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Abstract

Motivation: Unbiased clustering methods are needed to analyze growing numbers of complex

datasets. Currently available clustering methods often depend on parameters that are set by the

user, they lack stability, and are not applicable to small datasets. To overcome these shortcomings

we used topological data analysis, an emerging field of mathematics that discerns additional fea-

ture and discovers hidden insights on datasets and has a wide application range.

Results: We have developed a topology-based clustering method called Two-Tier Mapper (TTMap)

for enhanced analysis of global gene expression datasets. First, TTMap discerns divergent features

in the control group, adjusts for them, and identifies outliers. Second, the deviation of each test sam-

ple from the control group in a high-dimensional space is computed, and the test samples are clus-

tered using a new Mapper-based topological algorithm at two levels: a global tier and local tiers. All

parameters are either carefully chosen or data-driven, avoiding any user-induced bias. The method is

stable, different datasets can be combined for analysis, and significant subgroups can be identified. It

outperforms current clustering methods in sensitivity and stability on synthetic and biological data-

sets, in particular when sample sizes are small; outcome is not affected by removal of control sam-

ples, by choice of normalization, or by subselection of data. TTMap is readily applicable to complex,

highly variable biological samples and holds promise for personalized medicine.

Availability and implementation: TTMap is supplied as an R package in Bioconductor.

Contact: cathrin.brisken@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large datasets are generated at an exponentially increasing pace in

biology and medicine, while the development of tools to analyze them

lags behind. Challenges are posed by the variability of biological, in

particular clinical, samples, data acquisition at different times and on

different platforms and the necessity to compare measurements at dif-

ferent stages of the life cycle of an individual patient. Statistical

methods require large sample numbers to determine the distribution

of the data and to extract statistically significant features (Dillies

et al., 2013). The choice of normalization can be arbitrary and may

affect the outcome of the analysis (Dillies et al., 2013).

Topology is a field of mathematics devoted to the study of shapes.

Topological data analysis is used to reduce dimensions and to recog-

nize patterns (Carlsson, 2009; Chazal and Michel, 2017) in datasets
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as diverse as voting preferences, interactions of basketball players

across games (Lum et al., 2013), and classification of nanoporous ma-

terial (Lee et al., 2017). The clustering method based on algebraic top-

ology, called Mapper (Singh et al., 2007) considers high-dimensional

datasets as point clouds and transforms them into networks; the nodes

are clusters of samples, which are linked when they contain common

samples (Singh et al., 2007). As topology is insensitive to scale and

small deformations, it is useful for the analysis of highly variable and

noisy data and reveals patterns not detected with standard tools

(Cámara, 2016; Chazal and Michel, 2017; Lum et al., 2013). Mapper

has been applied to analyze large biological datasets, such as global

gene expression profiles of breast cancer samples (Nicolau et al.,

2011), temporal single-cell RNA-seq data (Rizvi et al., 2017) and gen-

omic data of viral evolution (Chan et al., 2013). In an approach called

Progression Analysis of Disease (PAD) (Nicolau et al., 2011), global

gene expression data are processed statistically and subsequently ana-

lyzed with Mapper (Cámara, 2016; Chang et al., 2013; De Cecco

et al., 2015; Nicolau et al., 2011).

Most clustering methods including k-means (Hartigan and Wong,

1979), hierarchical clustering (Hennig et al., 2015), PAD (Nicolau

et al., 2011) and Mapper (Singh et al., 2007) require large sample

sizes (Hennig et al., 2015; Osborne and Overbay, 2004; Somorjai

et al., 2003) and depend on parameters, which are chosen by the users

and may affect the outcome (Von Luxburg, 2010). To ensure that

minor perturbations of the dataset do not alter clusters, the methods

applied should be stable (Hennig et al., 2015; Von Luxburg, 2010).

To address these challenges, we developed a stable, topology-

based method for the analysis of global gene expression profiles

called Two-Tier Mapper (TTMap). It combines hierarchical and

partitioning clustering and identifies variation and significant re-

latedness in datasets even when sample numbers are small (n � 3).

2 Approach

Each global gene expression profile is represented as a high-

dimensional vector in R
n with n the number of genes, features or

probes. The input of TTMap is given by two matrices in log-2 scale,

one for the control N the other for the test samples T (Fig. 1a).

Batches are defined as groups of samples sharing a source of vari-

ation, such as experiment date, technical platform for data acquisi-

tion, date or site of sequencing or biological differences, such as

mouse strain, patient age or other.

TTMap consists of two independent parts: the Hyperrectangle

Deviation Assessment (HDA) and the Global-to-Local Mapper

(GtLMap) (Fig. 1a). HDA characterizes the control group, N and

adjusts for outliers to generate the ‘corrected control group’, �N , which

is the reference for calculating the deviation of each individual test

vector. GtLMap uses the Mapper algorithm (Singh et al., 2007) with

the following parameters: a two-tier cover I , the mismatch distance

dM, computed from the previously calculated deviations, a closeness

parameter �, which is data-driven and a special filter function f, which

provides a gradient of proximity to the corrected control group.

Through the filter function the two-tier cover detects global and

local similarities in the deviation patterns, allowing it to capture the

structure of the test group based on relatedness of samples. The test

samples are clustered according to the shape of their deviation. Each

cluster is represented by a sphere the size of which reflects the num-

ber of samples it contains (Fig. 1a). The extent of deviation of indi-

vidual clusters from the corrected control group translates into a

color-code as well as an arrangement from left to right (Fig. 1a).

Subsequent analysis of the commonly changed features in a cluster

discerns the differentially expressed genes (Fig. 1a) (details in

Supplementary Online methods).

3 Materials and methods

3.1 HDA
HDA compares the value of each feature of each control sample N

to the values of that feature of all the other control samples in the

same batch N (Fig. 1a, ‘adjustment of control group’). If the abso-

lute value of the difference between a given value and the median of

the values of all the other samples is more than e, the value is consid-

ered an outlier and replaced by Not a Number ðNAÞ. The e param-

eter is computed using the variances of all the genes, to

accommodate for the variability of the dataset (Supplementary

Online methods). The user can identify highly variable features of

the control group by examining the numbers of replaced values for

each feature (Fig. 1b). A bar plot showing the number of adjusted

values per sample helps identify outliers in the control group (Figs

1c and 4b, Supplementary Figs S1a and S2a).

Thus, HDA creates a matrix that describes the range of expres-

sion values expected in group N corrected for outliers. The (k, j)-co-

efficient of this matrix of the corrected control group, ð �NkÞj, which

corresponds to the jth feature of sample k, is computed by:

ðð �NÞkÞj ¼
�

NA if jðNkÞj�mediani2IðNkÞ;i 6¼kðNiÞjj � e
ðNkÞj otherwise:

;

Here, ðNiÞj denotes the value of the expression of gene j in sam-

ple i, and IðNkÞ � f1; . . . ; Sg is the set of indices of control samples

in the batch containing Nk. NAs are replaced by the median of the

normal values in their batch.

Each feature has a range of values, in which control measure-

ments are expected, for sample Tk and gene j given by

Bk
j ¼

�
min

i2IðTkÞ
ð �NiÞj; max

i2IðTkÞ
ð �NiÞj

�
;

where IðTkÞ is the set of indices of control samples in the batch con-

taining Tk. For each batch, these normal ranges determine a hyper-

rectangle in n-dimensional space Bk ¼ Bk
1 � � � � � Bk

n (Fig. 1d:

example with n ¼ 2).

Each test sample Tk is decomposed as Tk ¼ Nc:Tk þDc:Tk,

where Nc:Tk is the normal component, which is its projection onto

the hyperrectangle Bk and hence is the closest point to Tk inside Bk

(Fig. 1d) and the deviation component ðDc:TkÞ, which is the remain-

der of the projection (Fig. 1d) (Supplementary Online methods).

More precisely, for each test sample Tk and feature j, HDA

computes

�xk
j 2

�
min

i2IðTkÞ
ð �NiÞj; max

i2IðTkÞ
ð �NiÞj

�
;

such that

jðTkÞj � �xk
j j � jðTkÞj � xj

for all

x 2 ½ min
i2IðTkÞ

ð �NiÞj; max
i2IðTkÞ

ð �NiÞj�:

Then,

ðNc:TkÞj ¼ �xk
j for all 1 � j � n

and

ðDc:TkÞj ¼ ðTkÞj � ðNc:TkÞj for all 1 � j � n:
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3.2 GLMap
The second step of TTMap first calculates distances and provides a

visualization of these distances and relations in the dataset, in a

manner analogous to Mapper (Lum et al., 2013). It forms bins

according to a measure of similarity on the test vectors.

The default similarity measure in GLMap is the mismatch dis-

tance, dM given by a sum of mismatches, where a mismatch is

defined by a gene that is differentially expressed in opposite direc-

tion as measured by the deviation component (Supplementary

Online methods, Fig. 1e, n ¼ 1). The deviation must be bigger than

a to avoid counting noise as mismatch. The mismatch distance is

defined as follows (Fig. 1e), for a fixed a � 0

dMðX;YÞ ¼
Xn

i¼1

dmððDc:XÞi; ðDc:YÞiÞ; where

dmðx; yÞ ¼

0 if signðxÞ ¼ signðyÞ;
1 if signðxÞ 6¼ signðyÞ

and jxjorjyj � a
jx� yj

8an
otherwise

:

8>>>><
>>>>:

For the theory to work and without impinging on the practical

results we will consider a slightly modified version of the mismatch

distance on our datasets defined by d	ðX;YÞ ¼ dMðX;YÞ þ d �E ðX;YÞ,
where d �E ðX;YÞ is the bounded Euclidean distance by 1/4 (see

(a) (b)

(d)

(e)

(c)

Fig. 1. TTMap and its components. (a) Schematic overview of the inputs (green) are given by two gene expression matrices, the control (N) and the test group (T )

rows represent genes and columns samples. In Part 1, HDA, TTMap adjusts the control group for outlier values ( �N 	) feature by feature. It calculates deviation

from this corrected control group for individual samples in the test group (Dc:T	). In Part 2, GtLMap, TTMap computes a similarity measure, the mismatch dis-

tance, which is represented as a heatmap, using the deviation components. The Mapper (Singh et al., 2007) algorithm is used with a two-tier cover to generate a

visual representation of the clustering creating a network of global clusters (Overall) and local clusters (first, second, third, fourth quartile of a filter function). It

takes as inputs the mismatch distance and the deviation components. (b) and (c) Outputs generated using the first part of TTMap: histogram showing the number

of features having a certain percentage of outliers (b) and a barplot of the number of outliers per sample in the control group (c) to enable the discovery of highly

variable genes or samples (red, arrow). (d) Scheme of a test sample T with its deviation components Dc:T ¼ ðDc:TA;Dc:TB Þ and normal component Nc:T ¼
ðNc:TA;Nc:TB Þ from the hyperrectangle (box) of normal values, example for n ¼ 2 genes A and B. (e) Scheme defining a match and a mismatch between two devi-

ations components (Dc) of test samples X and Y with cutoff a to remove noise close to 0 (n ¼ 1). The mismatch distance between two samples is the sum of mis-

matches through all the genes

Two-Tier Mapper 3341

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3339/5308599 by guest on 20 April 2024

Deleted Text: Global-to-Local M
Deleted Text: m
Deleted Text: apper (
Deleted Text: )
Deleted Text: &hx2009;
Deleted Text: e


Supplementary Online methods). If features measured are gene ex-

pression values, then the default value does not need to be changed

and is set to a ¼ 1, corresponding to a 2-fold-change, which is a stand-

ard cutoff for gene expression.

Furthermore, GLMap uses a filter function, given by properties

of interest of the samples. It can be chosen by the user to take into

account relevant variables, such as the age of the patients in a co-

hort. The default filter function in GLMap, called total absolute de-

viation and denoted s, measures the overall deviation of a test vector

from the control, i.e.

s : T! R : Tk 7!
X
l2S

jðDc:TkÞlj;

where S is a subset of features, determined by the user, the default

being to select all features, and T is the set of test vectors, which is a

subset of Rn.

Let Ims denote the image of s with multiplicity, i.e.

Ims ¼ fðsðXÞ;rÞjX 2 T; r 2 f1; . . . ;multðXÞgg � R� N;

with the lexicographic order, where multðXÞ ¼ cardðs�1ðsðXÞÞÞ is

the multiplicity of sðXÞ and for any 0 � a < b � 100, let

q½a;b½ ¼ p1ðfy 2 ImsjquantileaðImsÞ � y < quantilebðImsÞgÞ;

where p1 is the natural projection on the first component, and

quantileaðImsÞ is the a-th quantile of the ordered values in Ims.

In default mode, GLMap applies the Mapper algorithm (Lum

et al., 2013) to the quadruple given by the mismatch distance dM, a

closeness parameter � (computed from the data, Supplementary

Online methods, which depends on the variance in the control

group), the total absolute deviation s and the cover of the image

without multiplicity ðfsðXÞjX 2 Tg is given by

I ¼ fp1Ims; q½0;25½; q½25;50½;q½50;75½; q½75;100�g:

This means that GLMap performs single-linkage clustering with

parameter dM, i.e. two samples X and Y are clustered together if and

only if there is a list of samples X ¼ X0;X1; . . . ;Xn ¼ Y such that

dMðXi;Xiþ1Þ < � for all 0 � i � n� 1 to

• all of T, giving the connected components fC01; . . . ;C0lð0Þg of

the graph G� defined by the vertex set fTkg and the edge set

fðTa;TbÞ s:t :dMðTa;TbÞ < �g and then to
• the pre-image with respect to s of each of the quantiles

q½0;25�;q½25;50�; q½50;75�; and q½75;100�, which gives the connected

components fCi1; . . . ;CilðiÞg of the subgraph G�ðiÞ ¼ s�1ðIiÞ,
where Ii 2 I:

Two connected components Cij and Ckl are represented as

spheres with diameters increasing with the number of samples in

each component. The spheres are connected by an edge whenever

Cij \ Ckl 6¼1, i.e. the algorithm links clusters that share samples as

every sample is assessed twice for connectivity, once globally and

once within its quartile, links are formed between local and global

structures, enabling the discovery of subgroups based on the filter

function of the global clusters (Fig. 1a, Part 2).

The color of a sphere in the output figure of the method (see ex-

ample in Section 4.3, Fig. 3b) is determined by the average of the

values of the filter function applied to the samples in the bin. A le-

gend for the color-code is provided at the bottom of the output fig-

ure, for the size of the balls on the right, and for the different tiers

on the left, i.e. the overall clustering and the clustering in the differ-

ent quartiles (Fig. 1a, Part 2). A list of the differentially expressed

genes per cluster is provided.

4 Results

4.1 Theoretical stability assessment
To assess the stability of TTMap theoretically, we studied the effects

of modifications of the source space, of the filter function and of

approximations with a point cloud on its output (Supplementary

Online methods). The absence of a natural distance on the outputs

of TTMap precludes direct assessment of the stability of the TTMap

graphs. Therefore, we summarized the information contained in the

TTMap graphs as a diagram in R
2 (Supplementary Fig. S3e), similar

to a persistence diagram (PD) (Edelsbrunner and Harer, 2010),

where there is a natural distance d that generalizes the distance on

PD, enabling a comparison of TTMap graphs. The PDs summarize

the topological features of the data such as connected components,

holes, branches and dots. We supplemented PDs with links between

the ‘local’ features and the connected components or global clusters,

forming a descriptor, denoted DMðX; f ;IÞ, for a space X and a filter

function f : X! R that verifies mild regularity conditions. In terms

of these enriched PDs, we establish the following theorems, stated

informally here and precisely in the Supplementary Online methods

in Theorems 1.2, 1.4, 1.5, 1.6, respectively.

• Completeness The descriptor is complete: the information con-

tained in the graph of TTMapðX; f ;IÞ can be recovered from the

diagram DMðX; f ;IÞ.
• Stability with respect to changes of the filter function If the filter

function f is perturbed, the distance between the diagrams of f

and of its perturbation is not greater than the amount of

perturbation.
• Stability with respect to perturbations of the domain If the start-

ing space X is perturbed, then the distance between the diagrams

of X and of its perturbation depends linearly on the amount of

perturbation.
• Stability with respect to point cloud approximations If data

points are sampled on a space X, then the difference between the

diagrams associated to X and to the d-neighborhood graph built

on the point cloud is less than a value depending on d.

Thus, the three stability theorems state that the method is stable

upon modifications of the source space, of the filter function, and

upon approximations with a point cloud.

4.2 In silico validation
As TTMap was conceived for datasets of complex biological and

clinical samples with n < 20, we tested its performance using simu-

lated data, in which each sample has 10 000 features. We used R to

generate six control samples, C1–C6, and six test samples; the latter

comprised two subgroups TA (TA1, TA2, TA3) and TB (TB1, TB2,

TB3) characterized by the same features m deviating from the mean of

C1 � C6 in opposite directions, see Supplementary Online methods.

First, we assessed the ability of TTMap to correctly identify the

two clusters using different numbers of significant features m, namely

50, 100, 1000 and 5000, i.e. 0.5, 1, 10 and 50% of all the features for

variance ranging from 0:1 to 1:0. Each condition was tested 30

times. When the distance parameter epsilon that is determining when

two samples cluster together, is calculated using the probability factor

b (see Supplementary Online methods) given by 0.025 corresponding

to the lowest 2.5 percentile of the distribution of the distance dM be-

tween two random variables, and 1% or more of the features were

distinct, TTMap identified the two subgroups with 100% accuracy at

variances <0.3 (Fig. 2a), which corresponds to the variance typically

observed in biological samples (Klebanov and Yakovlev, 2007). When

only 0.5% of the features were distinct, the method failed to
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distinguish between noise and signal and classified all samples as dif-

ferent for variances between 0.4 and 1.0 (Fig. 2a). When b was chosen

equal to 0.975, i.e. the top 2.5 percentile (Fig. 2b), the method per-

formed less well than when b was 0.025 for datasets with 1% or less

significant features but improved accuracy for higher variance for

datasets with 10% or more significant features (Fig. 2a). Overall, the

higher the number of significant features, the better TTMap per-

formed in finding the two subgroups (Fig. 2a and b). Performance

also improved when the difference in mean D was increased from 2 to

4 (Fig. 2c). When we increased the size of the dataset to 100 control

samples and 50 samples in each of the two test subgroups, the accur-

acy of TTMap increased to 100% accuracy across all variances for

datasets with � 10% of significant features (Fig. 2d).

Next, we evaluated the performance of MClust (Fraley and

Raftery, 2002), another clustering method, which, in distinction

from most clustering tools, does not need any parameter selection

on our in silico dataset. Independent of the percentage of significant

features, MClust failed to detect the two clusters (Supplementary

Fig. S4). This is in line with MClust relying on data learning which

requires large datasets. Moreover, the running time of MClust was

45 times longer than that of TTMap, with 3.8 min versus 5 sec. To

assess to what extent the accuracy of TTMap relies on HDA versus

GLMap, we applied MClust to the data after HDA, that is using the

deviation components. This improved the accuracy of MClust to

maximum 30% for datasets with 50% significant features

(Supplementary Fig. S4). Thus, HDA improved the accuracy of

MClust but it remained � 20% accurate for biologically relevant

variance.

To assess the ability of TTMap to correctly identify the features

that determine a cluster, the true positive rate and the true negative

rate, sensitivity and specificity, were computed. In datasets with

variance <0.5 sensitivity was close to 100% (Fig. 2e) and specificity

was > 95% at variances up to 0.4 (Fig. 2f). When a standard statis-

tical method, the moderated-t-test was applied to C1 � C6 versus

(a) (b) (c) (d)

(e)

(i)

(f) (g) (h)

Fig. 2. In silico validation of TTMap. (a-d) Plots showing the accuracy of TTMap in identifying two test subgroups in a dataset at variances 0.1–1.0. Pink shade

highlights biologically relevant range of variance. Datasets with different percentages of significant features (0.5, 1, 10, 50%) determining the subgroups were

tested n ¼ 30 times each. Epsilon was calculated with probability b ¼ 0:025 (a) and b ¼ 0:975 (b). (c) Plot showing accuracy of TTMap for mean difference of the

significant features D¼4 tested n ¼ 10 times per condition. (d) Plot showing accuracy of TTMap when sample size¼ 100 tested n ¼ 10 times per condition. (e) Plot

showing the sensitivity of TTMap i.e. ability to identify true positives at variances 0.1–1.0. Datasets with different percentages of significant features determining

the subgroups were tested n ¼ 30 times each. (f) Plot showing the specificity of TTMap i.e. ability to identify true negatives at variances 0.1–1.0. Datasets with dif-

ferent percentages of significant features determining the subgroups were tested n ¼ 30 times each. (g) Plot showing the sensitivity of the moderated-t-test at var-

iances 0.1–1.0. Datasets with different percentages of significant features determining the subgroups were tested n ¼ 30 times each when subgroups are known

and unknown. (h) Plot showing the specificity of the moderated-t-test at variances 0.1–1.0. Datasets with different percentages of significant features determining

the subgroups were tested n ¼ 30 times each when subgroups are known. (i) Plots showing accuracy of TTMap when the subgroups have different sizes either 4

versus 2 or 5 versus 1 tested n ¼ 10 times per condition. Each panel represents a different percentage of significant features
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the combined test subgroups, TA and TB, no true positives were

identified because the differentially expressed features shared by

TA1 � TA3 and TB1 � TB3 deviated in opposite directions from the

controls (Fig. 2g). This reflects the problem of hidden subgroups and

illustrates a strength of TTMap. When the moderated t-test was

applied to each of the two subgroups separately, its specificity was

> 90% independent of the variance (Fig. 2h), sensitivity was 100%

for variance <0.2 independent of the number of significant features.

At variance 0.3, sensitivity dropped to < 90% and reached < 10%

at variance 1.0 while it was > 94% for TTMap (Fig. 2g). Hence,

TTMap outperforms standard statistical approaches with its ability

to recognize subgroups and is more sensitive at all variances.

To further challenge TTMap’s ability to identify subgroups, we

generated TA and TB of different sizes, i.e. 2 versus 4 and 1 versus 5

samples. Even when one of the subgroups consisted of a single sam-

ple only, as could be the case when the dataset has an outlier, accur-

acy was 100% when � 1% of the features were different from the

control for variance � 0:4 (Fig. 2i).

4.3 Comparison of TTMap to standard clustering tools

on a well-defined biological dataset
To further validate TTMap, we compared it to established clustering

methods, k-means (Hartigan and Wong, 1979) and DBSCAN (Ester

et al., 1996), on well-characterized biological data using the flyatlas

(www.flyatlas.org) with 90-th percentile of the variance equal to

0.0051. This dataset comprises microarray-based RNA expression

profiles from 33 different drosophila tissues pooled from 50 male

and 50 female flies or third instar feeding or wandering larvae, all in

four replicates (Supplementary Table S1). The 132 samples were

compared to four replicate samples from ‘whole adult fly’ serving as

control group N and determined how many organs clustered cor-

rectly, i.e. with exactly their four replicates.

For the standard methods parameters were chosen as to maxi-

mize their performance; minPts in DBSCAN was set to 4, reflecting

the four replicates.

The � parameter of DBSCAN was chosen according to guidelines

(Ester et al., 1996). The k in k-means was set to 33, corresponding

to the number of distinct tissues. DBSCAN and k-means clustered

20 and 15 tissues, respectively, with their four replicates (Fig. 3a).

TTMap, even though not provided with any parameter, clustered 21

tissues uniquely (Fig. 3a). The normalized mutual index score

(NMI) with the clustering given by the 33 tissues clustered uniquely

with their replicates was 0.95 for DBSCAN, 0.93 for k-means and

0.96 for TTMap.

To compare the changes of the different methods upon normal-

ization, the data were quantile-normalized. The 90-th percentile of

the variance was reduced to 0.00494. The NMI between the two

clusterings was 0.993 and 0.90, and 0.997 for DBSCAN, k-means

and TTMap, respectively (Fig. 3a). However, quantile-

normalization increased the number of uniquely clustering tissues to

21 with DBSCAN, to 22 with TTMap and decreased to 10 with k-

means (Fig. 3a). Next, we randomly selected 50% of the genes for

re-clustering of the quantile-normalized data using the random sam-

ple function in R, n ¼ 20. The 90-th percentile of the variance was

further reduced to an average of 0.00491. DBSCAN’s performance

dropped to an average of 12.6 (NMI ¼ 0.84) with a substantial

standard deviation reflecting the difficulty in choosing the epsilon

parameter in this case. k-means improved to 13.2 (NMI ¼ 0.90).

TTMap significantly increased the number of uniquely clustering

Fig. 3. TTMap characterizes deviations of gene expression in different fly organs from whole fly tissues (flyatlas: GSE7763). (a) Barplot representing the number

of uniquely clustering organs on log-transformed data and on quantile-normalized data using DBSCAN, k-means and TTMap, with NMI score reflecting the

changes to the expected results, i.e. all the profiles of the different organs are in a separate cluster. (b) Barplot representing the number of uniquely clustering

organs with random subselection (n ¼ 20) of 50% of the genes on quantile-normalized data using DBSCAN, k-means and TTMap, ***¼P-value¼0.0001, ****¼P-

value< e�08, ns¼not significant. (c) Output of TTMap showing the global clusters (Overall) and local clusters (first, second, third, fourth Q. of the amount of devi-

ation function) with its links to the global clusters. The size of the sphere corresponds to the number of samples in the cluster, the color the average amount of de-

viation. The number above the sphere identifies the clusters and the letters indicate organs inside a cluster (C: carcass, X: adult trachea, Xf: larvae trachea, Q:

fatbody, K: spermatacea virgin, K2: spermatacea mated and K3: spermatacea virgin (redone), V: adult toracic muscle, Qw: fatbody of the wandering larvae, Qf: fat-

body of the feeding larvae, Lw: malpighian tubule of the wandering larvae, Lf: malpighian tubule of the feeding larvae, F: whole larvae, T: Testes, B: Brain).

Outliers are the adult trachea (X) in clusters 3, 5, the larvae trachea (Xf) in cluster 15, as well as the fatbody (Q) in cluster 10
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tissues to 20 (P-value¼ 0.0001013 and 6.596e-09 compared to

DBSCAN and k-means, respectively) (NMI ¼ 0.99) (Fig. 3b). Thus,

TTMap is the most stable method upon normalization and random

subselection and detects the maximum number of uniquely cluster-

ing organs.

Overall, TTMap formed 32 global clusters (Fig. 3c). The gene ex-

pression profiles of whole larvae (F) (Supplementary Table S1) devi-

ated the least (Fig. 3c, cluster 1) and testis (T) and brain (B) the most

from the whole adult fly controls as indicated by the color-code as

well as their positions from left to right (Fig. 3c, cluster 31 and 32).

(a)

(b) (c)

(d)

(f)

(e)

Fig. 4. Estrous cycle related gene expression changes in the mammary glands of C57BL/6 and BALB/c mice; estrous versus proestrous phase. (a) Scheme of mur-

ine estrous cycle. The estrous cycle is divided into Proestrous (P) followed by Estrous (E) and then by Diestrous (D) phase, determined according to the prevalence

of different cell types, nucleated epithelial cells, cornified cells, leukocytes, in the vaginal smear. (b) Barplot representing the number of outlier values in each of

sample of the control group (estrous phase). Samples with high number of outlier values and remain isolated during clustering when E is the test group are identi-

fied as outliers (arrowheads). (c) Venn diagrams of the genes differentially expressed between E versus P using standard analysis tools and TTMap on BALB/c

compared to C57BL/6 analyzed separately. In red, the fraction of common significant genes per strain (% over total number of significant genes). (d) Venn diagrams

of the common differentially expressed genes when the analysis is done separately on the two mouse strains (Separated) or with the two mouse strains combined

into one analysis (Grouped) using TTMap comparing E versus P. Adjacent heatmaps of the deviation components illustrate the reason why the genes were missed;

while on the separated analysis deviations are going into opposite direction, in the grouped analysis the genes deviate in the same direction, but to different ex-

tent. (e) Panther pathway analysis (Mi et al., 2017) of significant genes identified by TTMap in the comparison E versus P shown by FC enrichment of the pathway

with -log(Pval) as a color-code. Fifteen most increased pathways are shown. (f) Boxplots representing the deviation component values in the identified subgroups

of P (P1, P2, P3, P4, P5) by TTMap ordered by amount of deviation compared to the estrous samples (controls) of the genes Lalba, Csn3, Mybpc1 and Irf7. Points

outside the box depict extreme values, upper and lower borders of the box represent lower and upper quartiles, and line inside the box identifies the median
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Four clusters comprised samples from more than one tissue,

while six clusters contained fewer than four replicates, and one clus-

ter comprised four samples not all from the same tissue. The biggest

cluster (Fig. 3c, cluster 16) contained the four replicates of virgin (K)

and mated spermatacea (K2), as well as three replicates of the sper-

matacea redone (K3) along with a single replicate of the adult thor-

acic muscle (V). Interestingly, the fourth replicate of K3 clustered

with the three replicates of V, cluster 30, suggesting a labeling mis-

take, which may explain that standard tools revealed < 10% of the

genes detected by TTMap (Supplementary Fig. S5a and b). Fat

bodies from wandering and feeding larvae (Wq and Fq) clustered to-

gether globally (Fig. 3c, cluster 13). Local Mapping using the filter

function revealed that three of the four Fq replicates were in the

third quartile (Fig. 3c, cluster 64), and three Wq samples were in the

first quartile (Fig. 3c, cluster 36, 43).

This shows that the fat bodies of Wq and Fq share differentially

expressed genes, but their expression levels deviate to different

extents. This is in line with the fat body having the same role in both

developmental states, with an enhanced function when the larvae

are constantly feeding compared to when they are wandering. On

the other hand, cluster 23 comprises tubules from wandering and

feeding larvae (Lw and Lf), which fall into the same quartiles be-

cause they not only share the shape of deviation, but also its extent.

Interestingly, the heterogeneous cluster 2 comprises four replicates

of the adult carcass (C), consisting of everything that is left of the

thorax and abdomen after the gut and sexual tracts have been

removed, and one replicate of the adult trachea (X). These tissues

are anatomically close and technically difficult to dissect, hence

cross contamination is a likely problem. In line with this hypothesis,

the other trachea replicates were in nearby groups 3 and 5. An out-

lier from the fat body (Q) was identified as cluster 10, while the

three other replicates clustered together much further away in terms

of amount of deviation in cluster 20. An identical situation was

noted for the larval trachea (Xf) found in cluster 15 and 19 (Fig. 3c).

Thus, the two-part clustering of TTMap adds information and pro-

vides additional biological insights.

4.4 TTMap and subtle gene expression changes
We challenged TTMap by asking it to identify subtle gene expres-

sion changes as they occur in a complex organ related to cyclic alter-

ations in hormone levels. For this, we studied RNA-seq data from

intact mammary glands from C57BL/6 and BALB/c females, col-

lected in different phases of the estrous cycle—proestrous (P), es-

trous (E) and diestrous (D)—based on the prevalence of different

cell types in their vaginal smears (n ¼ 12) (Snijders et al., 2014)

(Fig. 4a) with 90-th percentile of variance ¼0.18.

Principal component analysis grouped samples according to

strain (Supplementary Fig. S6a); and standard analysis was per-

formed on each strain separately (Snijders et al., 2014) leading to

the identification of differentially expressed genes with a false dis-

covery rate < 0.05 and a low fold change (FC) of jFCj � 1:2

(Snijders et al., 2014).

We considered each of the three cycle phases as the control group

in TTMap and set TTMap’s a parameter lower to log 2ð1:2Þ to be

comparable (Fig. 4c, Supplementary Figs S1b and S2b). The number

of outliers was 6/24 for estrous (E) (Fig. 4b, arrowheads), 4/23 for

diestrous (D) and 4/23 for proestrous (P) (Supplementary Figs S1a

and S2a). TTMap increased the number of significant genes by a fac-

tor of 1.38 in the comparison E versus P in BALB/c and 4.29 in

C57BL/6 (Fig. 4c). Moreover, a 1.08 and 5.29-fold increase in the

number of significant genes in D versus P and E versus D,

respectively, was observed in BALB/c, and a 2.2 and 2.83-fold in-

crease in C57BL/6 in these two comparisons, respectively

(Supplementary Figs S1b and S2b). The overlap of significant genes

between the two strains changed with TTMap compared to the

standard analysis (Snijders et al., 2014). For E versus P, a consistent

increase from 5 to 28% in BALB/c and 19 to 32% in C57BL/6 was

observed (Fig. 4c). For D versus P, it increased from 18 to 36% in

BALB/c and decreased from 47 to 45% in C57BL/6 (Supplementary

Fig. S1b). In E versus D, an increase from 0 to 20% was found for

both strains (Supplementary Fig. S2b).

Next, TTMap considered a strain as a batch (Fig. 4d). This

grouped comparison increased the number of common genes 1.81-

fold (Fig. 4d, Venn diagram) for E versus P and 1.72- and 2.23-fold

for D versus P and E versus D, respectively (Supplementary Figs S1c

and S2c) over the common genes from the separate analyses with

TTMap. The significant genes comprised> 85% of the genes identi-

fied by separate analysis (Fig. 4d, Venn diagram).

Heatmaps of the deviation components showed that the genes

missed by the grouped analysis were differentially expressed in differ-

ent phases of the cycle in BALB/c and in C57BL/6 mice but in opposite

directions (Fig. 4d, Supplementary Figs S1c and S2c, heatmaps on the

left), whereas genes missed by separate analysis deviated in the same

direction from the control in both strains but did so to different extents

and had therefore failed to reach significance in one of the strains

(Fig. 4d, Supplementary Figs S1c and S2c, heatmaps on the right).

Bioinformatic analysis of the genes revealed by grouped analysis

of E versus P using pathway analysis (Mi et al., 2017) revealed

‘angiogenesis’ (FC¼ 2.81, P < 2:23E� 02) and ‘gland development’

(FC ¼ 2.44, P < 4:73E� 02) as important terms (Fig. 4e) missed

with standard tools, and ‘positive regulation of tumour necrosis factor

(TNF) superfamily cytokine production’ (FC ¼ 4.26,

P < 4:28E� 03) in D versus P (Supplementary Fig. S1d) when TNFa
expression was shown to change through the human menstrual cycle

(Amory et al., 2004). Genes in E versus D were related to immune

and inflammatory responses terms (Supplementary Fig. S2d).

Using the filter function to determine the extent of deviation from

the control group, TTMap orders subgroups within each phase. For

P, P1 is closest and P5 furthest from the control (E) (Supplementary

Fig. S6b). Among the significant genes in these subgroups are genes

whose expression was previously shown to vary through the human

menstrual cycle (HuJun et al., 2014; Pardo et al., 2014) (Fig. 4f,

Supplementary Figs S1e and S2e), such as Mybpc1, a progesterone tar-

get gene (HuJun et al., 2014), and the milk protein coding genes

Lalba, Csn3, all missed with standard tools. These genes deviate sig-

nificantly only in subgroups of P (Fig. 4f). In contrast, the normalized

expression levels of Irf7, a gene detected by standard tools, were at

least 1.2-fold higher in all 5P subgroups, as reflected by the deviation

components, compared to E (Fig. 4f). Biologically, estrous cycle

phases are continuous rather than discrete subgroups (Fig. 4a),

TTMap maps samples in-between two phases by providing informa-

tion about the overall closeness to control, as in the case of P1.

This was further validated by KEGG and Panther pathway ana-

lysis of the genes that are differentially expressed between these

phases; we discovered that P1, even though already having downre-

gulated pathways that are common to the five proestrous subgroups,

such as Fatty acid metabolism, P ¼ 0.0025, it had not yet upregu-

lated major pathways like the oxytocin and calcium signaling

pathway. Moreover, fluctuations in hormone signaling are reflected

in P4 which revealed GO molecular pathways such as ‘response to

hormone’ (P ¼ 0.0144), ‘lactation’ (P ¼ 0.0152), ‘response to ster-

oid hormone’ (P ¼ 0.0179), ‘cellular response to hormone stimulus’

(P ¼ 0.0186) and ‘response to progesterone’ (P ¼ 0.0186).
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Thus, TTMap reflects the underlying cyclic biology better than

the standard tools and provides more information and additional

insights into estrous-cycle-related gene expression changes.

5 Discussion

We have developed a topology-based clustering method, TTMap,

that outperforms existing clustering tools, with particular strength

for small sample numbers. Thanks to the two-tier cover, the algo-

rithm is theoretically stable, as expressed precisely in three stability

theorems. The two-tier cover not only provides the global clusters in

an unbiased manner, but provides additional local information using

a filter function that yields deeper insights into the composition of

the clusters. Having a control group enabled us to define a new

topological type of distance on the samples leading to an enhanced

view on the data.

TTMap does justice to biological complexity and detects signifi-

cant subgroups within a cluster. The clustering of data from differ-

ent platforms or batches reflected the existence of samples that are

in between two phases, and revealed subgroups that reflect possible

alterations of hormone levels. For example, TTMap discovered sub-

groups that have differentially expressed genes, known to vary along

the human menstrual cycle (Pardo , 2014) or are under control of

progesterone (HuJun et al., 2014). These subgroups are invisible to

standard tools, since these genes are significantly expressed only in

certain subphases of the estrous cycle.

Existing Mapper applications require that sample sizes are large

and that multiple parameters are selected by the user, the choice of

which is problem-dependent (Cámara, 2016; Chan et al., 2013;

Nicolau et al., 2011; Nielson et al., 2015; Rizvi et al., 2017). Our

improved and extended version of Mapper is user-independent be-

cause it has an optimized parameter selection and it performs well

independently of sample sizes. The method is available as a freely

downloadable library ‘TTMap’ in Bioconductor, enabling wide-

spread application of this useful tool.

As implemented here, the filter function takes into account only

one specific aspect of refinement. To further enhance the method,

one can filter by any metadata, such as categorical information and

numerical data. This flexibility enables the user also to interrogate

the data in various ways. All outputs can be compared, as the global

clusters are independent of the filter function chosen.

TTMap produces individual profiles of deviation from the con-

trol for each sample and relates it to other samples. This, together

with its ability to account for batch effects, make it a promising tool

for personalized medicine, where increasingly complex individual

patient data need to be analyzed and related to other samples.
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