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Abstract
Summary: Plants and microbes produce numerous compounds to cope with their environments

but the biosynthetic pathways for most of these compounds have yet to be elucidated. Some bio-

synthetic pathways are encoded by enzymes collocated in the chromosome. To facilitate a more

comprehensive condition and tissue-specific expression analysis of metabolic gene clusters, we

developed METACLUSTER, a probabilistic framework for characterizing metabolic gene clusters

using context-specific gene expression information.

Availability and implementation: METACLUSTER is freely available at https://github.com/mbanf/

METACLUSTER.

Contact: michael@educatedguess.ai or srhee@carnegiescience.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plants and microbes produce a vast array of compounds called speci-

alized or secondary metabolites to cope with their environments but

the biosynthetic pathways for many of these compounds have not yet

been elucidated (Wink, 2010). Recent studies in plants (Chae et al.,

2014; Kautsar et al., 2017; Schlapfer et al., 2017; Töpfer et al., 2017;

Wisecaver et al., 2017) revealed a widespread occurrence of metabol-

ic enzymes that collocate in the chromosome. This offers an intriguing

possibility for uncovering new biosynthetic pathways encoded by

these metabolic gene clusters. To this end, co-expression analysis can

provide valuable insights as characterized specialized metabolic path-

ways and gene clusters show a high degree of co-expression among

their enzymes (Kautsar et al., 2017; Schlapfer et al., 2017; Yu et al.,

2016). Moreover, the expression patterns of experimentally charac-

terized gene clusters indicate spatial and condition specificity, such as

enzymatic genes of clusters synthesizing terpenes in Arabidopsis thali-

ana and Lotus japonicus (Field and Osbourn, 2008; Field et al., 2011;

Krokida et al., 2013; Yu et al., 2016). Thus, general co-expression

analyses integrating a diverse range of experimental treatments and

tissue types may mask condition- and tissue-specific co-expression

among enzymatic genes within a cluster (Obayashi et al., 2011).

Some cluster prediction algorithms, such as plantiSMASH, can com-

pute the co-expression for genes within predicted gene clusters, given

user-provided gene expression data (Kautsar et al., 2017). However,

these algorithms do not autonomously distinguish tissue types or ex-

perimental conditions if integrated gene expression datasets are used.

To facilitate a convenient and context-specific analysis of metabolic

gene clusters, we present a probabilistic framework, called

METACLUSTER, which automatically identifies conditions and tis-

sues associated with inferred gene clusters within a given differential

gene expression compendium. METACLUSTER can be applied to

any organism, gene cluster descriptions and differential gene expres-

sion datasets, thereby providing a valuable complementary frame-

work to augment gene cluster inference approaches, such as

PlantClusterFinder (Schlapfer et al., 2017), antiSMASH (Blin et al.,

2017), plantiSMASH (Kautsar et al., 2017) and PhytoClust (Töpfer

et al., 2017), with additional layers of automated high-resolution

functionality inference.
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2 Materials and methods

2.1 Pre-processing expression data and conditions
We constructed a differential gene expression dataset by retaining only

the data from transcriptome experiments with various treatments, and

computing the log of fold change difference between the mean of the

treatment and control sample replicates. We performed two sample t-

tests per gene on each of the experiments to evaluate the significance of

a gene’s differential expression between treatment and control, produc-

ing a ternary matrix D over all genes. For each gene and experimental

treatment, we defined an entry in D, and assigned 1, �1 or 0 for sig-

nificant (P<0.05) up-, down- or non-significant differential expres-

sion. Furthermore, we assigned all experimental treatments to

manually defined condition c and tissue t group combinations.

2.2 Co-differential expression and co-expression

analyses between pairs of genes using Monte Carlo

simulation
To generate a context-specific gene pair co-expression dataset, we first

built upon an idea originally proposed by Less et al. (2011) to identify

gene pairs with a statistically significant number of shared experimen-

tal treatments, within which both genes are differentially expressed

with similar directionality using the ternary matrix D. To determine a

significance threshold for this co-differential expression between a

cluster gene pairs, we calculated a distribution of co-differential ex-

pression of gene pairs by chance via shuffling all entries in D inde-

pendently per gene. We defined the significance threshold as the 95th

percentile of this distribution, corresponding to an empirical P-val-

ue�0.05. This way, we obtained: (i) gene pairs to be considered for

further metabolic gene cluster analysis, and (ii) the corresponding ex-

perimental treatments for further analysis and annotation. Next, we

computed the Pearson’s correlation coefficient (pcc) between all sig-

nificantly co-differentially expressed metabolic gene pairs in a gene

cluster, using only shared experimental treatments that were identified

per enzyme pair in the previous step. To define appropriate signifi-

cance thresholds, we established a by chance co-expression distribu-

tion, considering the numbers of shared condition-tissue sets between

enzymatic gene pairs. To this end, we identified the number of shared

condition-tissue sets per enzyme pair and computed Pearson’s correl-

ation coefficients of 100 randomly selected gene pairs from the same

selected experimental subsets. Based on these by chance correlation

values, we constructed a distribution Prandom(pcc). Again, we selected

the 95th percentile of this distribution, corresponding to an empirical

P-value�0.05, to infer significant condition-specific co-expression

between pairs of genes.

2.3 Context-specific transcriptional activity analysis of

gene clusters
We proposed a probabilistic framework for each gene cluster gc to

score its likelihood of being transcriptionally active in a given condi-

tion and tissue pair (c, t). Here, context-specific transcriptional ac-

tivity of a cluster gc is defined based on four types of transcriptional

behavior of the gc (see Supplementary Material): (i) co-differential

expression among gc’s genes, (ii) co-expression among gc’s genes,

(iii) the probability of gc to be transcriptionally active in condition c

and (iv) the probability of gc to be transcriptionally active in tissue t

given condition c. These four P-values were combined as pgc2ðc;tÞ
using Fisher’s method (Li et al., 2014). In case a tissue could not be

identified for condition c, we kept the cluster’s condition annotation

but referred to the tissue as non-specific, disregarding pgcðtjcÞ.
Finally, only the gene clusters gc with pgc2ðc;tÞ�0:05 were considered

transcriptionally active.
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Fig. 1. (A) The METACLUSTER framework. (B) Cluster diagram and transcriptional activity map of the arabidiol/baruol cluster (Yu et al., 2016) (C463 based on the

prediction in Schlapfer et al., 2017). Colors indicate the inferred P-value of the cluster to be transcriptionally active per condition and tissue. Gray tiles indicate

condition-tissue combinations that are missing in the differential expression dataset. (C) Transcriptional activity map of the 317 inferred context-specific gene

clusters. Color values denote the number of the transcriptionally active gene clusters per condition-tissue. Black tiles indicate condition-tissue combinations with

no inferred transcriptionally active clusters
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3 Results and discussion

To demonstrate the utility of METACLUSTER, we performed a

context-specific expression analysis of metabolic gene cluster predic-

tions acquired from (Schlapfer et al., 2017). We used a recently com-

piled large-scale gene expression dataset by He et al. (2016) with

6057 expression profiles, covering 79.7% of the A.thaliana ecotype

Columbia genome. We retained 435 experimental treatments repre-

sented by 1825 expression profiles measuring gene expression

responses of wild-type plants to treatment and control conditions.

All 435 experimental treatments were assigned to 27 manually cura-

ted conditions and 9 tissues (Fig. 1, see Supplementary Material).

Two sample t-tests between treated and untreated samples produced

the differential expression matrix D containing 435 values per gene.

We predicted 317 (out of 674) metabolic gene clusters with at least

3 co-differentially expressed enzymes to be transcriptionally active

(Fig. 1). In total, 1380 metabolic enzymes in 317 metabolic gene

clusters were predicted to be transcriptionally active in specific con-

ditions and tissues. We observed a significant overlap with the ‘high-

confidence’ gene clusters, which were previously supported by the

integrated co-expression analysis in Schlapfer et al. (2017) (fold

change: 1.4, P-value: 0.009, hyper-geometric test). In addition, our

set of enzymes included 371 signature and tailoring enzymes, which

was significantly higher compared with the gene set in Schlapfer

et al. (2017) (fold change 1.28, P-value: 0.0006, fisher’s exact test).

Furthermore, we recovered all experimentally characterized terpene

biosynthetic clusters in Arabidopsis, i.e. the thalianol (Field and

Osbourn, 2008), marneral (Field et al., 2011), tirucalla-7, 24-dien-

3beta-ol (Boutanaev et al., 2015) and the arabidiol cluster (Yu et al.,

2016). These were clusters C641, C628, C615 and C463 in

(Schlapfer et al., 2017). Our analysis also revealed that these clusters

are highly transcriptionally active in roots, which is consistent with

the expression patterns revealed by functional characterization of

these clusters and compounds (Field and Osbourn, 2008; Go et al.,

2012). Furthermore, they are predicted to be transcriptionally active

in abiotic stress, hormone related conditions or pesticide treatments

corroborating the suggestions made by (Chu et al., 2011; de Silva

et al., 2011; Smith et al., 2018). The inferred transcriptional activity

in response to pesticide treatments is of particular interest, since bio-

pesticides based on plant extracts are considered as promising, nat-

ural alternatives to conventional synthetic pesticides (Smith et al.,

2018). Given its utility, we anticipate METACLUSTER to help

guide the experimental validation of gene cluster predictions in

order to further our understanding of the chemical diversity of

Nature’s pharmacopeia.
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