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Abstract

Motivation: Patient stratification methods are key to the vision of precision medicine. Here, we

consider transcriptional data to segment the patient population into subsets relevant to a given

phenotype. Whereas most existing patient stratification methods focus either on predictive per-

formance or interpretable features, we developed a method striking a balance between these two

important goals.

Results: We introduce a Bayesian method called SUBSTRA that uses regularized biclustering to

identify patient subtypes and interpretable subtype-specific transcript clusters. The method itera-

tively re-weights feature importance to optimize phenotype prediction performance by producing

more phenotype-relevant patient subtypes. We investigate the performance of SUBSTRA in finding

relevant features using simulated data and successfully benchmark it against state-of-the-art un-

supervised stratification methods and supervised alternatives. Moreover, SUBSTRA achieves pre-

dictive performance competitive with the supervised benchmark methods and provides interpret-

able transcriptional features in diverse biological settings, such as drug response prediction,

cancer diagnosis, or kidney transplant rejection.

Availability and implementation: The R code of SUBSTRA is available at https://github.com/

sahandk/SUBSTRA.

Contact: ester@cs.sfu.ca or daniel.ziemek@pfizer.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One important challenge for precision medicine is to improve patient

treatment based on molecular markers while simultaneously ensuring in-

terpretability of the resulting signatures. Transcriptional data is a popular

and widely available data type to reveal underlying disease mechanisms

and derive predictive or diagnostic signatures. In general, however, most

of the many thousands of measured transcripts will not be related to the

desired phenotype directly but rather fulfill other biological functions. As

the number of samples is generally small compared to the number of

transcript, it is difficult to distinguish irrelevant measurements from rele-

vant ones. This problem has led to irreproducible and noisy predictors in

the past. Consequently, a key task is to reliably identify and weight tran-

scriptional features based on their relevance to the target phenotype and

use these weights for patient stratification in a predictive setting.
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Some methods tackle this problem by incorporating patient

strata into phenotype prediction. Among recent developments,

Ammaduddin et al. (2016) provided a kernelized Bayesian matrix

factorization method for drug response prediction. They exploited

similarities between cell line expression profiles, which were intro-

duced to the model through kernels. The kernels were computed

based on data views of transcriptomic profiles, where each view cor-

responded to a pathway. Gligorijevic et al. (2016) proposed a

method for integrating somatic mutation profiles and drug-target

interaction data using matrix tri-factorization regularized by tran-

script interaction and drug similarity data. This method discerns

patient strata and performs driver gene prediction and drug

re-purposing based on the identified strata. Both of these methods

leverage the data from multiple phenotypes and perform matrix fac-

torization on them. However, this requires information for several

related phenotypes (e.g. response to several drugs) which is not

available in all settings (e.g. prediction of transplant rejection).

On the other hand, there are methods that introduce phenotype

data into the patient stratification process. Most of these methods

are designed for a single phenotype. Ross et al. (2017) integrated dis-

ease progression trajectory phenotype data captured from images

with clinical data for better detection of disease subtypes. In another

work, Ahmad and Fröhlich (2017) incorporated survival data into

patient stratification to improve the separability of disease subtypes

with regard to their survival curves. They introduced a novel

Hierarchical Bayesian Graphical Model, termed Survival-based

Bayesian Clustering, which combines a Dirichlet Process Gaussian

Mixture Model with an Accelerated Failure Time (AFT) model to

simultaneously cluster heterogeneous genomic, transcriptomic and

time-to-event data. Their specific assumptions (e.g. AFT model) de-

crease the generality of these two methods. Furthermore, these

methods detect subtype-specific rather than global feature weights.

This is useful when there are confounding features that are not

observed in the data. However, it increases the number of inferred

variables and might result in over-fitting. Finally, these methods use

clustering approaches instead of biclustering. However, biclustering

is more appropriate for detecting local patterns in omics data

(Pontes et al., 2015).

To fill in the mentioned gaps, we propose a novel general

Bayesian model, called SUBSTRA. SUBSTRA biclusters the tran-

scriptomic data and one phenotype simultaneously to find subtypes

relevant to the given phenotype. The underlying assumptions are:

1. Patients of each subtype have similar phenotypes (phenotype

mislabeling is handled through a penalty). This assumption leads

to phenotype-relevant subtypes and transcript weights.

2. Each subtype is associated with a local expression pattern across

a subset of transcripts.

3. These patterns are unique for each subtype but might be noisy

and based on only a few transcripts. Up-weighting relevant tran-

scripts can boost the signal for the biclustering and enables the

identification of the correct subtype structure.

To the best of our knowledge, SUBSTRA is the only method con-

sidering all of the above assumptions in one method. Our contribu-

tions can be summarized as follows:

• Producing phenotype-relevant subtypes: SUBSTRA includes

phenotype data in the patient stratification process to identify

subtypes with distinct phenotype-relevant mechanisms.
• Producing phenotype-relevant transcript weights and clusters:

The transcript weights are learned using a Gradient Descent

(GD) approach minimizing the phenotype prediction error. The

transcript clusters are dependent to the phenotype-relevant sub-

types and, consequently, to the phenotypes.
• Noise handling: The probabilistic Bayesian approach captures

data uncertainty by estimating local distribution parameters.
• Providing good interpretability-accuracy trade-off for phenotype

prediction: SUBSTRA learns a biclustering model and feature

weights that simultaneously optimize two objectives: (i) the pos-

terior probability of biclustering variables given the data and the

transcript weights, and (ii) the prediction error given the data

and the biclustering variables. The former objective corresponds

to interpretability and the latter to accuracy.

2 Materials and methods

SUBSTRA performs two tasks in an iterative way: biclustering and

feature weighting. At each iteration, biclustering produces patient

strata as well as transcript clusters. The feature weighting task lever-

ages the phenotype data to weight the transcripts according to their

relevance to the phenotype. The relevance is identified as the contri-

bution of the feature to prediction accuracy. The weights are then

used for biclustering in the next iteration. The two tasks are elabo-

rated in the following sections.

2.1 Biclustering
Our method extends the biclustering approach of

Khakabimamaghani and Ester (2016), called B2PS (Bayesian

Biclustering for Patient Stratification). Similar to that method, we

assume that (i) there is a cluster variable per patient 1 � i � n indi-

cated by cp
i , (ii) there is a cluster variable per transcript 1 � j � m

indicated by ct
j , (iii) the numbers of patient and transcript clusters

are not necessarily equal, (iv) the clustering is exhaustive and exclu-

sive (i.e. each patient/transcript belongs to exactly one cluster) and

(v) variance of the values inside a bicluster is minimal (i.e. biclusters

with constant values).

To introduce supervision to patient stratification, we extend the

B2PS model by two random variables: phenotype data and tran-

script weights. All model variables are connected to and exert influ-

ence on each other in the resulting model shown in Figure 1. These

variables and their dependencies are elaborated in the next section.

In addition, unlike B2PS which needed an upper bound for the num-

ber of clusters as input, we use a non-parametric Bayesian solution

based on Chinese Restaurant Process (CPR) for inferring the natural

number of patient and transcript clusters automatically.

Fig. 1. The probabilistic graphical model of SUBSTRA. The observed varia-

bles are shown with shaded circles and hyper-parameters are indicated by

solid small circles. Other variables and parameters are shown with white

circles. Please refer to the text for detailed explanation
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The probabilistic graphical model of SUBSTRA is shown in

Figure 1. All of the distributions and variables of this model are

described in detail in Table 1. The central assumption is that the

expression level of transcript j of patient i, which is indicated by eij,

follows a probability distribution with parameter hðcp
i
;ce

j
Þ associated

to bicluster ðcp
i ; c

t
jÞ. Depending on whether continuous or discrete

expression data is considered, the probability distribution of vari-

able eij can be Gaussian or categorical. We choose to use categorical

expression data for two reasons: (i) using categorical data, modeled

through a multi-nomial distribution, instead of continuous data,

modeled through a Gaussian distribution, reduces the computation-

al costs considerably due to simpler functional forms and parame-

ters, and (ii) discrete expression data have been shown to improve

the prediction accuracy and generality of the trained model (e.g.

applicability to different array platforms) (Helman et al., 2004; Jung

et al., 2015). We assume binary expression values where 0 indicates

low and 1 indicates high expression levels. So, eij follows a Bernoulli

distribution in SUBSTRA.

2.2 Feature weighting
In addition to the transcriptomic data, SUBSTRA incorporates the

following information:

• Phenotype information: Phenotype of patient i shown by fi. This

information can be drug response, treatment effect, disease sta-

tus, survival time, genetic risk score, etc.
• Transcript weights: A vector w ¼ ½wj� (1 � j � m) of real values

assigned to transcripts 1 to j. To compensate for the low influ-

ence of a single phenotype compared to the high dimensionality

of the transcriptomic data, SUBSTRA propagates the effect of

phenotype using phenotype-relevant transcript weights. Each

weight is interpreted as the number of times that the correspond-

ing transcript is considered during the biclustering. Thus, the

higher the weight of a transcript, the stronger its effect on the

biclustering. This variable is considered observed (shaded) in

Figure 1, because, unlike the model latent variables that are

inferred based on the joint probability of the model, we learn the

transcript weights using a different objective function (i.e. predic-

tion error) based on a Gradient Descent approach. More details

are provided in Section 2.3.

As shown in Figure 1 and Table 1, phenotype of patient i indi-

cated by fi, follows a subtype-specific distribution with parameter

wc
p
i
. Furthermore, the transcript weights wj influence the biclustering

variables through expression variable eij. The information flow be-

tween the transcript weights and phenotypes are through eij and cp
i

variables (this is possible because eij is observed and cp
i is latent). We

use this information flow to adjust the transcript weights as

described in Section 2.3. Without loss of generality, we assume that

phenotype is a binary variable following a Bernoulli distribution in

this paper. In practice, any distribution could be used based on the

type of phenotype. A sample input for SUBSTRA and the expected

output is shown in Figure 2.

2.3 Parameter learning and inference
Parameter learning and inference are performed via Gibbs sampling.

The sampler infers the latent variables and learns the transcript

weights simultaneously. The algorithm consists of three below phases.

2.3.1 Phase 0 (Initialization)

The latent variables of SUBSTRA (i.e. patient clusters cp
i and transcript

clusters ct
j ) are initialized randomly, such that two patients with differ-

ent phenotypes are not assigned to the same cluster. This constraint sat-

isfies the Assumption 3 stated in Section 1 during the initialization.

However, the strictness of the constraint during the sampling can be

controlled by the hyper-parameter b. If the mislabeling rate is low in

the observed phenotypes, we should set the hyper-parameter b to a

small value to make this constraint stricter. Otherwise, a larger b is

used. The transcript weights are all initialized equal to l, which is an

input and indicates the magnitude of weights. If mu is large, the algo-

rithm will be more sensitive to the values of transcript expressions and

will fit faster to the data, increasing the probability of over-fitting or

local optima. This works for the cases with strong relevant signals. On

the other hand, when there are strong irrelevant signals in the data, a

smaller l is preferred as it provides more flexibility and increases the

exploration space. We use cross-validation to tune this value. The value

that produces more accurate phenotype prediction is selected, because

higher accuracy implies more relevant biclustering and weighting.

2.3.2 Phase I

In this step, only the latent variables are sampled and the transcript

weights are fixed. This is required since the initial random values of

parameters can be misleading if used for adjusting the weights. In

this phase, the Gibbs sampler uses the conditional probabilities of

the latent variables. The conditional probabilities are computed

based on the joint probability, which factorizes as below:

Pðe;w; f ; cp; ct; h;wjap; at;b;GÞ
¼ PðcpjapÞ � PðctjatÞ
�Pðejh; cp; ct;wÞPðhjGÞ � Pðf jw; cpÞPðwjbÞ

(1)

Considering this dependency structure and the distributions

given in Table 1, the conditional probabilities of latent variables are

computed as below:

Table 1. Variables and probabilistic relationships in the SUBSTRA model

Type Name Description Distribution

Observed variables eij Expression status of transcript j of patient i eij � Bernoulliðhc
p
i
;ct

j
Þ

fi Phenotype of patient i fi � Categoricalðwcp
i
Þ

wj Weight of transcript j NA

Hyper-parameters ap Parameter of prior CRP for patient clusters ap ¼ 1

at Parameter of prior CRP for transcript clusters at ¼ 1

G Parameter for prior Beta base distribution of h G ¼ 1

b Parameter for the prior Beta base distributions of w Described in Section 2.3.1

Parameters hk;l Probability distribution of the values inside bicluster (k, l) hk;l � BetaðGÞ
wk Probability distribution of the values of the phenotypes of patient cluster k wk � DirichletðbÞ

Latent variables cp
i Cluster index for ith patient cp

i � CRPðapÞ
ct

j Cluster index for jth transcript ct
j � CRPðatÞ
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Pðcp
i ¼ qjcp

�i; ei:;w; fi; c
t; h;w; apÞ

/ Pðcp
i ¼ qjcp

�i; a
pÞPðfijw; cp

i ¼ qÞPðei:jh; cp
i ¼ q; ct;wÞ

¼ pðqjcp
�i; a

pÞ � wq½fi� �
Ym
j¼1

ðhcp
i
;ct

j
½eij�Þwj

(2)

Pðct
j ¼ rjct

�j; e:j;w; c
p; h; atÞ

/ Pðct
j ¼ rjct

�j; a
tÞPðe:jjh; ct

j ¼ r; cp;wÞ

¼ pðrjct
�j; a

tÞ �
Yn
i¼1

hc
p
i
;ct

j
½eij�

(3)

where pðqjcp
�i; a

pÞ is the CRP probability and is defined as below:

pðqjcp
�i; a

pÞ ¼

ap

n� 1þ ap
if x is an empty cluster

jfdjcp
d ¼ q ^ d 6¼ igj
n� 1þ ap

otherwise

8>>><
>>>:

(4)

m and n are respectively the numbers of transcripts and patients,

wq½fi� ¼ wq if fi ¼ 1 and wq½fi� ¼ 1� wq if fi ¼ 0, and:

hcp
i
;ct

j
½eij� ¼

hcp
i
;ct

j
if eij ¼ 1

1� hc
p
i
;ct

j
otherwise

8<
: (5)

We use the predictive posterior distribution parameters to esti-

mate the model parameters h and w of equations 2 and 3 as follows:

hq;r ¼
no: of 10s in bicluster ðq; rÞ þG=2

no: of data points in bicluster ðq; rÞ þG

wq ¼
no: of patients in cluster q with phenotype 1þ b=2

no: of patients in cluster qþ b

During Phase I, we repeat the following for each cp
i :

1. Estimate the parameters based on the current value of the model

variables excluding ei:, fi and cp
i

2. Use equation 2 to sample cp
i

Similarly for each ct
j , we:

1. Estimate the parameters based on the current value of the model

variables excluding e:j and ct
j

2. Use equation 3 to sample ct
j

At each Gibbs sampling round we sample all latent variables as

described above. As we use CRP, we consider the possibility of

belonging to an empty cluster when sampling each latent variables

for patients and transcripts. The sampling round is repeated until

convergence or for a predefined number of iterations. The conver-

gence is measured based on the Rand index similarity between the

biclustering in two consecutive iterations, which is achieved when

Rand index > 0.95 for patient and transcript clustering. Then we

move to Phase II.

2.3.3 Phase II

In this phase, we adjust the transcript weights and simultaneously

modify the biclustering structure. Since the weights should indicate

the relevance of a transcript to the phenotype, we use the phenotype

prediction error, which is a function of the weights, as the objective

function for weight adjustment. The input to this phase is the latent

variable values at the end of the previous phase. In addition to the

steps in Phase I, we adjust transcript weights before sampling each

cp
i in this phase following the below steps:

1. Estimate the parameters based on the current value of the model

variables except ei:, fi and cp
i

2. Adjust the weights to reduce the phenotype prediction error for

patient i

3. Use equation 2 to sample cp
i

The weights are adjusted such that the objective function

defined as the squared prediction error ½1� pðfi ¼ xij . . .Þ�2 (xi is the

true value of fi) is minimized. Because the cluster assignment of

patient i is unknown at this stage (i.e. we are about to sample it in

step 3) and according to the information flow in the model (Fig. 1),

we have:

Fig. 2. Input and output: The matrix on the left is reordered into the matrix on the right by SUBSTRA. The patients and transcripts are assigned to appropriate

clusters and the transcript weights indicate the significance of features with regard to the phenotype. The patient and transcript clusters are formed in a way that

the values inside biclusters are as consistent as possible, especially for those biclusters that are related to transcripts with higher weights. High-weight transcripts

are those that form a biclustering more consistent with the phenotypes. For example, using the combination of transcripts in TC3 and TC4, one can produce the

four patient clusters with homogeneous phenotypes (i.e. PC1 to PC4) as shown in the figure. So, the TC3 and TC4 transcripts are assigned high weights. On the

other hand, t2 and t6 cannot form a consistent patient clustering when used alone or in combination with other transcripts and get low weights. Although in this

sample the number of patient clusters is equal to the number of gene clusters, this is not a constraint in our algorithm
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pðfi ¼ xij . . .Þ

¼ pðfi ¼ xijw; ei:; c
p
�i; c

t;w; h; apÞ

¼
X
q2O

pðfi ¼ xi; c
p
i ¼ qjw; ei:; c

p
�i; c

t;w; h; apÞ

¼
X
q2O

pðfi ¼ xijcp
i ¼ q;wÞpðcp

i ¼ qj; cp
�i; ei:; c

t;w; h; apÞ

/
X
q2O

pðfi ¼ xijcp
i ¼ q;wÞpðcp

i ¼ q; cp
�i; ei:; c

t;w; h; apÞ

(6)

where O is the set of occupied patient clusters. The second term in

the last summation can be factorized based on the model (very simi-

lar to Equation 2). If we show the last summation above, which is a

proportional value, by p̂ðfi ¼ xij . . .Þ, then we have:

pðfi ¼ xij . . .Þ ¼ p̂ðfi ¼ xij . . .ÞP
y p̂ðfi ¼ yj . . .Þ (7)

where y indicates one of the values that the patient phenotype can

take. Then the squared error of this probability value is used as the

objective function. As in a Gradient Descent approach, we use the

slope of this function to adjust the weights. So, the weights are

updated as follows:

wj ¼ wj þ � � 2
@pðfi ¼ xij . . .Þ

@wj
1� pðfi ¼ xij . . .Þ�
�

(8)

where � is the learning rate and we set � ¼ l, the magnitude of

weights, to maintain the magnitude of weights. The derivative term

in the above equation is computed as below:

@pðfi ¼ xij . . .Þ
@wj

¼
@ p̂ðfi¼xi j...ÞP

y
p̂ðfi¼yj...Þ

@wj
(9)

Let us define py ¼ p̂ðfi ¼ yj . . .Þ. Then:

@pðfi ¼ yj . . .Þ
@wj

¼
@

pyP
y

py

@wj
¼
ð
P

y pyÞ @py

@wj
� py

@ð
P

y
pyÞ

@wj

ð
P

y pyÞ2
(10)

So, we need to compute
@py

@wj
for every y. We have:

@py

@wj
¼
@
P

q2O pðfi ¼ yjcp
i ¼ q;wÞpðcp

i ¼ q; cp
�i; ei:; c

t;w; h; apÞ
@wj

¼
X
q2O

pðfi ¼ yjcp
i ¼ q;wÞ � @ pðcp

i ¼ q; cp
�i; ei:; c

t;w; h; apÞ
@wj

¼
X
q2O

wq½y� � pðqjcp
�i; a

pÞ � @

Ym
l¼1

ðhq;ct
l
½eil�Þwl

@wj

¼
X
q2O

wq½y� �
jfdjcp

d ¼ q ^ d 6¼ igj
n� 1þ ap

�logðhq;ct
j
Þ
Ym
l¼1

ðhq;ct
l
½eil�Þwl

(11)

Computing the left-hand-side of Equation 10 based on the

Equation 11 and then using it in Equation 8 for computing the new

weights is straight-forward. The new weights are accepted only if

they reduce the squared error. Otherwise, the algorithm continues

with the previous weights and goes to the next patient.

In this phase, a certain number of iterations is executed and the

model performance in terms of the Area Under the Receiver

Operating Characteristic Curve (AUC) over the training set is moni-

tored. Finally, the model that corresponds to the iteration with the

highest AUC is selected. Ties are broken with respect to the Mean

Squared Error (MSE) of the predicted probabilities. Although the

training set AUC and MSE are used for model selection, over-fitting

is avoided because the data corresponding to patient i is not included

in updating the weights for that patient.

3 Experiments and results

In this section we describe the experiments performed for testing the

accuracy of SUBSTRA. The method produces two types of outputs:

predictive outputs (predicted phenotypes) and descriptive outputs

(i.e. patient strata, transcript clusters and transcript weights).

We benchmark against other methods with respect to these outputs.

3.1 Predictive performance evaluation
To investigate the predictive ability of SUBSTRA, it is benchmarked

against the following methods:

• Support Vector Machine (SVM): A well-known state-of-the-art

prediction method with high accuracy. The implementation of

SVM in R package ‘e1071’ is used.
• Regularized Logistic Regression (LR): A popular prediction

method that assigns model-based (not ad-hoc) weights to the pre-

dictor features. We used the Elastic Net Generalized Linear

Models implementation in R package ‘caret’.
• Predictive Chain (PCH): This method is evaluated as a simple

baseline method that performs biclustering and prediction in two

separate steps, rather than in one integrated step as SUBSTRA

does. It first applies NMF (Lee and Seung, 1999) (a popular

biclustering method) for deriving a low-rank representation of

the patients and then trains the LR model on that representation.

We investigate whether using NMF output will have positive or

negative effects on the prediction accuracy of LR.

The Area Under the Receiver Operating Characterisitics (AUC)

metric is computed to measure the prediction accuracy of all three

methods through nested CV and with several executions to accom-

modate for random initialization (see Supplementary Section C for

more details).

3.2 Descriptive performance evaluation
We benchmarked the biclustering accuracy of SUBSTRA against simi-

lar biclustering methods that do not consider phenotype data (i.e. un-

supervised patient stratification). SUBSTRA performs exhaustive and

exclusive biclustering with constant values inside the biclusters. Based

on a review over 47 biclustering algorithms for gene expression data

provided by Pontes et al. (2015), we found HARP (Yip et al., 2004)

to be the most consistent method with these features. Two other com-

parable methods not listed in Pontes et al. (2015), include B2PS

(Khakabimamaghani and Ester, 2016), which is an exhaustive,

exclusive and constant value biclustering method, and NMF.

As stated in Section 1, many existing supervised stratification

methods either leverage several phenotypes or make specific

assumptions for compound phenotypes, e.g. assume survival data.

This makes it hard to compare SUBSTRA with those methods.

Therefore, we define an additional simple baseline method that first

identifies feature weights using LR. Then, the feature weights are

given to weighted NMF (wNMF) (Wang et al., 2006) for bicluster-

ing. We call this method Descriptive Chain (DCH). This is to investi-

gate the influence of the provided weights on the biclustering

accuracy, as well as comparison against SUBSTRA’s biclustering.

SUBSTRA 3267

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3263/5320557 by guest on 18 April 2024

Deleted Text: R
Deleted Text: <italic>i.e.</italic>,
Deleted Text: ,
Deleted Text: P
Deleted Text: E
Deleted Text: &hx2019;e1071&hx2019; 
Deleted Text: &hx2019;caret&hx2019;
Deleted Text: P
Deleted Text: E
Deleted Text: i.e.,
Deleted Text: (
Deleted Text: ,


We compare SUBSTRA against HARP, B2PS, NMF and DCH in

terms of the following metrics:

• Patient Strata: Whenever the ground-truth patient clusters are

available, we use Rand index to measure the patient clustering

accuracy.
• Transcript Clustering: Transcripts fall into two categories of rele-

vant (signal) and irrelevant (noise) to the phenotype. We only

focus on the clustering results for the relevant transcripts. Two

metrics, cluster purity and class purity are used for evaluation.

Clusters refer to the outputs of the methods and classes refer to

the ground-truth transcript clusters. Class purity (CSP) measures

how well the true signal clusters are separated from each other

by the method. Cluster purity (CLP) indicates how much of the

signal transcripts are captured in the method clusters. Together,

these two metrics reflect how well the method has been able to

capture the true signal clusters. More details are provided in

Supplementary Section D. For HARP, we note that it is only ex-

clusive with regard to patient clustering and might produce over-

lapping transcript clusters. Thus, only CLP can be reported for

this method.
• Transcript Weights: Pearson correlation coefficient between the

ground-truth weights and method weights are reported when the

ground-truth information is available. When unavailable, GO

term enrichment analysis of the top ranked genes is used as

described later.

3.3 Experiments with synthetic data
We used synthetic data to have access to the ground-truth informa-

tion to benchmark SUBSTRA for detecting the true patient and tran-

script clusters, true feature weights and accurate prediction.

Different synthetic datasets were generated considering the assump-

tions mentioned in Section 1. In separate simulations, we tested dif-

ferent types of relations between the transcript clusters and the

phenotype: AND, OR and XOR. For this purpose, we assumed that

the expression values of two transcript clusters A and B are corre-

lated with the phenotype through the mentioned relations. As an ex-

ample, for an XOR relationship, the value of phenotype will be 1 if

and only if the transcripts of only one of the clusters A or B are

expressed.

Each dataset consists of 200 patients constituting 4 patient clus-

ters with four different possible combinations of parameters for sig-

nals A and B (i.e. A high-B high, A high-B low, A low-B high and A

low-B low). Each of these two clusters includes 10 transcripts.

Bicluster parameters larger than 0.5 indicate high expression and vice

versa. A third transcript cluster is included as the noise, with param-

eter equal to 0.5 across different patient clusters (i.e. biclusters with

Bernoulli distribution with parameter 0.5). The values of parameters

for different settings are provided in Supplementary Section A. The

performance of the three methods are compared for different datasets

with 90, 95 or 99% of transcripts belonging to the noise cluster.

These datasets will respectively contain 200, 400 and 2000 transcripts

20 of which are relevant signals and the rest are noise.

To avoid biases towards our own assumptions, we include an-

other synthetic microarray dataset introduced in Abu-Jamous et al.

(2015). This dataset, to which we refer as UNCLES (the title of the

paper), consists of two patient classes (positive and negative) and

three gene clusters. The gene cluster C1 (75 genes) includes genes con-

sistently co-expressed for all patients, and the gene cluster C2 (85

genes) includes genes consistently co-expressed only in the positive

class while being poorly co-expressed in the negative class. Among

the two clusters, C1 is more correlated with the patient classes as it

has in general higher expression in the positive class and lower expres-

sion in the negative class. Accordingly, although we evaluate the

methods for detecting the two clusters, we only consider C1 when

evaluating the capabilities of the methods in up-weighting the

phenotype-relevant genes. The rest of the genes (1040 genes) are

poorly co-expressed everywhere and are considered noise. The dataset

contains 42 positive and 40 negative patients. The UNCLES dataset

contains continuous data. We use the original continuous as well as

the discretized data. To monitor the sensitivity to different discret-

ization methods, three different approaches, namely Equal-Frequency

Binning (EFB), Equal-Width Binning (EWB) and k-means (KM), are

used for discretization as described in Jung et al. (2015).

Table 2 shows the predictive and descriptive results for different

simulation settings. Among the methods, HARP and NMF has the

lowest performance for most of the datasets with respect to patient

stratification. Adding supervision to NMF as in DCH improves the

results in high noise datasets (i.e. AND and OR 99%), however, it

does not have significant effects on the other cases. B2PS and

SUBSTRA perform relatively better than other methods both in our

simulations and UNCLES dataset. SUBSTRA outperforms B2PS con-

siderably (difference larger than 0.05) in high noise datasets as well as

XOR relationship, which is more complex than AND and OR.

With respect to transcript clustering, HARP and NMF has simi-

larly lower CLP in most of the cases. The reason is that both meth-

ods detect uniformly large and impure clusters. On the other hand,

NMF has superior ability in separating the signal clusters from each

other compared to DCH. Although, adding supervision in DCH

improves cluster purity (CLP) for some low-noise datasets compared

to solo NMF, it increases the chance of mixing the true signal clus-

ters in a single transcript cluster (lower CSP). Top methods with re-

spect to transcript clustering are B2PS and SUBSTRA, with

SUBSTRA being superior in certain cases (high noise AND and EFB

UNCLES). This indicates that supervision as in SUBSTRA improves

the clustering quality.

Table 2, also, shows the transcript weighting results for

SUBSTRA and DCH. The values indicate the correlation between

the method and the ground-truth weights. The ground-truth weights

are produced by assigning weight 1 to the signal transcripts (mem-

bers of A, B and C1 clusters) and 0 to the other transcripts. Based on

the results, SUBSTRA produces consistently more correlated weights

for the synthetic data than DCH, which uses LR for weighting. This

can be associated to the probabilistic nature of the method and its

ability to capture more complex relationships like XOR, which are

not detectable by linear methods such as LR (note the low correl-

ation values of DCH for XOR and UNCLES). Transcript clustering

in SUBSTRA can increase the weight consistency inside the tran-

script clusters beside improving the accuracy of the weights due to

inter-cluster discrepancies. The descriptive results are visualized in

Supplementary Section A.

Regarding the AUC measures in Table 2, SUBSTRA, also, out-

performs the other predictive benchmark methods in most of the

experiments and is more robust to the noise levels and the task com-

plexity. On the other hand, PCH and LR are sensitive to noise and

the type of discretization and SVM is sensitive to noise but robust to

the discretization method. Binary data, compared to continuous

data, is associated with better performance except for the predictive

accuracy of LR.

3.4 Experiments with real data
We also tested SUBSTRA with real data. These datasets are listed

in Table 3. The Kidney 1 and 2 datasets are taken from studies
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Khatri et al. (2013) and Einecke et al. (2010). They include baseline

gene expression profiles for patients before kidney transplantation

and whether the patient rejected the transplantation (phenotype).

We also used a dataset from the Cancer Cell Line Encyclopedia

(CCLE) (Barretina et al., 2012), which provides a collection of gen-

omic information (including baseline transcriptomic data) and

pharmacological profiles (including response to various drugs for

several cell lines derived from different tissues). A subset of cell lines

which had information about their response to AZD6244 (a drug

that targets MEK) was selected from this dataset. Response to the

drug was recorded in terms of IC50. We used a cut-off value of 7 to

discretize IC50 values to 0 (not responding) and 1 (responding).

Two datasets, namely Lung Cancer from Gordon et al. (2002) and

Multiple Myeloma from Tian et al. (2003), were also used from the

R package ‘datamicroarray’ (Ramey, 2011). The package is a collec-

tion of microarray datasets with phenotypes. They are from differ-

ent studies and can be used for machine learning.

All datasets are pre-processed. For each dataset, the first 5000

features with the highest coefficient of variation are selected. Then,

the three mentioned discretization methods are used to binarize the

continuous expression data into 0 (low) and 1 (high). These methods

are non-parametric and does not depend on any threshold.

Continuous data is also considered where applicable.

Since no ground-truth data are available about patient strata and

transcript clusters, we only benchmarked the predictive performance

and transcript weights of SUBSTRA against the comparison part-

ners. All methods were executed on the same cross-validation folds

and experiments were repeated and averaged to accommodate for

the random initialization effects. More details are provided in

Supplementary Section C.

Figure 3 shows the predictive results for the above datasets.

According to these results, all methods have in general similar pre-

dictive performance when considering the best performing configur-

ation (i.e. discretization). Looking closer LR has a slightly better

performance than the others in three out of five experiments.

SUBSTRA and SVM are performing similar taking all experiments

into account. SUBSTRA produces more stable results than the other

methods as reflected in the error bars. Considering similar discreti-

zations, SUBSTRA performs better than the predictive alternative

PCH. Using continuous data, which is not yet implemented in

SUBSTRA, PCH approaches SUBSTRA, especially in ‘Multiple

Myeloma’ and ‘Drug Response’ datasets. These results match those

of simulation experiments and indicate that simple chaining of the

existing methods does not reproduce the quality of SUBSTRA. As a

multi-purpose method, SUBSTRA, provides reasonable predictive

performance while producing more relevant descriptive outputs (as

described later), thus maintaining a good trade-off between accuracy

and interpretability that is lacking in most of the existing methods.

Discretization has positive effect for some datasets and methods

and negative effects for the others. However, there is a general indif-

ference with respect to the discretization techniques. The exception

here is ‘Multiple Myeloma’, for which EFB resulted in better per-

formance than the other techniques, matching the findings in Jung

et al. (2015).

To evaluate the plausibility of the weights assigned to the tran-

scripts, we compared SUBSTRA with DCH using the following

analysis. We ran both methods using the pre-processed data corre-

sponding to the best predictive performance (among EFB, EWB and

KM) in Figure 3. Experimental settings are described in Supplementary

Section C. Then, the transcripts were sorted in descending order with

respect to the weights obtained by each method. Top 100 transcripts

were selected for each dataset and each method. We mappedT
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transcripts to genes, and conducted Gene Ontology (GO) enrich-

ment analysis for the top 100 genes for each dataset. The only ex-

ception was the ‘Kidney 1’ dataset for which we selected top 200 to

obtain enriched GO terms for at least one of the methods (top 100

genes were not significantly associated to any GO term). To com-

pare consistency of the top genes across the two methods, we com-

puted the GO terms that are significantly enriched with top genes

(q-value < 0.05) for both methods (i.e. common enriched GO

terms). Then, we compared the q-values associated to these GO

terms by the two methods to see which method produces more sig-

nificant enrichment for the common terms. We used paired

Wilcoxon signed-rank test on the logarithms of the q-values. Next,

we performed a similar analysis for the top transcript cluster of each

method according to the average weight. For ‘Drug Response’, since

the top 3 clusters of none of the methods were significantly associ-

ated with any GO terms, we looked at the 4th clusters.

The statistical significance of the difference between the enrich-

ment of the top genes and clusters selected by the two methods are

shown in Table 4. According to these results, top genes of SUBSTRA

for ‘Lung Cancer’ and ‘Kidney 2’ result in significantly stronger en-

richment. For ‘Kidney 1’, DCH top genes were not associated with

any GO terms while SUBSTRA top genes were related to 15 signifi-

cantly enriched GO terms indicative of higher consistency among

them. For ‘Multiple Myeloma’ and ‘Drug Response’, there was no

statistically significant difference the two methods. Overall,

SUBSTRA detected significantly more relevant genes in two out of

five experiments and was equally well in the others, which indicated

its descriptive abilities compared to existing methods.

For the top transcript clusters, the results were more different

among the two methods. In four out of five cases, no enrichment

was detected for DCH while SUBSTRA could detect significantly

enriched clusters. The reason might be the relatively small clusters

that wNMF detected. For ‘Kidney 1’, both methods produced large

top clusters, but SUBSTRA’s cluster was very significantly more

enriched. This indicates the meaningfulness of the transcript clusters

detected by SUBSTRA. In the next section, we look at the relevance

of these clusters to the phenotypes.

3.5 SUBSTRA finds relevant transcript clusters
SUBSTRA detects transcript clusters that define patient subtypes.

Sorting clusters by the average of the transcript weights gives an in-

dication of their relevance to the phenotype under consideration.

We further analyzed the top 5 transcript clusters that SUBSTRA

identified for each real dataset through Gene Ontology (GO) and

Pathway (PW) enrichment analysis. The results indicate the uniform

relevance of the identified transcript clusters and match the existing

literature beside detecting novel signals requiring further investiga-

tion. The detailed procedures and results are provided in

Supplementary Section B. In the following paragraphs we provide

the highlights of the descriptive results based on the gene clusters

identified in SUBSTRA’s output.

The ‘Kidney 1’ dataset was obtained from biopsies extracted

more than a year after the kidney transplants (Einecke et al., 2010).

The authors of this study developed a classifier for transplant failure

versus acceptance, and identified 886 genes whose expression was

significantly associated with graft failure. Of the 30 top genes most

frequently used by the classifier, five (HAVCR1, ITGB3, LTF, PLK2

and SERPINA3) were clustered in the second top cluster (C2) identi-

fied by SUBSTRA. SUBSTRA clusters suggests that inflammatory

processes (cluster C1) can be implicated separately from pathways

associated with cellular death and differentiation, extra-cellular ma-

trix organization and circulatory system development (cluster C2),

in allograft rejection. In fact Einecke et al. (2010) implicate inflam-

matory processes in early graft rejection, and pathways enriched in

SUBSTRA cluster C2 in later graft loss, suggesting that SUBSTRA

Fig. 3. Predictive results for the real data: The horizontal line indicates the

best performance of SUBSTRA. The error bars are based on standard devi-

ation. NO—no discretization

Table 3. Datasets used in the predictive and descriptive experiments

Dataset #Patients #Features Phenotype Neg.-Pos. Reference

Kidney 1 282 18, 089 Kidney transplant response 63–37% Einecke et al. (2010)

Kidney 2 101 18, 988 Kidney transplant response 57–43% Khatri et al. (2013)

Drug Response 490 42, 869 Response to AZD6244 26–74% Barretina et al. (2012)

Multiple Myeloma 173 12, 625 Existence of focal bone lesions 21–79% Tian et al. (2003)

Lung Cancer 181 12, 533 Malignant Pleural Mesothelioma

(MPM) or Adenocarcinoma

(ADCA) of the Lung

17% (MPM)- 83% (ADCA) Gordon et al. (2002)
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correctly captures and distinguished among different mechanisms re-

sponsible for rejection (see Supplementary Figs SB2 and SB3).

Although genes in C3, a cluster enriched in transmembrane transport,

and C5, a cluster enriched in organ morphogenesis and tissue devel-

opment, are present among the 886 classifying genes in the original

publication, SUBSTRA makes a novel prediction that these additional

mechanisms play distinct and central roles in graft rejection.

In the study associated with the ‘Kidney 2’ dataset, Khatri et al.

(2013) identified a ‘common rejection module’ consisting of 11

genes that were differentially expressed in rejection of transplanted

organs: BASP1, CD6, CD7, CXCL9, CXCL10, INPP5D, ISG20,

LCK, NKG7, PSMB9, RUNX3 and TAP1. SUBSTRA placed six of

these genes—CXCL9, CXCL10, LCK, NKG7, PSMB9 and

RUNX3, in the fourth gene cluster, supporting the conclusions of

Khatri et al., that these genes form a distinct module that differenti-

ates graft rejection from non-rejection. The second top cluster shows

enrichment of ‘graft versus host disease’, allograft rejection, immune

signaling pathways, as well as related pathways such as cell,

leukocyte and lymphocyte activation (see Supplementary Figs SB5

and SB6). The remaining gene clusters (except C3) exhibit similar

enrichment of immune response pathways.

‘Drug Response’ dataset (Barretina et al., 2012) contains gene

expression information from cancer cell lines treated with

AZD6244, known as selumetinib. Selumetinib’s target, MEK, is

implicated in the epithelial-mesenchymal transition (EMT), which is

an important step in the initiation of metastasis (Bartholomeusz

et al., 2015). Among many other physiological changes, EMT

involves the loss of cell-cell junctions such as tight junctions that are

characteristic of epithelial cells. Our method identifies a transcript

cluster related to EMT involved in cell–substrate adhesion as key

pathways that respond to selumetinib (see Supplementary Fig. SB8).

In ‘Multiple Myeloma’, Tian et al. (2003) identified DKK1 as an

important gene involved in the formation of focal bone lesions. As

an inhibitor of the Wnt signaling pathway, DKK1’s exact role in

modulating this phenotype can be related to any of the pathway’s

many downstream effects, such as cell fate determination, cell motil-

ity, body axis formation, cell proliferation and stem cell renewal

(Komiya and Habas, 2008). SUBSTRA recapitulated the original

analysis by assigning the greatest weight to DKK1 within the third

relevant cluster. Interestingly, this cluster also harbors some of the

most significantly enriched pathways. Gene set enrichment analysis

identified the cell cycle and MAPK, signaling as pathways enriched

in genes of this cluster (C3 in Supplementary Figs SB10 and SB11).

This result suggests that DKK1 might be modulating cell prolifer-

ation as opposed to other cellular processes associated with the Wnt

signaling pathway. Furthermore, previous work has shown an inter-

play between the Wnt and MAPK signaling pathways in skeletal

development (Zhang et al., 2014). MAPK, signaling may be playing

an important role in the formation of osteolytic lesions, a potential

discovery that is not described in the original study. This shows that

SUBSTRA biclustering and weight assignment can complement

other methods such as differential gene expression analysis to pro-

vide additional biological context.

For the ‘Lung Cancer’ dataset, Gordon et al. (2002) originally

identified eight genes differentially expressed between adenocarcin-

oma of the lung (ADCA) and malignant pleural mesothelioma

(MPM): CALB2, ANXA8, EPCAM, CLDN7, NKX2-1, CD200,

PTGIS and COBLL1. SUBSTRA reported all but one gene (CLDN7)

in the top 3 transcript clusters, although other claudin genes, namely

CLDN3 and CLDN4, were included in the top cluster. Consistent

with the eight genes, cell and focal adhesion are among the enriched

GO terms and KEGG pathways in the top 5 transcript clusters (see

Supplementary Figs SB13 and SB14). Moreover, SUBSTRA suggests

several additional pathways, including extracellular receptor inter-

action, MAPK signaling and cytokine receptor interactions, that

may biologically distinguish ADCA and MPM.

3.6 Runtime of SUBSTRA
In a series of experiments on synthetic data (see Supplementary

Section E), the influence of the input size factors on the runtime of

SUBSTRA were identified. The studied factors included the number

of patients n, the number of transcripts m, the number of patient stra-

ta and the number of transcript clusters. The runtime was scaled lin-

early with respect to the first three factors, however, the last factor

did not have any correlation with the runtime in our experiments.

4 Conclusion

In this paper, an integrative Bayesian probabilistic model for simul-

taneous analysis of transcriptomic and phenotype data is presented.

The model, called SUBSTRA, learns patient strata relevant to a

phenotype and detects corresponding transcript clusters. The method

also assigns weights to the transcripts based on their relevance to the

phenotype and allows for interpretable prediction. SUBSTRA

achieves both good interpretability (i.e. produces meaningful patient

clusters, transcript clusters and transcript weights) and accurate

phenotype prediction, which is lacking in the state-of-the-art methods

for phenotype prediction (Valdes et al., 2016) such as SVM.

Based on the simulation results, the combination of transcrip-

tomic and phenotype data improves patient stratification results and

helps detecting relevant linear and non-linear signals in situations

with high noise levels. The biclustering also improves the prediction

accuracy in certain simulation experiments. We carried out gene set

Table 4. Comparison between the weights assigned by SUBSTRA and DCH to the transcripts

Metric Kidney 1 Kidney 2 Drug Response Multiple Myeloma Lung Cancer

Genes WSRT(Com.) NA(0) 0.03(6) 0.65(9) 0.87(67) 0.01(36)

SUBSTRA NA 220.96 �4.20 �6.34 �4.86

DCH NA �5.33 �4.41 �6.03 �6.04

Cluster WSRT(Com.) 0.00(69) NA(0) NA(0) NA(0) NA(0)

SUBSTRA 231.53 NA NA NA NA

DCH �4.34 NA NA NA NA

Note: Abbreviations used include WSRT(Com.)—Wilcoxon Signed-Rank Test (WSRT) P-value and the number of common GO terms in the parentheses. The

top and bottom halves of the table correspond respectively to the evaluation of the top weighted genes and cluster. In each of the two parts, the second and third

rows show the mean of the logarithm of the q-values of the enrichment tests for SUBSTRA and DCH, respectively. NAs indicate the situations when there have

been no common enriched GO term between the two methods. In all NA cases, this was due to one of the methods (DCH) having empty enriched GO term set.

The best performances are shown in bold.
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enrichment analysis of the transcripts identified as important by

SUBSTRA in relevant biological scenarios, such as kidney rejection

and drug response. We found that SUBSTRA selects more consistent

genes with better enrichment values compared to regularized logistic

regression models in most of the experiments. Also, analyzing the

transcript clusters detected by SUBSTRA indicates that they capture

key biological mechanisms that drive the differential fates of these

samples and shed light on factors driving predictive performance.

These clusters are shown to be more consistent than the alternative

methods discussed in the paper and the prediction accuracy of

SUBSTRA is shown to be comparable with the common single-

purpose predictive methods, such as LR and SVM.

We employ Gibbs sampling in SUBSTRA as the inference method.

One direction for future work can be using more efficient approaches

like variational inference or parallelizing the inference. As another fu-

ture work, we plan to extend SUBSTRA to incorporate continuous

expression data and more patient and transcript information, such as

pathways and interaction data. This might further improve the per-

formance as well as the general applicability of SUBSTRA to a wide

range of diseases and conditions. In scenarios with temporary data ac-

cess contracts, only the model learned from data is available, but not

the dataset itself. For such scenarios, we plan to explore methods for

Lifelong Machine Learning using SUBSTRA based on the Bayesian

properties of the model. The Bayesian nature of this method allows

for incorporation of prior knowledge extracted from previously avail-

able datasets when training a new model, which might compensate

for the lack of access to those data.

Conflict of Interest: none declared.

References

Abu-Jamous,B. et al. (2015) Uncles: method for the identification of genes dif-

ferentially consistently co-expressed in a specific subset of datasets. BMC

Bioinformatics, 16, 184.
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