV (0.90 versus 0.88) and indels (0.78 versus

0.75) (Supplementary Fig. S9B and C). We further evaluated how the

methods generalized when models were trained and tested across dif-

ferent tumor datasets and found that SomaticSeq showed greater test

accuracy variation (Fig. 1D–F). This was especially pronounced for

indel prediction, where the F1 accuracy of SomaticSeq varied from

0.48 to 0.73 (SMuRF 0.63–0.65) when tested on the MBL or CLL

sample, respectively. Furthermore, SomaticSeq used �24 h to predict

both SNVs and indels since it also computes auxiliary features from

the raw alignment data. In contrast, SMuRF depends only on VCF

files and predicts both SNVs and indels in �10 min (Supplementary

Fig. S9A). Overall, these results support that SMuRF is both accurate

and computationally efficient.

In summary, SMuRF is an accurate, portable and user-friendly

ensemble-based somatic mutation caller, which should benefit both

cancer genomics studies as well as clinical applications.
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