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Abstract

Motivation: With the development of high-throughput sequencing techniques for 16S-rRNA gene

profiling, the analysis of microbial communities is becoming more and more attractive and reliable.

Inferring the direct interaction network among microbial communities helps in the identification of

mechanisms underlying community structure. However, the analysis of compositional data remains

challenging by the relative information conveyed by such data, as well as its high dimensionality.

Results: In this article, we first propose a novel loss function for compositional data called CD-trace

based on D-trace loss. A sparse matrix estimator for the direct interaction network is defined as the

minimizer of lasso penalized CD-trace loss under positive-definite constraint. An efficient alternat-

ing direction algorithm is developed for numerical computation. Simulation results show that

CD-trace compares favorably to gCoda and that it is better than sparse inverse covariance estima-

tion for ecological association inference (SPIEC-EASI) (hereinafter S-E) in network recovery with

compositional data. Finally, we test CD-trace and compare it to the other methods noted above

using mouse skin microbiome data.

Availability and implementation: The CD-trace is open source and freely available from https://

github.com/coamo2/CD-trace under GNU LGPL v3.

Contact: dengmh@pku.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbes play an important role in the environment and human life.

Bacteria have been found in many parts of the biosphere, including

some extreme conditions such as deep sea vents with high tempera-

tures and rocks of boreholes beneath the Earth’s surface (Pikuta et al.,

2007). Micro-organisms are also significant for Earth’s biogeochem-

ical cycles by participating in decomposition, carbon and nitrogen fix-

ation and oxygen production. In the human body, it is estimated that

the number of microbe cells is about 10 times that of the human cells

(Zoetendal et al., 2004). These microbes affect human health and

well-being (Gill et al., 2006). However, microbes affect human health

in ways we have only begun to explore. Analysis of the human micro-

biome may help us to better understand our own genome.

Sequencing technologies have increased in quality, while cost has

decreased, providing an opportunity to analyze microbial communities

through sequencing data. This represents a substantial improvement

over traditional microbial studies, which are hindered by several limit-

ing factors. First, only a small proportion of microbes can be cultured

under laboratory conditions. Second, while only single microbes can be

studied in laboratories, it is well known that most microbes survive and

interact with other microbes, making it correspondingly difficult to

draw firm conclusions from lab studies. In contrast, sequencing technol-

ogies allow researchers to collect information from the whole genomes

of all microbes in a community directly from their natural environment,

facilitating mixed genomic surveys (Handelsman et al., 1998).

Microbes are often represented by common operational taxo-

nomic units (OTUs) after grouping sequencing reads of variable
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regions of 16S-rRNA genes (Wooley et al., 2010). The abundances of

the underlying microbial species are quantified by counting OTUs.

However, these counts are usually converted into compositional data

such as proportions based on total counts in one sample, which only

represent the relative abundances of microbial species, to limit the

biases resulting from different collection scales and various sequenc-

ing depths. This feature of microbiome data is called compositional-

ity. Compositional data present unique challenges for statistical

analysis, since restriction of the constant sum can bring spurious

results if it is ignored [e.g. correlation analysis (Pearson, 1896)]. In

addition, microbiome data are considered high-dimensional, where

the number of measured OTUs is often greater than the sample size.

Such high dimensionality also presents statistical challenges for statis-

tical inference, such as the inference of inverse covariance (Friedman,

2008; Meinshausen and Bühlmann, 2006; Yuan and Lin, 2006).

In ecological studies, we should be able to infer microbial inter-

action networks in specific environments based on high-dimensional

and compositional microbiome data (Faust et al., 2012; Weiss et al.,

2016). Indeed, several methods have been proposed to infer the correl-

ation network for microbiome studies (Fang et al., 2015; Faust et al.,

2012; Friedman and Alm, 2012). However, compared with pair-wise

correlation dependencies that include both direct and indirect interac-

tions, researchers are often more concerned with conditional dependen-

cies which only describe direct interactions (Friedman, 2004). Biswas

et al. (2016) proposed an algorithm called MInt to learn direct interac-

tions based on a Poisson-multivariate normal hierarchical model from

microbiome sequencing experiments. However, MInt does not explicit-

ly account for the compositional nature of microbiome data. Kurtz

et al. (2015) proposed an approximate method called SPIEC-EASI (S-

E) to infer direct interactions in microbiome studies. The key assump-

tion of S-E is that the covariance matrix of the absolute abundances

can be approximated by the covariance matrix of the compositions

after the centered log-ratio (clr) transformation, when the number of

microbes is large enough. Yang et al. (2016) used a hierarchical

Bayesian statistical model called mLDM to infer sparse microbial inter-

actions. However, mLDM introduces too many parameters, limiting

its scalability and efficiency to dimensionality cases. Fang et al. (2017)

proposed a method called gCoda to estimate sparse direct interactions

by penalizing the likelihood function of compositional data. The main

difficulty for gCoda is the non-convexity of the likelihood function.

Therefore, in this paper, we introduce a novel empirical loss function

for compositional data called compositional D-trace(CD-trace) loss,

based on D-trace (Zhang and Zou, 2014) which estimates high-

dimensional sparse precision matrices and proposes a new loss function,

termed D-trace loss. According to the authors, a novel sparse precision

matrix estimator, or inverse covariance matrix with absolute abundance

data, is obtained by minimizing lasso penalized D-trace loss under a

positive-definiteness constraint. The rest of the paper is organized as fol-

lows. In Section 2, we introduce the proposed compositional D-

trace(CD-trace) loss function and the constrained penalized loss mini-

mization framework for direct interaction network estimation. We also

develop an efficient algorithm for numerical computation based on the

alternating direction algorithm. In Section 3, we evaluate the performance

of our method by comparing CD-trace with other state-of-the-art meth-

ods under different simulation settings. The proposed method is further

used to conduct network recovery with mouse skin microbiome data.

2 Materials and methods

2.1 Notations about composition data
Assume D microbe species with absolute abundances z ¼ expðwÞ ¼
ðexpðw1Þ; expðw2Þ; . . . ; expðwDÞÞ respectively, where w ¼ logðzÞ ¼

ðw1;w2; . . . ;wDÞ is the log-transformed absolute abundance. Further

assume that absolute abundances w follow a multivariate normal dis-

tribution with mean l and non-singular covariance matrix R. Then

the precision matrix H ¼ R�1 fully characterizes the direct interac-

tions among microbial species (Whittaker, 1990). More specifically,

the i-th species and j-th species are independent given other species if

and only if the (i, j) element of the precision matrix is 0 (Friedman,

2004). Thus, an important goal of microbial ecology study is to infer

the precision matrix H or the microbial interaction network. If the ab-

solute abundances z ¼ expðwÞ are known, then the precision matrix

H can be estimated with methods such as graphical lasso or D-trace

directly. However, in real biological experiments, it is often the case

that only relative abundances or compositions

xi ¼
ziPD

k¼1 zk

¼ expðwiÞPD
k¼1 exp ðwkÞ

; i ¼ 1; 2; . . . ;D (1)

can be observed, not the absolute abundances expðwÞ, making abso-

lute abundances w become latent variables. Here, we aimed to esti-

mate the precision matrix H among latent variable w from the

observed relative abundances x instead of the unobserved absolute

abundances.

A naive method of inferring the precision matrix with compos-

itional data involves ignoring the compositionality and simply

applying graphical lasso to the log-transformed compositions lnx.

We can illustrate the poor performance of this naive method with a

simple example. We partition 51 species into 3 disjoint groups even-

ly and select a hub for each group. Each hub is connected to other

nodes in the same group with strengths distributed in [�0.2, 0.2]

uniformly. Thus we get a 3-hub graph H. Absolute abundances w

are generated having the normal distribution with mean 051 and co-

variance H�1, and then x is computed according to (1). We consider

four sample sizes n ¼ 100; 200; 500; 1000, and use graphical lasso

to lnx in order to recover the precision matrix. The corresponding

receiver operating characteristic (ROC) curves are shown in

Figure 1 for each sample size. Poor performance is revealed when

the method fails to recover the network, even when the sample size

is very large. This example demonstrates the risk of ignoring compo-

sitionality in network inference.

Fig. 1. ROC curve for different sample sizes with the naive method
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The clr transformation (Aitchison, 1981) is often used in the ana-

lysis of compositional data. The clr transformation matrix F ¼
I � 1

D 1D1T
D satisfies RankðFÞ ¼ D� 1; F1D ¼ 0 and F2 ¼ F, where

I is the identity matrix and 1D is a D-dimensional all-ones vector.

The data with clr transformation are F ln x ¼ Fw� lnð
PD

k¼1

exp ðwkÞÞF1D ¼ Fw. The corresponding covariance matrix is

F VarðlnxÞF ¼ F VarðwÞF (2)

where Varðln xÞ and VarðwÞ are the covariance matrix of ln x and

w, respectively. Equation (2) is an important bridge between the co-

variance matrix of log-transformed relative abundances (or compo-

sitions) and absolute abundances. In the following section, we

introduce a loss function to estimate the precision matrix H among

the latent variable w from the compositional data by utilizing this

bridge.

2.2 The D-trace loss function
We start with some notations and definitions for convenience.

Suppose that A ¼ ðAi;jÞ 2 RD�D is a D �D matrix. Then, we denote

jjAjjF ¼ ð
P

i;j A2
i;jÞ

1=2 as its Frobenius norm and jjAjj1;off ¼
P

i 6¼j jAijj
as the off-diagonal ‘1 norm. The transposition and trace of A is

denoted as AT and tr(A), respectively. Let vec(A) be the D2-vector

by stacking the columns of A. For two symmetric matrices X;Y 2
RD�D; X�Y means that X – Y is positive semi-definite, and X � 0

means that X is positive definite. We use hX;Yi to denote trðXYTÞ
in this paper and we have hA;Ai ¼ jjAjj2F.

Importantly, our goal is to estimate the precision matrix H with

the observed compositional data instead of the otherwise unattain-

able absolute abundances. Similar to Zhang and Zou (2014), we

want to construct a new convex loss function LðH;RÞ such that its

unique minimizer for the given R is achieved at H ¼ R�1. In other

words, the minimizer of the loss function LðH;RÞ should satisfy

HR ¼ I. Consider the following loss function

LDðH;RÞ ¼
1

4
hFH;HFRFi þ hFRFH;HFiÞ � hH;Fið (3)

as the D-trace loss function for compositional data. It is easy to

check that

LðH1;RÞ þ LðH2;RÞ � 2L
H1 þH2

2
;R

� �

¼ 1

8
hFðH1 �H2Þ; ðH1 �H2ÞFRFi

þ1

8
hFRFðH1 �H2Þ; ðH1 �H2ÞFi � 0

holds for D � D symmetric matrices H1; H2, which implies that

LDðH;RÞ is convex as a function of H for a given R. To find the min-

imizer of (3) for a given R, we show that the derivation of LDðH;RÞ
with respect to H is

@LD

@H
¼ ðFHFRF þ FRFHFÞ=2� F: (4)

If the covariance matrix R and the clr transformation matrix is

exchangeable, namely

FR ¼ RF; (5)

then the derivation in Equation (4) can be written as

@LD

@H
¼ 1

2
FðHRþ RH� 2IÞF: (6)

It is easy to see that H ¼ R�1 solves Equation (6). Therefore, it is

also a minimizer of LDðH;RÞ since LDðH;RÞ is convex.

The exchangeable condition in Equation (5) is equivalent to

1D1T
DR ¼ R1D1T

D or
P

l Covðwi;wlÞ ¼
P

l Covðwj;wlÞ for all

i; j ¼ 1; 2; . . . ;D, which is similar to the condition in Sparse

Correlations for Compositional data (SparCC), as Friedman and

Alm (2012) proposed to infer the pair-wise correlations of basis

abundance rather than their proportions. They assume thatP
l 6¼i Covðwi;wlÞ ¼ 0; i ¼ 1; 2; . . . ;D. To elucidate the nature of the

two assumptions, consider the special case where VarðwiÞ; i ¼
1; 2; . . . ;D are the same. Then our exchangeable condition simplifies

to
P

l 6¼i Corðwi;wlÞ; i ¼ 1; 2; . . . ;D is the same, in other words, the

average correlation with other species is nearly the same for each

species. Similarly, the assumption in SparCC simplifies toP
l 6¼i Corðwi;wlÞ ¼ 0; i ¼ 1; 2; . . . ;D, namely, the average correl-

ation is very small. We see that our condition is weaker than the as-

sumption in SparCC in this special case.

At the end of this section, we point out another advantage of the

proposed loss function. Although we cannot estimate the covariance

matrix R ¼ VarðwÞ in loss function (3) from the observed relative

abundances x directly, we can estimate FRF ¼ FVarðlnxÞF
[Equation (2)] since VarðlnxÞ can be easily estimated with the finite

sample covariance matrix.

2.3 Lasso penalized estimator
In real applications, by plugging in the finite sample covariance ma-

trix of VarðlnxÞ and using the bridge described in the last section,

we get the empirical version of CD-trace loss

LDðHÞ ¼
1

4
hFH;HFR̂ lnxFi þ hFR̂lnxFH;HFiÞ � hH; Fi:
�

(7)

The sparse assumption holds that the direct interaction network

is sparse when D is large; in this case, we incorporate the ‘1 penalty

(Tibshirani, 1996) on the off-diagonal elements of H into CD-trace

loss. Hence, our estimator for the precision matrix is proposed as

Ĥ ¼ argmin
H�0

LDðHÞ þ kjjHjj1; (8)

where k > 0 is a tuning parameter. We develop an efficient alternat-

ing direction method of multipliers (ADMM) (Boyd et al., 2011) to

solve the objective function (8) in Section 2.4. Following the idea of

Zhao et al. (2014), we select the tuning parameter by minimizing

the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), as

BIC ¼ njjFHFR̂lnxF þ FR̂lnxFHFÞ=2� Fjj1 þ logðnÞjHj0;

where jHj0 is the number of non-zero elements in the upper-triangle

of H and n is the sample size.

2.4 Algorithm
Directly minimizing the objective function (3) is difficult; therefore, we

first introduce four auxiliary matrices Hi,i ¼ 1; 2; 3;4, and rewrite (8) as

argmin
H1¼H2¼H3¼H4

L1ðH1Þ þ L2ðH2Þ þ kjjH3jj1;off þ hðH4��IÞ (9)

where L1ðH1Þ ¼ 1
4 hFH1;H1FR̂lnxFi � 1

2 hH1; Fi; L2ðH2Þ ¼ 1
4 hFR̂ lnx

FH2;H2Fi � 1
2 hH2;Fi and hðH4��IÞ is an indicator function

defined by

hðH4��IÞ ¼ 0 H4��I;
1 otherwise:

�
(10)

Note that solving (9) is equivalent to minimizing (8) since

LDðHÞ ¼ L1ðHÞ þ L2ðHÞ. The auxiliary matrices H3 and H4 are

3406 H.Yuan et al.
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introduced to handle the ‘1 penalty and positive-definite constraint

in (8). Consider the following augmented Lagrangian function

LðH1;H2;H3;H4;K1;K2;K3;K4;K5Þ

¼ L1ðH1Þ þ L2ðH2Þ þ kjjH3jj1;off þ hðH4��IÞ

þ < K1;H3 �H1 > þ < K2;H2 �H3 >

þ < K3;H1 �H2 > þ < K4;H4 �H1 >

þ < K5;H2 �H4 > þðq=2ÞjjH3 �H1jj2F
þðq=2ÞjjH2 �H3jj2F þ ðq=2ÞjjH1 �H2jj2F
þðq=2ÞjjH1 �H4jj2F þ ðq=2ÞjjH2 �H4jj2F;

(11)

where q is a given positive real number and K1;K2;K3 are

Lagrangian multipliers. Following the idea of ADMM algorithm,

we can solve (11) by updating H1;H2;H3;H4;K1;K2;K3;K4;K5 it-

eratively. Specifically, given Hk
1; Hk

2; Hk
3; Hk

4 and Kk
1; Kk

2; Kk
3;

Kk
4; Kk

5 at the k-th step, the estimators are updated alternately

according to

Hkþ1
1 ¼ argmin

H1

LðH1;H
k
2;H

k
3;H

k
4;K

k
1;K

k
3;K

k
4Þ (12)

Hkþ1
2 ¼ argmin

H2

LðHkþ1
1 ;H2;H

k
3;H

k
4;K

k
2;K

k
3;K

k
5Þ (13)

Hkþ1
3 ¼ argmin

H3

LðHkþ1
1 ;Hkþ1

2 ;H3;K
k
1;K

k
2Þ (14)

Hkþ1
4 ¼ argmin

H4

LðHkþ1
1 ;Hkþ1

2 ;H4;K
k
4;K

k
5Þ (15)

Kkþ1
1 ¼ Kk

1 þ qðHkþ1
3 �Hkþ1

1 Þ

Kkþ1
2 ¼ Kk

2 þ qðHkþ1
2 �Hkþ1

3 Þ

Kkþ1
3 ¼ Kk

2 þ qðHkþ1
1 �Hkþ1

2 Þ

Kkþ1
4 ¼ Kk

4 þ qðHkþ1
4 �Hkþ1

1 Þ

Kkþ1
5 ¼ Kk

5 þ qðHkþ1
2 �Hkþ1

4 Þ:

(16)

The explicit solutions to the above optimization problems and

the detailed proofs are found in the Supplementary Material. We

summarize this ADMM algorithm in the following Algorithm 1.

The convergence of Algorithm 1 is guaranteed by the convergence

theory for alternating direction method provided by Boyd et al.

(2011). In our simulations and real data analysis, we take q ¼ 50

and terminate the algorithm if jjHkþ1
j �Hk

j jjF < 10�3

maxð1; jjHk
j jjF; jjHkþ1

j jjFÞ; j ¼ 1; 2; 3;4.

3 Results

3.1 Simulation
To evaluate the performance of CD-trace loss, we conducted experi-

ments under several different scenarios and compared the results to

the other three state-of-the-art methods, including gCoda (Fang

et al., 2017), S-E(mb) and S-E(glasso) (Kurtz et al., 2015). Assume

D species and n samples, and further assume that the sparsity of the

network is controlled by the number of edges, e < DðD� 1Þ=2, in

the graph. In our simulations, we set the number of compositions

D ¼ 50 and the number of edges e ¼ 150, while the sample size is

varied n ¼ 100, 200 and 500. We focus on three representative net-

work structures, including band-like, block and scale-free graphs.

1. Band graph: a chain in which nodes are connected with their

nearest neighbors. We first fill the off-diagonal elements ði; i� 1Þ

and ði� 1; iÞ; i ¼ 1; 2 . . . ;D in the adjacent matrix, and then fill

ði; i� 2Þ and ði� 2; iÞ off-diagonal elements. . .We stop this pro-

cedure until there are more than e edges in the graph. We finally

remove some edges randomly to ensure there are e ¼ 150 edges

left in the graph.

2. Block graph: partition the D ¼ 50 nodes into h ¼ 7 disjoint

blocks randomly and connect the nodes in the same block with

each other. We finally remove some edges randomly to ensure

there are e ¼ 150 edges left in the graph.

3. Scale-free graph: we produce a scale-free graph following the

standard B-A algorithm (Barabási and Albert, 1999). Start with

two connected nodes and connect each new node with only one

node in the current graph with probability proportional to the

current degree. We stop this procedure until there are e ¼ 150

edges in the graph.

The examples of band-like, cluster and scale-free network topolo-

gies are shown in Figure 2. The strength between the connected nodes

is uniformly generated from ½�M;�m� [ ½m;M�, where m;M > 0. We

take m ¼ 2 and M ¼ 3 in our experiments. The diagonal elements are

set large enough to ensure that the precision matrix H is positive defin-

ite. Finally, the covariance matrix R is the inverse of the precision ma-

trix. Then, the log-transformed absolute abundances w are sampled

from the multivariate normal distribution with covariance R, such that

the observed compositional data are generated according to (1). We

took the advantage of R package ‘SpiecEasi’ developed by Kurtz et al.

(2015), which is available at https://github.com/zdk123/SpiecEasi/tree/

master, to generate the above-mentioned networks and corresponding

precision matrixes. This package also provides implementation of

S-E(mb) and S-E(glasso), while the code for gCoda is available from

https://github.com/huayingfang/gCoda.

We used CD-trace loss, S-E(mb), S-E(glasso) and gCoda to re-

cover the network for each simulated dataset. The true positive rate

and true negative rate were evaluated at different tuning parameters

Algorithm 1. The ADMM algorithm for the lasso penalized

D-trace loss estimator.

Initialization: k¼0, let H0
1;H

0
2;H

0
3;H

0
4 ¼ ðFR̂F þ 5IÞ�1, and

K10;K0
2;K

0
3;K

0
4;K

0
5 to be zero matrix.

Given Hk
i ; i ¼ 1; 2; 3;4 and Kk

i ; i ¼ 1;2; 3; 4;5

at the kth step, we update:

(a)
Hkþ1

1 ¼ GðF;FR̂lnxF; 2qHk
3 þ 2qHk

2

þ2qHk
4 þ F þ 2Kk

1 � 2Kk
3 þ 2Kk

4;6qÞ

(b)
Hkþ1

2 ¼ GðFR̂lnxF; F; 2qHk
3 þ 2qHkþ1

1

þ2qHk
4 þ F þ 2Kk

3 � 2Kk
2 � 2Kk

5;6qÞ

(c) Hkþ1
3 ¼ SððqHkþ1

1 þ qHkþ1
2 � Kk

1 þ Kk
2Þ=2q; k=2qÞ

(d) Hkþ1
4 ¼ qHkþ1

1 þqHkþ1
2 �Kk

4þKk
5

2q

h i
þ

(e) Kkþ1
1 ¼ Kk

1 þ qðHkþ1
3 �Hkþ1

1 Þ
(f) Kkþ1

2 ¼ Kk
2 þ qðHkþ1

2 �Hkþ1
3 Þ

(g) Kkþ1
3 ¼ Kk

3 þ qðHkþ1
1 �Hkþ1

2 Þ
(h) Kkþ1

4 ¼ Kk
4 þ qðHkþ1

4 �Hkþ1
1 Þ

(i) Kkþ1
5 ¼ Kk

5 þ qðHkþ1
2 �Hkþ1

4 Þ

Repeat steps (a)–(i) until convergence.

Output Hkþ1
3 as the estimate of the precision matrix R�1.
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and used to generate the ROC curve. We ran the simulation 100

times for each sample size and graph structure, and then compute

the average area under the ROC curve (AUC).

The mean and standard deviation of AUC values for different

sample sizes and graph structures are presented in Table 1 and

Figure 3. CD-trace achieves higher AUC and lower standard devi-

ation in most cases, implicating that CD-trace is more accurate and

stable in network recovery. In band graph, the performance of the

four methods is comparable when the sample is relatively small

(n ¼ 100), while CD-trace and S-E(mb) performs better with higher

AUC and smaller variance when the sample is relatively large

(n ¼ 500). For block graph, CD-trace achieves higher AUC across

all scenarios (n ¼ 100, 200, 500), and the superiority of CD-trace is

more significant when the sample size is larger. In scale-free graph,

CD-trace and gCoda performs better than S-E(glasso) and S-E(mb)

under different sample sizes (n ¼ 100, 200, 500). Although the per-

formance of gCoda is slightly better than CD-trace when the sample

size is 100, the performance of CD-trace is comparable to gCoda

when the sample size is 200 and 500. Generally speaking, CD-trace

and gCoda performs better than S-E(glasso) and S-E(mb) in most

scenarios. As Fang et al. (2017) claimed, the key approximate as-

sumption in S-E(glasso) and S-E(mb) strongly depends on the condi-

tion number of the precision matrix, which influences their

performance in network inference. The performance of CD-trace is

comparable to that of gCoda, benefitting from their similar log-

normal distribution and sparsity assumptions. CD-trace further

assumes the exchangeable condition, which makes the objective

function more concise than that of gCoda. Moreover, the objective

function of CD-trace is convex, which avoids the non-convex opti-

mization problem in gCoda. The four methods achieve better per-

formance in band graph and block graph than in scale-free graph.

This indicates network inference is also influenced by the graph

structure. The ROC curve for different sample sizes and graph struc-

tures are shown in Figures 4–6. The result of CD-trace is more stable

and has larger AUC in most cases. In general, CD-trace performs

better in direct interaction network recovery and estimation.

3.2 Real data analysis
To validate the performance of CD-trace on recovering the direct

interactions from real compositional data, we applied CD-trace,

gCoda, S-E(mb) and S-E(glasso) to infer the direct interaction net-

works of microbes in mouse skin. These mouse skin microbiome

data are from a study population of 261 mice (Srinivas et al., 2011),

and the samples are divided into three groups according to the

health conditions of skin immunizations. The control (Control)

group consists of 78 non-immunized samples, and the Healthy

group has 119 immunized healthy samples and the epidermolysis

bullosa acquisita (EBA) group consists of 64 immunized individuals.

We further filtered the data by removing OTUs, the appearance

of which did not exceed 60% in samples and by removing

samples with more than 60% 0s collected as Fang et al. (2017)

did in their analysis. We finally arrived at a dataset with D¼60

OTUs and n¼229 samples (64 Control samples, 112 healthy sam-

ples and 53 EBA samples) for evaluation. We added all OTU counts

by 0.5 to avoid zero counts and normalized the data to composition-

al data.

We applied the aforementioned four methods to construct the

direct interaction network for each group. Figure 7 represents the

difference among the edges recovered by the four methods in each

group (Control, Healthy and EBA). The common edges shared by

S-E(mb) and S-E(glasso) are more than other combinations, since

they are two variants of S-E. A total of 22, 56 and 23 edges were dis-

covered by all four methods for the Control, Healthy and EBA

group respectively. Most edges recovered by CD-trace were also

verified by the other methods.

Since we did not have prior information for the true interaction

network among taxons in real data, we compared the consistent re-

producibility of the four methods, as suggested by Fang et al. (2017)

and Kurtz et al. (2015). To be more specific, we used all data to

(a) (b) (c)

Fig. 2. The network topologies of band, block and scale-free graph in simulations. (a) Band, (b) block and (c) scale-free

Table 1. The mean and standard deviation of AUC values for differ-

ent sample sizes and graph structures

n¼100 n¼200 n¼500

Band

CD-trace 0.8787 (0.0152) 0.9477 (0.0085) 0.9844 (0.0024)

gCoda 0.8651 (0.0136) 0.9245 (0.0082) 0.9600 (0.0036)

S-E(glasso) 0.8678 (0.0124) 0.9089 (0.0103) 0.9355 (0.0064)

S-E(mb) 0.8706 (0.0158) 0.9286 (0.0117) 0.9667 (0.0052)

Block

CD-trace 0.8598 (0.0175) 0.9405 (0.0090) 0.9856 (0.0027)

gCoda 0.8523 (0.0152) 0.9238 (0.0083) 0.9725 (0.0034)

S-E(glasso) 0.8499 (0.0136) 0.8961 (0.0097) 0.9273 (0.0081)

S-E(mb) 0.8362 (0.0148) 0.8982 (0.0115) 0.9415 (0.0074)

Scale-free

CD-trace 0.8038 (0.0207) 0.9075 (0.0127) 0.9763 (0.0048)

gCoda 0.8156 (0.0214) 0.9081 (0.0122) 0.9710 (0.0043)

S-E(glasso) 0.7701 (0.0194) 0.8490 (0.0133) 0.9104 (0.0101)

S-E(mb) 0.7492 (0.0220) 0.8469 (0.0170) 0.9330 (0.0099)

Note: The values in parenthesis are standard deviations.
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construct a direct interaction network as our gold standard for each

method, and then selected 70% of the samples randomly to estimate

the direct interaction network with each method, respectively. The

number of edges shared by the sub-sample estimator and the gold

standard were measures of the consistent reproducibility. We used

the fraction of these common edges in the gold standard as our con-

sistent reproducibility. We repeated this procedure 20 times and

summarized the mean consistent reproducibility in Table 2. The

consistent reproducibility of CD-trace, gCoda and S-E(glasso) fluc-

tuated around 80%, which is significantly better than S-E(mb). In

(a) (b) (c)

Fig. 5. ROC curve for different graph structures with sample sizes n¼200. (a) Band, (b) block and (c) scale-free

(a) (b) (c)

Fig. 4. ROC curve for different graph structures with sample sizes n¼100. (a) Band, (b) block and (c) scale-free

(a) (b) (c)

Fig. 3. Average area under ROC curve for different sample sizes and graph structures. (a) Band, (b) block and (c) scale-free
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Control group and EBA group with fewer samples, CD-trace per-

formed slightly better than gCoda and S-E(glasso). For healthy

group with more samples, the consistent reproducibility of gCoda

and S-E(glasso) was higher than CD-trace. The networks con-

structed with all data for the three groups are lefted in the

Supplementary Figures S1–S3. We also compared the false positive

count of the four methods as Fang et al. (2017) did. We used the

count of edges inferred by CD-trace, gCoda, S-E(mb) and S-

E(glasso) from shuffled data to measure the false positive count,

since we expected to find no interaction among species from shuffled

data. We generated 20 shuffled datasets to compute the false posi-

tive count, and the averaged results are summarized in Table 2. The

average false positive count of CD-trace is less than that of the other

three methods across all three groups, and the results of S-E(mb)

and S-E(glasso) are generally the worst.

4 Discussion

In this paper, we propose a loss function for compositional data

based on D-trace loss, which enabled us to estimate the direct inter-

action network among microbial communities with observed com-

positional data. A lasso penalized estimator was proposed and an

effective algorithm was developed for numerical estimation. We

found that CD-trace performs well in both simulation and real data

analysis. The convexity of the CD-trace loss function makes numer-

ical solution more convenient than the non-convex likelihood func-

tion in gCoda. Moreover, CD-trace makes use of the bridge between

the observed compositional data and the unobserved latent varia-

bles, enabling us to estimate the transformed covariance with com-

positional data directly.

The proposed method is based on compositions instead of

counts. The count data of 16S-rRNA genes are usually over-

dispersed and highly sparse because of excessive numbers of zeros in

count data. We add OTU counts by 0.5 in real applications to avoid

zero counts and normalize the data to compositional data, which

brings an inflation of logð0:5Þ to compositions and it may be over-

simplified to assume compositions follow a logistic normal distribu-

tion. The excessive numbers of zeros in count data, of course, also

contains information for the distribution of compositions and abso-

lute abundances. How to construct models to handle these zeros and

make use of information from these zeros needs further study. The

same as gCoda and S-E, the computational complexity of CD-trace

is Oðp3Þ, since it conducts eigenvalue decomposition in each iter-

ation. Thus, the scalability of CD-trace is comparable with gCoda

and S-E. The consistency of the estimator is not guaranteed, which

(a) (b) (c)

Fig. 7. Venn figure of edges recovered by four different methods for each group. (a) Control, (b) healthy and (c) EBA

(a) (b) (c)

Fig. 6. ROC curve for different graph structures with sample sizes n¼500. (a) Band, (b) block and (c) scale-free

Table 2. Consistent reproducibility and false positive count for

CD-trace, gCoda, S-E(mb) and S-E(glasso)

Consistent reproducibility False positive count

Group Control Healthy EBA Control Healthy EBA

CD-trace 0.87 (0.04) 0.79 (0.03) 0.85 (0.04) 2.45 2.95 1.70

gCoda 0.85 (0.06) 0.82 (0.04) 0.82 (0.07) 8.50 6.05 5.55

S-E(glasso) 0.86 (0.06) 0.83 (0.05) 0.84 (0.06) 11.45 10.55 12.50

S-E(mb) 0.80 (0.05) 0.75 (0.06) 0.77 (0.06) 12.00 11.10 12.15

Note: The values in parenthesis are standard deviations.
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is a common problem of CD-trace, gCoda and S-E. More efforts are

needed to establish the theoretical results in relation to the consist-

ency of these estimators.
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