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Abstract

Motivation: Protein structure refinement aims to bring moderately accurate template-based pro-

tein models closer to the native state through conformational sampling. However, guiding the sam-

pling towards the native state by effectively using restraints remains a major issue in structure

refinement.

Results: Here, we develop a machine learning based restrained relaxation protocol that uses deep

discriminative learning based binary classifiers to predict multi-resolution probabilistic restraints

from the starting structure and subsequently converts these restraints to be integrated into Rosetta

all-atom energy function as additional scoring terms during structure refinement. We use four

restraint resolutions as adopted in GDT-HA (0.5, 1, 2 and 4 Å), centered on the Ca atom of each

residue that are predicted by ensemble of four deep discriminative classifiers trained using combi-

nations of sequence and structure-derived features as well as several energy terms from Rosetta

centroid scoring function. The proposed method, refineD, has been found to produce consistent

and substantial structural refinement through the use of cumulative and non-cumulative restraints

on 150 benchmarking targets. refineD outperforms unrestrained relaxation strategy or relaxation

that is restrained to starting structures using the FastRelax application of Rosetta or atomic-level

energy minimization based ModRefiner method as well as molecular dynamics (MD) simulation

based FG-MD protocol. Furthermore, by adjusting restraint resolutions, the method addresses the

tradeoff that exists between degree and consistency of refinement. These results demonstrate a

promising new avenue for improving accuracy of template-based protein models by effectively

guiding conformational sampling during structure refinement through the use of machine learning

based restraints.

Availability and implementation: http://watson.cse.eng.auburn.edu/refineD/.

Contact: bhattacharyad@auburn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational protein structure prediction is an integral part of

structural bioinformatics (Cavasotto and Phatak, 2009). The accur-

acy of protein models predicted by the state-of-the-art structure pre-

diction approaches (Kim et al., 2004; Rohl et al., 2004; Zhang,

2008) can be quite impressive, particularly for the template-based

modeling cases (Kryshtafovych et al., 2018; Moult et al., 2018).

However, they still often fail to reach accuracy high enough to be

comparable to the experimentally determined native conformations

(Feig, 2017). The goal of computational protein structure refine-

ment is to drive a starting structure towards its native state such that

it attains near-experimental accuracy. Consequently, protein
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structure refinement approaches use conformational sampling to op-

timize an atomistic force field to bring the starting structure closer

to its native state.

The most successful refinement methods employ Molecular dy-

namics (MD) simulation (Feig and Mirjalili, 2016; Mirjalili et al.,

2014), Monte Carlo (MC) sampling (Bhattacharya and Cheng,

2013a, b, c; Park et al., 2016; Park and Seok, 2012), energy mini-

mization with a physics and/or knowledge based force fields

(Bhattacharya and Cheng, 2013a, b, c; Bhattacharya et al., 2016;

Lee et al., 2016; Lin et al., 2011; Rodrigues et al., 2012). Promising

progress in structure refinement has been witnessed in the recent

past due to force field improvement by combining physics and

knowledge based scoring terms, enhanced sampling for longer time

scales and the use of ensemble averaging (Hovan et al., 2018; Modi

and Dunbrack, 2016; Nugent et al., 2014). Nevertheless, addressing

the tradeoff between degree and consistency of refinement is a major

challenge for state-of-the-art refinement protocols. On one hand, ag-

gressive and unrestrained sampling around the starting structure

that has the ability to produce large degree of refinement often devi-

ates away from the native state rather than towards it (Park et al.,

2012; Summa and Levitt, 2007). On the other hand, applying

restraints derived directly from the starting structure during refine-

ment in order to prevent large conformational change (Chen and

Brooks, 2007; Lee et al., 2016; Raval et al., 2012) opposes signifi-

cant structural modifications that may be needed, particularly when

the starting structure is far away from the native state. Some refine-

ment approaches apply partial restraints on structurally conserved

regions (Cao et al., 2003; Ishitani et al., 2008), or derive restraints

using ensemble of homologues structure or fragments (Della Corte

et al., 2016; Wildberg et al., 2015; Zhang et al., 2011). However,

effectively using restraints to achieve consistent yet significant re-

finement remains a conundrum in protein structure refinement

(Feig, 2017; Heo and Feig, 2018).

Here, we present refineD, which uses deep discriminative learn-

ing based ensemble classifiers to predict multi-resolution probabilis-

tic restraints from the starting structure and subsequently converts

these restraints into scoring terms to guide conformational sampling

during structure refinement. Specifically, we use Deep

Convolutional Neural Fields (DeepCNF) (Wang et al., 2016a,b), a

deep discriminative learning classifier, to predict the likelihood of

Ca atom of any residue of the starting structure to be within r Å

with respect to the native. Following the high accuracy version of

the Global Distance Test (GDT-HA) score (Zemla, 2003), which

captures the number of residues in a predicted protein model with

the Ca atom distances from the corresponding residues in the native

structure below four different distance thresholds (0.5, 1, 2, 4 Å)

and extensively used to evaluate the performance of refinement

methods, we use an ensemble of four DeepCNF classifiers after

fixing r to each of the four distance thresholds. Each DeepCNF

classifier combines several centroid scoring functions of

Rosetta (Leaver-Fay et al., 2011; Rohl et al., 2004), sequence profile

based residue conservation features and consistency between struc-

tural features extracted from the starting structure and predicted

values from its sequence. Output from the ensemble of four

DeepCNF classifiers are subsequently converted to multi-resolution

probabilistic restraints and integrated as additional scoring term

into Rosetta’s all-atom energy function (Alford et al., 2017) to per-

form restrained relaxation using the FastRelax application of

Rosetta (Khatib et al., 2011; Tyka et al., 2011). To the best of our

knowledge, this is the first study that applies machine learning

derived multi-resolution probabilistic restraints in protein structure

refinement.

2 Materials and methods

2.1 Training deep discriminative ensemble classifiers
2.1.1 Training dataset

We use 3DRobot (Deng et al., 2016) decoy set to curate dataset for

training DeepCNF ensemble classifiers. 3DRobot generates well-

packed decoy pool with an even distribution of decoy accuracy over

the Root Mean Square Deviation (RMSD) space with respect to na-

tive. The original 3DRobot decoy set contains 200 non-homologous

protein targets each with 300 decoys that are evenly distributed in

the RMSD space from 0 to 12 Å. We compute GDT-HA score for

each decoy in the 3DRobot dataset and group them into ten distinct

GDT-HA bins with a bin-width of 10 GDT-HA units. For each tar-

get, we select at most one decoy from each bin by random sampling.

This results in 1767 decoys for 200 targets. It should be noted that

for few targets, not all ten GDT-HA bins are populated and this

results in fewer than ten decoys being selected for that target.

2.1.2 Feature generation

We use a total of fifteen features to describe each residue of a decoy

as briefly described below.

i. Sequence profile conservation score: We generate sequence pro-

file by searching the NCBI non-redundant sequence database

(NR) using three iterations of PSI-BLAST v2.2.26 software

(Altschul et al., 1997) with an E-value inclusion threshold of

10�3. We subsequently extract the information per position

scores from the PSI-BLAST matrix and scale it between 0 and 1

using sigmoidal transformation. We use this scaled score as se-

quence profile conservation feature.

ii. Consistency between predicted and observed structural proper-

ties: We use SPIDER2 (Heffernan et al., 2015), an iterative deep

learning framework, to predict secondary structure and abso-

lute solvent accessibility from a given protein sequence.

Observed secondary structure of a decoy is calculated using the

DSSP (Kabsch and Sander, 1983) method implemented in

PyRosetta (Chaudhury et al., 2010). Per residue relative solvent

accessible surface area of each residue is obtained using

PyRosetta. We use a binary agreement between predicted and

observed secondary structure as a feature. For solvent accessi-

bility, we convert predicted absolute solvent accessibility into

their corresponding relative values (rsap) and compute squared

error with respect to observed values (rsao) as (rsap � rsao)2 to

be used as a feature.

iii. Rosetta centroid energy terms: We use twelve Rosetta centroid

energy terms (Leaver-Fay et al., 2011; Rohl et al., 2004) includ-

ing residue environment (env), residue pair interactions (pair),

Cb density (cbeta), steric repulsion (vdw), radius of gyration

(rg), packing (cenpack), contact order (co), statistical potentials

for secondary structure formation (hs_pair, ss_pair, sheet,

rsigma) and centroid hydrogen-bonding (cen_hb). Once again,

we apply sigmoidal function to all terms to scale energy terms

before incorporating them as features.

2.1.3 Label generation

We set the class label as 1 (a.k.a. positive class) if the Ca atom of a

residue is within r Å with respect to the native structure after opti-

mal structural superposition and 0 (a.k.a. negative class) otherwise.

Four different class labels are generated after fixing r at 0.5, 1, 2,

4 Å respectively. It should be noted here that class labels at lower

distance thresholds always agree with that of their higher distance

counterparts, but the converse may not be true. Moreover,
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depending on the accuracy of the decoy and the choice of the dis-

tance thresholds, one class may vastly outnumber the other; result-

ing in a class imbalance problem. In the training dataset, ratios

between positive and negative classes are 0.21 (40 849/194 621),

0.51 (78 755/156 715), 1.05 (120 334/115 136) and 2.31 (164 421/

71 049) at distance thresholds 0.5, 1, 2 and 4 Å respectively. Class

imbalance problem is, therefore, particularly noticeable for the low-

est and highest distance thresholds.

2.1.4 Architecture and parameters of deep discriminative classifiers

The architecture of deep discriminative classifier, DeepCNF (Wang

et al., 2016a,b) that is particularly suited for learning from imbal-

anced datasets, consists of two modules: (i) the Conditional

Random Fields (CRF) module covering the top layer and the class

label layer, and (ii) the deep convolutional neural network (DCNN)

module covering the input to the top layer. DeepCNF strives to ad-

dress class imbalance problem in the training data by maximizing

the empirical Area Under the ROC Curve (AUC), which is an un-

biased measurement for imbalanced data. Based on preliminary test-

ing, we use 5 hidden layers each having 50 neurons with a window

size of 21 and a sigmoid activation function for all four DeepCNF

classifiers. All four classifiers use the same feature set but different

class labels corresponding to distance cutoffs 0.5, 1, 2, 4 Å. Based on

preliminary testing, we set the regularizer to 0.5, number of itera-

tions to 1000, AUC degree to 3 and uniform weights defaulted to

1.0 for each labels. A thorough parameter optimization may help

further improve the performance.

2.2 refineD protocol
The flowchart of refineD protocol is shown in Figure 1, which con-

sists of feature generation from the starting structure, residue level

ensemble classification using the trained DeepCNF classifiers, multi-

resolution probabilistic restraints generation, structure refinement

via restrained relaxation, and scoring refined structures.

2.2.1 Feature generation from the starting structure

Given a starting structure for refinement, we extract the previously

mentioned set of fifteen features that includes: (i) one feature repre-

senting sequence profile conservation score; (ii) two features quanti-

fying the consistency between predicted and observed structural

properties (secondary structure and solvent accessibility); and (iii)

twelve Rosetta centroid energy terms.

2.2.2 Residue level ensemble classifications

Based on the features derived from the starting structure and using

one of the four DeepCNF classifiers trained on class labels generated

using a specific distance threshold r Å, we can classify residue i in

the starting structure to be within r Å compared to the native struc-

ture, where r 2 {0.5, 1, 2, 4} Å. Collectively, the four trained

DeepCNF classifiers result in residue level ensemble classification.

2.2.3 Generating multi-resolution probabilistic restraints

We convert residue level ensemble classifications to multi-resolution

probabilistic restraints based on four distance thresholds r 2 {0.5, 1,

2, 4} Å. Specifically, we apply Rosetta CoordinateConstraint on

each of the Ca atom of the starting structure weighted by their asso-

ciated probabilities after employing FLAT_HARMONIC function

to integrate into the full atom Rosetta Energy Function 2015

(REF15) (Alford et al., 2017). FLAT_HARMONIC is a harmonic

potential split at x0 with a 2 * tol length region of zero inserted (i.e.

zero in the range of x0 � tol to x0 þ tol). Outside the range, it is har-

monic function with width parameter sd:

f ðxÞ ¼ x� x0

sd

� �2

We fix x0 at zero and set the tol parameter to each of the four

distance thresholds r2 {0.5, 1, 2, 4} Å to allow unrestricted sampling

guided purely by the REF15 scoring function in a spherical conform-

ational space of radius r Å centered at each Ca atom of the starting

structure. Outside this region, conformational sampling is harmon-

ically restricted using a width parameter sd of 0.1. Consequently,

this corresponds to probabilistically restraining the conformational

space at four different resolutions.

2.2.4 Structure refinement via restrained relaxation

We use the FastRelax application of Rosetta (Khatib et al., 2011;

Tyka et al., 2011) accessed from PyRosetta (Chaudhury et al., 2010)

after setting the score function weights to ref2015_cst.wts, which

adds restraints based terms with the standard REF15 score function.

The FastRelax protocol employs multiple rounds of repulsive weight

annealing together with combinatorial rotamer optimization and

minimization (ramp-repack-min). There are five cycles each consist-

ing of four rounds of ramp-repack-min, where the strength of the re-

pulsive energy term is progressively increased starting from 2% of

full strength, followed by 25, 55 and 100%.

2.2.5 Scoring refined structures using ensemble classifiers

A refined structure produced through restrained relaxation can be

assigned an accuracy score by combining residue level ensemble clas-

sifications in a weighted fashion analogous to GDT-HA score:

score ¼

X
r2f0:5;1;2;4g

PL
i¼1

Pðdi � rjmrÞ

4L

where P(di� r j mr) is the probability of residue i in a refined struc-

ture to be within r Å compared to the native structure as predicted

by DeepCNF classifier mr trained on class labels generated using dis-

tance thresholds r Å. If the total probability mass at lower distance

thresholds exceeds that for higher distance thresholds, we truncate

the total probability mass for lower distance to that of higher

Fig. 1. Flowchart of the refineD protocol. The protocol includes feature gener-

ation from the starting structure, residue level ensemble classification, multi-

resolution probabilistic restraints generation, structure refinement via

restrained relax, and scoring refined structures using ensemble classifiers
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distance thresholds. The rationale for this is to mimic GDT-HA

score, where number of aligned residues at lower distance thresholds

is no greater than that at higher distance thresholds. Consequently,

the accuracy score lies between [0, 1] with higher value indicating

better accuracy.

3 Results and discussions

3.1 Benchmark dataset
We collect a dataset comprising of 181 non-redundant single-

domain proteins, originally curated to benchmark the FG-MD

refinement protocol (Zhang et al., 2011) spanning across multiple

folds. We remove protein targets having significant sequence simi-

larity with the training set. After removal of 31 such targets from

the original FG-MD set, our benchmark dataset consists of 150 tar-

gets, with average sequence identity of 18.5% (maximum 25.2%)

between the test and training set and length varying from 64 to 222

residues. For each protein target, the starting structure for refine-

ment is generated by I-TASSER (Roy et al., 2010; Zhang, 2007)

using a multiple template based protein structure prediction

approach. As shown in Figure 2A, 28% (42/150) targets have GDT-

HA score of the starting structures below 40, 42.67% (64/150)

targets with starting GDT-HA scores between 40 and 60, and

29.33% (44/150) targets have starting GDT-HA scores above 60.

Additionally, Figure 2B shows that 24% (36/150) targets have

length less than 100 residues, 43.33% (65/150) targets with length

between 100 and 150 residues, and 32.67% (49/150) targets have

length greater than 150 residues. The dataset, therefore, is diversely

distributed in terms of accuracy of the starting structures as well as

sequence lengths.

3.2 Effects of multi-resolution probabilistic restraints
To investigate the effects of applying multi-resolution probabilistic

restraints in structure refinement, we perform four distinct

restrained relaxation runs for all 150 targets in the benchmark data-

set. Each restraint relaxation run uses a specific restraint resolution

corresponding to one of the four distance thresholds r2 {0.5, 1, 2, 4}

Å and generates one set of refined structures. In Table 1, we show

GDT-HA score of the refined structures generated using different re-

straint resolutions along with the starting GDT-HA score averaged

over the entire dataset (Supplementary Table S1). On an average,

only using restraints at 0.5 Å resolution results in net positive refine-

ment with 57.33% (86/150) rate of successful refinement; while

restraints at 1, 2 and 4 Å resolutions results in overall negative re-

finement with gradually decreasing successful refinement rate of

46% (69/150), 30% (45/150) and 24.67% (37/150) respectively.

In terms of the average DGDT-HA, minor increase (0.5425) for

0.5 Å restraints and minor decrease (�0.0422) for 1 Å restraints has

been observed, while 2 and 4 Å restraints produce substantial struc-

tural degradation (�1.3942 and �2.7407 respectively). The average

GDT-HA score of the refined models, therefore, steadily declines as

restraint resolutions vary from 0.5 to 4 Å.

In Figure 3, we show the normalized probability distributions of

the score changes (DGDT-HA) at various restraint resolutions for

the entire benchmark set. The results further demonstrate that the

median score change gradually shifts towards the negative DGDT-

HA realm as restraint resolution moves from 0.5 to 4 Å. Prevalence

of conservative structural modifications with DGDT-HA ranging be-

tween �5 and 5 units are observed at 0.5 and 1 Å resolutions, while

adventurous degree of conformational change of 5 or more GDT-

HA units can be observed at 2 and 4 Å resolutions albeit at the ex-

pense of increased likelihood of worsening the starting structure.

Even with enhanced potential of structural worsening at 2 and 4 Å

resolutions with 18.7 and 31.3% of starting structures taking a loss

of 5 or more GDT-HA units respectively, 6 and 4.7% cases show re-

markable examples of refinement improving the starting structures

by 5–20 GDT-HA units. The results indicate that the choice of re-

straint resolution is closely related to the tradeoff between degree

and consistency of refinement. Restraint resolutions of 0.5 and 1 Å

result in modest yet consistent refinement while 2 and 4 Å restraint

Fig. 2. Normalized probability distributions of target accuracy and length

of the benchmark dataset. (A) GDT-HA scores of the starting structures;

(B) sequence length

Table 1. Average GDT-HA score after refinement using different

restraint resolutions in a benchmark set of 150 targets

Restraint resolution Avg. GDT-HAa (Avg. DGDT-HAb)

0.5 Å restraints 49.5413 (0.5425)

Nullc 48.9988 (0.0)

1.0 Å restraints 48.9566 (�0.0422)

2.0 Å restraints 47.6046 (�1.3942)

4.0 Å restraints 46.2581 (�2.7407)

aGDT-HA values are sorted in non-increasing order.
bValues in parenthesis are difference between average refined GDT-HA for

each restraint type and the average starting GDT-HA. A positive number indi-

cates successful refinement on an average.
cRepresents the starting structures.
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resolutions have the potential to make substantial degree of refine-

ment but often at the expense of consistency.

3.3 Refinement with cumulative and non-cumulative

restraints
Given the starting structure, we use DeepCNF classifiers for residue

level ensemble classification to generate multi-resolution probabilistic

restraints and cumulatively integrate them into REF15 scoring func-

tion of Rosetta. Consequently, all restraints are simultaneously applied

for all residues weighted according to their probabilities as predicted

by ensemble of DeepCNF classifiers. We iteratively apply restrained

FastRelax protocol for five iterations using four parallel threads to

generate a total of twenty refined models. We subsequently apply the

ensemble classifier based scoring function described above to score the

resulting twenty refined structures and select the five top high scoring

refined structures. This corresponds to employing refineD with cumu-

lative restraints (hereafter called refineD-C). We also develop an alter-

native refinement strategy by using DeepCNF classifiers for residue

level ensemble classification to generate multi-resolution probabilistic

restraints and integrate them into REF15 scoring function of Rosetta

in a non-cumulative way. That is, each multi-resolution restraint is in-

dividually applied for all residues weighted according to their proba-

bilities as predicted by ensemble of DeepCNF classifiers. Once again,

we apply restrained FastRelax protocol for five iterations using four

parallel threads to generate a total of twenty refined models, but this

time each parallel thread uses different restraint resolution. We subse-

quently apply the previously described scoring function to score the

resulting twenty refined structures and select the top five high scoring

refined structures. This corresponds to employing refineD with non-

cumulative restraints (hereafter called refineD-NC). As controls, we

employ FastRelax without any restraints as well as four sets of

FastRelax runs after applying Rosetta CoordinateConstraint on each

of the Ca atom of the starting structure with FLAT_HARMONIC

restraints of 0.5, 1, 2, 4 Å having uniform restraint weights of 1.0

(hereafter called FastRelax-r Å, r 2{0.5, 1, 2, 4} Å), as opposed to the

probabilistically weighted restraints predicted by ensemble of

DeepCNF classifiers. We generate twenty refined structures per target

for each FastRelax-r Å run and subsequently use Rosetta Energy

Function 2015 (REF15) to select five refined structures having lowest

REF15 energy values. Additionally, we refine the starting structures

using two widely used refinement methods FG-MD (Zhang et al.,

2011) and ModRefiner (Xu and Zhang, 2011). FG-MD applies

fragment-guided MD simulation while ModRefiner relies on atomic-

level energy minimization. For FG-MD, we collect the refined struc-

tures directly from https://zhanglab.ccmb.med.umich.edu/FG-MD/.

We perform two sets of ModRefiner runs: (i) using a strength of 0 for

the pairwise Ca based distance restraints derived from the starting

structures (ModRefiner-0); and (ii) using a strength of 100 for the pair-

wise Ca based distance restraints derived from the starting structures

(ModRefiner-100). This results in two sets of refined conformations

for the benchmark set. It should be noted that restraint strength 0 in

ModRefiner represents unrestrained refinement allowing large con-

formational change, while restraint strength 100 in ModRefiner

restricts substantial structural modification. In Table 2, we show aver-

age DGDT-HA of the refined structures as well as P-values of

Wilcoxon signed-rank test with the null hypothesis that refined struc-

tures produced by refinement are same as starting structures. Figure 4

shows the distributions of the score changes (DGDT-HA) for refineD

against the controls (Supplementary Tables S2–S3).

The results demonstrate that out of the ten refinement protocols

tested, only three (refineD-C, FG-MD and ModRefiner-100) pro-

duce overall positive refinement as indicated by a positive average

DGDT-HA score considering the top 1 refined structure, even

though the degree of refinement is modest in nature. refineD-NC,

FastRelax, FastRelax-0.5 Å, FastRelax-1.0 Å, FastRelax-2.0 Å,

FastRelax-4.0 Å as well as ModRefiner-0 refinements result in over-

all negative refinement. ModRefiner-100, despite showing overall

positive refinement, is not statistically significant at 95% confidence

level as revealed by Wilcoxon Signed Rank Test. refineD-C and FG-

MD produces statistically significant refinement at 95% confidence

level, with refineD-C having the highest DGDT-HA score. It should

be noted here that FG-MD uses homologous fragment derived re-

straint information during refinement to guide MD simulations.

refineD-C, on the other hand, is based purely on machine learning

derived restrained relaxation completely free from homology. Better

performance of homology-free method such as refineD-C makes it

suitable for refining protein targets irrespective of homology.

Performance of refineD-C is statistically significantly better at 95%

confidence level compared to the controls as revealed by one-sample

t-test of the GDT-HA score differences between the refined struc-

tures produced by refineD-C and controls (P-values of

1.459�10�16, 6.69374�10�20, 9.55371�10�8, 1.29607�10�7

and 1.14242�10�11 for FastRelax, FastRelax-0.5 Å, FastRelax-1.0

Å, FastRelax-2.0 Å and FastRelax-4.0 Å respectively). refineD-C is

also much more consistent than the controls in terms of number of

successful refinement cases (DGDT-HA score > 0) achieving 63%

(94/150) success while FastRelax, FastRelax-0.5 Å, FastRelax-1.0

Å, FastRelax-2.0 Å and FastRelax-4.0 Å attaining 20% (30/150),

37% (55/150), 43% (64/150), 33% (50/150) and 27% (41/150) suc-

cesses respectively. refineD-NC, while not as consistent as refineD-

C, attains 38% (57/150) success that is similar to that of FastRelax-

0.5 Å. In terms of best of top 5 refined structures, refineD-NC,

refineD-C, FastRelax-0.5 Å, FastRelax-1.0 Å, FastRelax-2.0 Å and

FastRelax-4.0 Å refinements result in overall positive refinement

with refineD-NC attaining the highest average DGDT-HA score.

Fig. 3. Effect of multi-resolution probabilistic restraints on degree of structural change. Normalized probability density function (PDF) distributions of GDT-HA dif-

ferences between the refined and starting structures over all 150 benchmark proteins using restrained relaxation with probabilistic restraints at (A) 0.5 Å; (B) 1 Å;

(C) 2 Å; (D) 4 Å. Numbers indicate % of refined structures belonging to different DGDT-HA ranges
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However, only refineD-NC, refineD-C and FastRelax-1.0 Å refine-

ments are statistically significant at 95% confidence level as revealed

by Wilcoxon Signed Rank Test. Performance differences of refineD-

NC are statistically significantly better than the controls (P-values of

one-sample t-tests are 3.25713�10�7, 4.44823�10�10,

0.000533175, 0.000590979 and 3.25617�10�7 for FastRelax,

FastRelax-0.5 Å, FastRelax-1.0 Å, FastRelax-2.0 Å and FastRelax-

4.0 Å respectively). Except for FastRelax-1.0 Å, refineD-C also

delivers statistically significantly better performance compared to

the controls (P-values of one-sample t-tests are 0.0002796,

1.04138�10�42, 0.00604323 and 0.00112333 for FastRelax,

FastRelax-0.5 Å, FastRelax-2.0 Å and FastRelax-4.0 Å respectively).

Once again, refineD-C attaints most consistent refinement with

81% (121/150) success followed by refineD-NC 69% (104/150),

better than the controls with 40% (70/150), 43% (64/150), 60%

(90/150), 51% (77/150) and 45% (67/150) successes for FastRelax,

FastRelax-0.5 Å, FastRelax-1.0 Å, FastRelax-2.0 Å and FastRelax-

4.0 Å respectively. Overall, the results indicate that refineD-C corre-

sponds to a conservative refinement strategy achieving consistent

but modest refinement that is statistically significant. refineD-NC,

on the other hand, is an adventurous refinement strategy capable of

making significant and pronounced degree of refinement.

Some representative examples of pronounced refinement with

refineD-NC are shown in Figure 5. Protein targets 1x6iA (Fig. 5A)

and 2o37A (Fig. 5B) are primarily a-helical in nature with the GDT-

HA score of the corresponding starting structures around 55.

Refinement for these targets results in 29.99 and 18.32% improve-

ments in GDT-HA scores respectively, bringing the refined GDT-

HA scores of these proteins to values greater than 65. Refinement

for targets 2pv2A (Fig. 5C) and 3cjsB (Fig. 5D) with mixed a-helical

and b-sheet geometries improve GDT-HA scores by 15.31 and

29.1% respectively. In all cases, structural improvements are distrib-

uted across the entire chain causing a substantial global refinement

of the starting structures.

3.4 Impact of enhanced sampling and alternative

scoring
To investigate whether enhanced sampling and alternative scoring

affect the performance of cumulative and non-cumulative refineD

methods, we conduct twofold experiments via: (i) 5-fold enhance-

ment in sampling compared to the original pool of 20 refined struc-

tures by applying restrained relaxation runs for twenty five

iterations using four parallel threads to generated 100 refined

Table 2. Comparison between refineD with cumulative and non-cumulative restraints and other refine-

ment methods based on average DGDT-HA score in a benchmark set of 150 targets

Method Avg. D top 1a (P-valueb) Avg. D best of 5c (P-value)

refineD-Cd 0.6365 (7.11606� 10�7) 1.3109 (8.24092� 10�18)

refineD-NCe �1.2403 (0.000302906) 1.5343 (1.45904� 10�8)

FG-MD 0.5597 (1.34714� 10�7) 0.5597 (1.34714� 10�7)

FastRelax �3.4317 (2.24913� 10�12) �0.1999 (0.61376)

FastRelax-0.5 Å �0.1403 (0.03498) 0.0548 (0.853297)

FastRelax-1.0 Å �0.3411 (0.082146) 0.8811 (0.0000328637)

FastRelax-2.0 Å �1.2120 (0.000044333) 0.8223 (0.117838)

FastRelax-4.0 Å �2.5471 (7.39414� 10�9) 0.0751 (0.561429)

ModRefiner-0f �0.8400 (0.00268802) �0.8400 (0.00268802)

ModRefiner-100g 0.1491 (0.0675135) 0.1491 (0.0675135)

Note: Bold numbers indicate best in each category.
aAverage DGDT-HA of top selected model. Positive number indicates successful refinement.
bP-value of Wilcoxon Signed Rank Test.
cAverage DGDT-HA of the best of top five selected models.
drefineD with cumulative restraints.
erefineD with non-cumulative restraints.
fModRefiner with strength of starting structure derived restraints set to 0.
gModRefiner with strength of starting structure derived restraints set to 100.

Fig. 4. Refinement degree distributions for refineD against controls. DGDT-HA

distributions over all 150 benchmark proteins considering (A) top 1 refined

structure; (B) best of top 5 refined structures
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structures for all 150 targets in the benchmark dataset; and (ii) using

the full atom Rosetta Energy Function 2015 (REF15) for selecting

top five high scoring refined structures from the pools of original

(pool20) and enhanced (pool100) sampling.

In Figure 6, we show the distributions of DGDT-HA for pool20

and pool100 as well as top 5 refined structures selected by REF15

and ensemble classifier based scoring function for both cumulative

and non-cumulative refineD methods. For relaxation with cumula-

tive restraints, the average DGDT-HA is –0.85 for pool20, slightly

better compared to the average DGDT-HA of �0.88 for pool100.

The average DGDT-HA of top 5 refined structures selected by en-

semble classifier based scoring function from pool20 is �1.07, while

selection from pool20 using REF15 degrades the performance com-

pared to the ensemble classifier based scoring function with an aver-

age of �2.0 DGDT-HA points. For pool100, REF15 selection

degrades the average from �1.32 to �2.16. For relaxation with

non-cumulative restraints, the averages for pool20 and pool100 are

comparable with DGDT-HA values of around 0.6. In this case,

REF15 selection outperforms the ensemble classifier based scoring

function with an average of 0.73 compared to 0.61 for pool20, and

0.68 compared to 0.63 for pool100. Collectively, the results indicate

that enhanced sampling or alternative scoring may offer slight per-

formance improvement for refineD with non-cumulative restraints.

3.5 Relationships between degree of structural

refinement and nature of the starting structures
Figure 7 shows the lengths of the starting structures and GDT-HA

scores of the starting structures against DGDT-HA values for both

refineD-C and refineD-NC methods in terms of top 1 and the best of

top 5 refined structures selected by ensemble classifier based scoring

function. Overall, the degree of refinement is noticeable for smaller

targets (length <100 residues) and medium range of starting GDT-

HA scores (40<GDT-HA < 60). This trend gets amplified for the

best of top 5 compared to top 1 refined structure, particularly for

refineD-NC.

In Figure 8, we show the degree of structural refinement meas-

ured in term of DGDT-HA scores of the best of top five refined

structures using refineD-NC with respect to the accuracy of the cor-

responding starting structures (in terms of GDT-HA) for targets of

different lengths (Fig. 8A–C) and different accuracies of starting

structures (Fig. 8D–F). Once again, the best improvement is

observed for smaller targets having length less than 100 residues

with 16.7% of starting structures showing remarkable examples of

refinement by improving the starting structures by 5–20 GDT-HA

units (Fig. 8A) and those in the medium range of starting accuracies

having starting GDT-HA scores between 40 and 60 units with

15.6% cases making marked positive refinement of 5 or more GDT-

HA units (Fig. 8E). We additionally examine whether the refinement

Fig. 5. Representative examples of refineD-NC refinement. For each example

show in (A–D), the starting (orange) and refined (cyan) structures are overlaid

on the experimental (green) structures with numeric degrees of refinement

shown below

Fig. 6. Impact of enhanced sampling and alternative scoring. DGDT-HA distri-

butions over all 150 benchmark proteins for pools of original (pool20) and

enhanced (pool100) sampling and top five refined structures selected using

ensemble classifier based scoring function (top5score) and REF15 (top5REF15)

for (A) refineD with cumulative restraints; (B) refineD with non-cumulative

restraints

Fig. 7. Lengths and accuracies of starting structures against degree of struc-

tural refinement. DGDT-HA scores against length (A), (C) and GDT-HA of the

starting structures (B), (D) over all 150 benchmark proteins for refineD-C and

refineD-NC methods for top 1 (A), (B) and the best of top 5 (C), (D) refined

structures selected using ensemble classifier based scoring function

3326 D.Bhattacharya

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3320/5317159 by guest on 19 April 2024



performance is affected when a test protein shares the same family,

superfamily and fold similarity with any of the 200 proteins in the

training dataset (Supplementary Fig. S1).

4 Conclusions

To use or not to use restraints during protein structure refinement

remains a conundrum (Feig, 2017; Heo and Feig, 2018). We develop

a novel refinement method called refineD, which uses deep discrimina-

tive learning based ensemble classifiers to predict multi-resolution

probabilistic restraints from the starting structure and converts these

restraints into scoring terms to guide conformational sampling during

structure refinement and subsequently scores a pool of resulting

refined structures using ensemble classifier based scoring. For the first

time, we demonstrate that machine learning based restrained relax-

ation is able to address the tradeoff that exists between degree and

consistency of refinement. refineD is shown to produce consistent and

aggressive structural refinement through the use of cumulative and

non-cumulative restraints. We demonstrate that the resolution of re-

straint directly affects the degree of conformational change that can be

used for conservative or adventurous structure refinement. Compared

to unrestrained relaxation or relaxation restrained to starting struc-

tures using the FastRelax application of Rosetta or atomic-level energy

minimization based ModRefiner method, refineD delivers better per-

formance in terms of consistency and substantial structural refine-

ment. Moreover, homology-free refineD method outperforms MD

simulation based FG-MD protocol, which uses homologous informa-

tion. Collectively, these results demonstrate a promising new direction

in protein structure refinement by using machine learning based

restraints to drive moderately accurate template-based protein models

closer to the native state, making refineD an useful contribution in the

field of protein structure prediction in particular and protein structural

bioinformatics in general.
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