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Abstract

Motivation: Whole exome sequencing (WES) studies for autism spectrum disorder (ASD) could

identify only around six dozen risk genes to date because the genetic architecture of the disorder is

highly complex. To speed the gene discovery process up, a few network-based ASD gene discov-

ery algorithms were proposed. Although these methods use static gene interaction networks, func-

tional clustering of genes is bound to evolve during neurodevelopment and disruptions are likely

to have a cascading effect on the future associations. Thus, approaches that disregard the dynamic

nature of neurodevelopment are limited.

Results: Here, we present a spatio-temporal gene discovery algorithm, which leverages informa-

tion from evolving gene co-expression networks of neurodevelopment. The algorithm solves a

prize-collecting Steiner forest-based problem on co-expression networks, adapted to model neuro-

development and transfer information from precursor neurodevelopmental windows. The deci-

sions made by the algorithm can be traced back, adding interpretability to the results. We apply

the algorithm on ASD WES data of 3871 samples and identify risk clusters using BrainSpan co-

expression networks of early- and mid-fetal periods. On an independent dataset, we show that

incorporation of the temporal dimension increases the predictive power: predicted clusters are hit

more and show higher enrichment in ASD-related functions compared with the state-of-the-art.

Availability and implementation: The code is available at http://ciceklab.cs.bilkent.edu.tr/st-steiner.

Contact: cicek@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Autism spectrum disorder (ASD) is a common neurodevelopmental dis-

order that affects �1.5% of the children in the USA (Developmental

Disabilities Monitoring Network Surveillance Year 2010 Principal

Investigators and Centers for Disease Control and Prevention (CDC),

2014). Recent whole exome sequencing (WES) efforts have paved the

way for the identification of dozens of ASD-risk genes (De Rubeis

et al., 2014; Iossifov et al., 2012, 2014; Neale et al., 2012; O’Roak

et al., 2012; Sanders et al., 2012, 2015). Unfortunately, this number

corresponds to only a small portion of the large genetic puzzle, which

is expected to contain around a thousand genes (He et al., 2013).

Detection of de novo loss-of-function (dnLoF) mutations has been the

key for gene discovery due to their high signal-to-noise ratio. However,

such mutations are rare and they affect a diverse set of genes. Thus, for

most of the genes, the rarity and diversity of variants prevent statistical-

ly significant signals from being observed. Therefore, despite analyzing

thousands of trios, our yield of discovered genes is still low. The jour-

ney toward getting the full picture of the genetic architecture will take

a long time and will be financially costly.

Several statistical gene scoring methods have been developed for

disease risk prioritization. TADA quantifies the excess variation sig-

nal by integrating information from de novo and transmitted vari-

ation as well as information from case–control studies (He et al.,

2013; Sanders et al., 2015). D-Score uses gene expression signals
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from cell-type specific gene expression in mouse brain to pinpoint

dnLoF mutations confer disease risk and improve specificity (Zhang

and Shen, 2017). Finally, Krishnan et al. (2016) uses well-

established ASD genes and their interaction patterns to train a classi-

fier to predict new susceptibility genes that follow a similar pattern.

Such scoring methods have enabled guilt-by-association-based gene

discovery techniques to further search for connected components on

functional gene interaction networks. These methods assume ASD-

risk genes are working as a functional cluster. Starting from already

known risk genes, these techniques predict a cluster of closely inter-

acting genes. There are only a few network-based ASD-tailored gene

discovery algorithms in the literature: NETBAG (Gilman et al.,

2011, 2012), DAWN (Liu et al., 2014, 2015) and MAGI

(Hormozdiari et al., 2015). Despite having fundamental differences

in their approaches, all of these methods have one point in common:

the biological gene interaction networks that they use are static.

NETBAG constructs an integrated network through a comprehen-

sive analysis of many annotation resources (e.g. Gene Ontology (GO),

protein domains), and numerous available interaction networks (e.g.

Protein Protein Interaction (PPIs), KEGG pathways). On the network,

the method assigns each gene pair an interaction score that signifies the

likelihood of those genes participating in a genetic phenotype. Then,

by following a greedy seed-and-extend procedure, it generates many

clusters of genes and returns the cluster with the maximal score that is

significant with respect to a permutation test. MAGI uses two PPIs:

STRING (Szklarczyk et al., 2010) and HPRD (Keshava Prasad et al.,

2008). It also makes use of the co-expression network generated by

using full (all brain regions and neurodevelopmental periods) data

from the BrainSpan dataset (Sunkin et al., 2012). MAGI follows a

seed-and-extend-based approach similar to NETBAG to generate seed

pathways that are enriched with dnLoFs in cases, compared with con-

trols. Then, it merges the pathways as long as the cluster score is

improved. DAWN estimates partial co-expression networks using

BrainSpan, but for only small windows of the neurodevelopment that

are indicated as hotspots for ASD (Willsey et al., 2013). Unlike

NETBAG and MAGI, which use phenotype-neutral networks,

DAWN’s approach favors links to already known ASD genes. It pre-

dicts ASD genes by assigning a posterior risk score to each gene based

on its interactions with other genes, using a hidden Markov random

field-based approach. We also would like to mention the method by

Krishnan et al. (2016), which uses a data-driven tissue-specific net-

work, where thousands of experiments from the literature are inte-

grated in a Bayesian framework (Greene et al., 2015). Instead of

predicting a module like the other described methods, this method uses

the known ASD genes and their connectivity patterns as features to

train an Support Vector Machine (SVM) classifier, and then assign

every gene a probability of being associated with ASD.

Clearly, none of the above-mentioned methods consider the fact that

gene interactions (co-expressions) evolve over time. It is demonstrated

that different neurodevelopmental spatio-temporal windows have differ-

ent topologies and consequently, the clustering of ASD susceptibility

genes changes drastically (Willsey et al., 2013). Moreover, dysregulation

of pathways in earlier periods has cascading effects on the circuitry of

the future time periods. For instance, Belinson et al. (2016) show that

abnormalities in b-catenin/BRN2/TBR2 transcriptional cascade during

embryonic brain development affects production of deep layer projection

neurons, which leads to abnormal brain structures and autism-like be-

havioral abnormalities during adulthood. Hence, we argue that the state-

of-the-art methods are limited in predictive power, since static networks

they use would fail to capture the dynamic nature of neurodevelopment.

In this article, we propose a novel ASD gene discovery algorithm

termed ST-Steiner. The algorithm modifies the prize-collecting

Steiner forest (PCSF) problem and extends it to spatio-temporal net-

works in order to mimic neurodevelopment. Instead of performing

gene discovery on a single network or any number of networks sep-

arately, ST-Steiner solves an optimization problem progressively

over a cascade of spatio-temporal networks while leveraging infor-

mation coming from earlier neurodevelopmental periods. The algo-

rithm has three novel aspects: (i) for the first time, the problem is

solved on a cascade spatio-temporal co-expression networks so that

the dynamic nature of neurodevelopment is taken into account;

(ii) the results are more interpretable compared with other methods

in the literature, since the decisions made by the algorithm can be

traced back on the spatio-temporal cascade; (iii) as the problem is

formulated as a PCSF prediction problem, the algorithm predicts

only the genes that are essential for the connectivity of known risk

genes. Note that this is in contrast to the other approaches which

can return redundant paths between known risk genes.

We apply the algorithm on exome sequencing data from

De Rubeis et al. (2014) and identify gene clusters using two gene co-

expression network cascades of early- and mid-fetal periods.

Incorporation of the information from the early-fetal period enables

ST-Steiner to predict genes that were not captured by other methods

due to the limitation of their static networks. ST-Steiner predicts

genes that are related to kinesins (i.e. KIF23 and 4 others) and

kinetochore-microtubule attachment processes (NDC80, SGOL2).

These two functions work closely for chromosome alignment during

mitosis but has very subtle ties to ASD in the literature.

For the first time, we benchmark the performances of the

network-based ASD gene discovery algorithms on common training

data. We validate the predicted clusters with independent exome

sequencing data and find that ST-Steiner’s predictions (i) more favor-

able with respect to a precision–recall scan when compared with the

state-of-the-art methods; (ii) overlap more with targets of known

ASD-related transcription factors and (iii) enriched more in ASD-

related KEGG pathways. We also show in various controlled settings

that using temporal information boosts the predictive power, which

supports our claim that the clustering of risk genes is spatio-temporal.

2 Materials and methods

2.1 Overview and background of ST-Steiner
The method we propose to remedy the problems posed by using

static networks is built on prize-collecting Steiner tree (PCST) prob-

lem. The goal is to find a tree that maximizes the sum of the prizes

of the selected nodes while penalizing the total cost of the connect-

ing edges. PCSF problem is a relaxation of PCST such that multiple

disconnected components (trees) are allowed. In the biology do-

main, PCSF has been used to identify multiple independent signaling

pathways on a single network (Tuncbag et al., 2013). Later, PCSF is

extended to predict a single tree shared among multiple samples

(networks with identical topology) with different mutation profiles

(different seed genes) (Gitter et al., 2014).

ST-Steiner, selection of similar genes across multiple networks is

rewarded in a similar manner to Gitter et al. (2014). However, in

contrast, (i) ST-Steiner works with networks of different topologies;

(ii) networks are organized in a temporal hierarchy; (iii) reward

mechanism is weighted by the prize of a node and only affects net-

works of future time windows; (iv) networks represent spatio-

temporal windows in brain development rather than samples with

different mutation profiles; (v) multiple brain regions in the same

time window can be simultaneously analyzed without constraining

to be similar to each other, where all selected genes in a given time
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frame can be assigned an additional prize in the analysis of the next

time frame.

A motivating toy example for ST-Steiner and it’s decision-

making process is illustrated in Figure 1. Consider the co-expression

network of spatio-temporal window 1. By solving PCSF on this net-

work, the known risk genes (black) are minimally connected by

selecting a set of genes (red-bordered). This selection affects which

genes will be chosen on the co-expression network of spatio-

temporal window 2. Assume genes X, Y and Z are equally likely to

be selected (equal prizes and related edge costs) to connect the seed

genes. Then, the algorithm prefers gene X, because it is selected in

the earlier period and its prize is increased. Next, we formally define

PCST, PCSF and then ST-Steiner.

2.2 PCST problem
Let G(V, E) denote an undirected vertex- and edge-weighted graph.

V is the set of nodes, E � V � V is the set of edges that connects

node pairs. p : V ! R�0 is the node prize function and c : E! R�0

is the edge cost function for G. Given G, the task is to find a con-

nected subgraph TðVT;ETÞ of the graph G, that minimizes the fol-

lowing objective function:

oTðTÞ ¼
X
e2ET

cðeÞ þ b
X
v62VT

pðvÞ; b � 0 (1)

where b is a sparsity parameter that adjusts the tradeoff between

node prizes and edge costs. This tradeoff corresponds to collecting

the prize on a node by including the node and evading its edge cost

by excluding it. An optimal solution is a tree, since if a cycle exists

in T, any edge on the cycle can be removed to obtain another tree T 0

with oTðT 0Þ � oTðTÞ.

2.3 PCSF problem
PCSF is an extension of PCST that lifts the connectedness constraint

on the desired subgraph: instead of a single tree, the goal is to find a

forest. Given G, the problem is to find a subgraph F(VF, EF) of the

graph G that minimizes the following objective function:

oFðFÞ ¼
X
e2EF

cðeÞ þ b
X
v62VF

pðvÞ þ xjF; b � 0; x � 0 (2)

where jF 2 N is the number of connected subgraphs (trees) in the

subgraph F and x is a parameter that adjusts its penalty. PCSF is a

generalized version of PCST and reduces to PCST when x¼0. An

instance of PCSF can be solved as a PCST instance by adding an arti-

ficial node v0 to V and edges E0 ¼ fv0vij vi 2 Vg with cost x to E.

Solving PCST on this new graph, and afterwards, removing v0 and

E0, yields a minimal solution for the original PCSF instance

(Tuncbag et al., 2012).

2.4 Spatio-temporal PCSF problem (ST-Steiner)
In order to model the spatio-temporal dynamics of neurodevelop-

ment, we consider a spatio-temporal system G¼G1, G2, . . ., GT, a

list of T consecutive time windows.

The ith time window Gi ¼ fG1
i ;G

2
i . . . ;Gn

i g is a set of spatio-

temporal networks, with a cardinality of n. The network Gj
i 2 Gi

(with node prize function pj
i and edge cost function cj

i), captures the

topological state of the system G for the jth spatial region in the ith

temporal window. In the context of spatio-temporal gene discovery

for ASD, the network Gj
i represents the co-expression of genes dur-

ing human brain development at the jth brain region cluster out of n

regions in total during the ith time interval ½ti; ti þ s�, where s 2 N is

the granularity parameter.

Given a spatio-temporal system G, the problem is finding a min-

imum spatio-temporal sub-system F¼F1, F2, . . ., FT. Fi ¼
fF1

i ;F
2
i . . . Fn

i g derives from the ith time window Gi, and Fj
iðVF

j
i;EF

j
iÞ

is a subgraph of graph Gj
iðV

j
i ;E

j
iÞ. An optimal sub-system F mini-

mizes the following objective function:

oðFÞ ¼
XT

i¼1

Xn

j¼1

oFðFj
iÞ þ

XT

i¼2

Xn

j¼1

kj
i

X
v 2 Vj

i

v 62 VF
j
i

/ða; v;pj
i;Fi�1Þ (3)

where (i) oFðF j
i Þ refers to the objective function for a single forest Fj

i,

shown in Equation (2), (ii) / is an artificial prize function that pro-

motes the selection of nodes which are selected in forests of the pre-

vious time window Fi�1, and finally, (iii) kj
i � 0 is a parameter that

adjusts the impact of the artificial prize. The artificial prize function

defined in Equation (4) is similar to the definition in (Gitter et al.,

2014), but here, each node gets an artificial prize proportional to its

prize.

/ða; v;p;FcÞ ¼ pðvÞ
P

F2Fc

IðVF ;vÞ
jFc j

� �a
; F ¼ ðVF;EFÞ;

a � 1;
(4)

where (i) a adjusts the non-linearity between the artificial prize for

node v and the fraction of inclusion of node v among the set of sub-

graphs Fc, and (ii) IðVF ; vÞ is an indicator function that has value 1

if v 2 VF, 0 otherwise. Note that, the use of function / corresponds

to increasing the prize pj
iðvÞ by an artificial prize, for all time win-

dows i>1 and each node v 2 Vj
i , such that v 2 VF

j
i�1 and

F j
i�1 2 Fi�1.

Fig. 1. Two spatio-temporal windows (plates) and respective co-expression

networks along with a parallel brain region and its plates (partially shown, on

the right). Circles represent genes and black edges represent pairs of genes

that are co-expressed. Red-bordered nodes form the Steiner tree found on

plate 1 (linked with red edges), which minimally connects black seed genes.

In ST-Steiner, genes that are selected in Plate 1 are more likely to be selected

in Plate 2. Curved lines between windows show the mapping of selected

genes from Plate 1 to Plate 2. On the second plate ST-Steiner can pick X, Y or

Z to connect the seed genes. Assuming that they all have identical priors and

identical edge costs, the algorithm would pick X, because it is selected in the

prior window and its prize is increased. If other brain regions in the first tem-

poral window are also considered, then selected genes in those regions

would also be used (from the plate on the right)
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2.5 Datasets and generation of the spatio-temporal

networks
In order to model neurodevelopment, we use the BrainSpan micro-

array dataset of the Allen Brain Atlas (Sunkin et al., 2012) and gen-

erate a spatio-temporal system (cascade) of co-expression networks.

To partition the dataset into developmental periods and clusters of

brain regions, we follow the practice in Willsey et al. (2013) as

described next.

Brain regions are clustered according to their similarity and four

clusters are obtained: (i) V1C (primary visual cortex and superior

temporal cortex) (ii) PFC (prefrontal cortex and primary motor-

somatosensory cortex), (iii) SHA (striatum, hippocampal anlage/hip-

pocampus and amygdala) and (iv) MDCBC (mediodorsal nucleus of

the thalamus and cerebellar cortex). The time windows which are

associated with these brain regions: 1–3 which corresponds to early-

fetal period, 3–5 and 4–6 which correspond to mid-fetal periods

(s¼2). Note that these time windows represent early-

neurodevelopment, which is an important stage for ASD. Each

graph Gj
i is a spatio-temporal co-expression network, where i

denotes one of the time intervals and j denotes one of the four brain

region clusters. In this work, a spatio-temporal window of neurode-

velopment and its corresponding co-expression network is denoted

by the abbreviation for its brain region cluster followed by the time

window of interest, e.g. ‘PFCð1–3Þ’ represents the region PFC at the

specific time interval 1–3.

We report our results on the following spatio-temporal cascades:

(i) PFCð1–3Þ, as the precursor network for PFCð3–5Þ, (ii) PFCð1–3Þ,
as precursor network for PFCð4–6Þ, (iii) all spatial regions in time

window 1–3 as precursor networks for PFCð3–5Þ, and (iv) all spatial

regions in time window 1–3 as precursor networks for PFCð4–6Þ.
The target networks of interest, PFCð3–5Þ and PFCð4–6Þ, are sug-

gested as hotspots for ASD risk (Willsey et al., 2013). Furthermore,

these are also the subject matter of DAWN (Liu et al., 2015), which

allows us to directly compare our results to theirs.

An edge between two nodes is created if their absolute Pearson

correlation coefficient jrj is � 0:7 in the related portion of BrainSpan

data. This threshold has also been used in the literature (Liu et al.,

2014, 2015; Willsey et al., 2013). Each edge between a pair of genes

is assigned a cost of 1� r2. We set node (gene) prizes to the negative

natural logarithm of the TADA q-values. Thus, in all experiments, the

prize function is identical for all networks. We obtain TADA q-values

on ASC WES cohort, which is reported on 17 sample sets consisting

of 16, 098 DNA samples, 3, 871 ASD cases and also 9, 937 ancestry-

matched/parental controls (De Rubeis et al., 2014).

3 Results

3.1 Comparison with the state-of-the-art methods
We compare the performance of ST-Steiner with three state-of-the-

art network-based ASD gene discovery algorithms which predict a

module of ASD genes: NETBAG (Gilman et al., 2011, 2012),

DAWN (Liu et al., 2014, 2015) and MAGI (Hormozdiari et al.,

2015). Input parameters and implementation details for all methods

are given in Supplementary Text 1.2.

3.1.1 Input training data

The data from the ASC WES cohort from De Rubeis et al. (2014)

are inputs to all three methods. ST-Steiner makes use of TADA val-

ues. NETBAG utilizes a list of genetic events: we treated each gene

with one or more dnLoF as if it was hit by a separate event targeting

that gene only. DAWN uses z-score transformed TADA P-values,

and ST-Steiner uses TADA q-values. MAGI, by design, uses de novo

mutation counts. In addition, MAGI uses a control cohort: we use

the control data reported in and made available with their paper

(https://eichlerlab.gs.washington.edu/MAGI/).

3.1.2 Input networks

ST-Steiner uses the two cascades that are explained in Section 2.5.

For the other three methods, the suggested networks in the corre-

sponding papers are used. NETBAG is run with the likelihood-of-

interaction-in-a-phenotype network it generates, as explained in

Gilman et al. (2011). DAWN uses the PFC(3–5) and PFC(4–6) par-

tial co-expression networks obtained from BrainSpan, as reported in

(Liu et al., 2015). MAGI is run using the STRING (Szklarczyk et al.,

2010) and HPRD (Keshava Prasad et al., 2008) PPI networks and

the full co-expression network obtained from the BrainSpan dataset

(Sunkin et al., 2012).

3.1.3 Validation of the predicted networks

A dnLoF mutation has a very high signal-to-noise ratio, and the

genes that are hit are considered to be high risk genes. In this experi-

ment, we validate the predicted gene networks of each method,

using the autism-associated dnLoFs obtained from denovo-db

[Seattle, WA, USA, denovo-db.gs.washington.edu (October 2018)]

that contains all such mutations published in the literature. We re-

move all probands used in De Rubeis et al. from the validation set to

obtain 493 genes with at least one dnLoF mutation (dubbed vali-

dated genes). Since the two cohorts are completely independent, this

is a powerful validation experiment and constitutes a benchmark for

all methods. In order to prune possible false positives, we further

removed the genes that has a de novo LoF mutation in siblings in the

Simons Simplex Collection (SSC) cohort, and genes with pLI <0.9,

to obtain the final set of 200 genes. Note that we are comparing all

methods when they are provided with identical training data in

terms of dnLoF mutations (of ASC WES cohort): in this sense, this

work is the first benchmark of the state-of-the-art network-based

ASD gene discovery algorithms when the training data are kept the

same.

Since all methods have various parameters that adjust their deci-

sions, we compare the algorithms in a precision–recall curve as shown

in Figure 2. For ST-Steiner, the results obtained on networks from 1

to 3 period are kept unchanged and resulting trees on PFC(3–5) and

PFC(4–6) are obtained by varying b and k; for DAWN, the False

Discovery Rate (FDR) threshold is varied to obtain resulting networks

of different sizes; for NETBAG, the most significant network pro-

duced for each cluster size is plotted; for MAGI, the control/ESP cut-

off has been relaxed and variations are plotted.

One would like to see their method balance precision and recall

(middle region) and dominate other methods’ points. Results show

that ST-Steiner (brown and purple dots) provides a nice balance be-

tween the two metrics and mostly dominate a very large portion of

the covered range (recall �[0.025–0.07], precision �[0.2, 0.33]).

DAWN is the closest to ST-Steiner.

ST-Steiner’s success can be attributed to both (i) using the cas-

caded information coming from a preceding neurodevelopmental

window and (ii) ST-Steiner predicting a tree (rather than a forest),

which only includes high prize low-cost genes that are essential for

connectivity. Also, we explore other ways of utilizing the time di-

mension in detail in Supplementary Text 1.4 and show that ST-

Steiner’s approach is the most effective way.

Aside from the state-of-the-art methods described above, we also

compare the same predictions of ST-Steiner with other predicted
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ASD-risk gene modules from the literature: NETBAG (Gilman et al.,

2011), AXAS (Cristino et al., 2014), and co-expression-based mod-

ules from Willsey et al. (2013) and Parikshak et al. (2013). As done

in Hormozdiari et al. (2015), we take their outputs as is for these

comparisons. Results are given in Supplementary Table S10.

We note that none of the predicted modules get close to the preci-

sion of ST-Steiner.

Supplementary Text 1.6, we also compare ST-Steiner with the state-

of-the-art methods on gene sets that are not ground truth, but deemed

as enriched in ASD-risk genes: SFARI CATI and CATII gene sets,

FMRP targets, RBFOX targets, WNT pathway genes, Histone modifier

genes and Synaptic genes. Furthermore, a GO term enrichment and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-

ment comparison is provided in Supplementary Text 1.7.

3.2 Spatio-temporal information promotes selecting

validated genes
To see if information coming from a precursor improves the per-

formance, we compare ST-St. PFC(1–3)þ(3–5) and ST�
St: PFCð1–3Þ þ ð4–6Þ with ST-Steiner results only on PFCð3–5Þ and

PFC(4–6), respectively. For this purpose, we obtain ST-St. PFC(3–5)

and ST-St. PFC(4–6) independently, with no time effect (k¼0, q¼0,

b is selected such that e ¼ 0:5). We use the same input data and

parameters as described in Section 3.1. The former identifies 20 vali-

dated genes by making 211 predictions (p¼8.272e�12), while ST�
St: PFCð1–3Þ þ ð3–5Þ identifies 21 validated genes by choosing 234

genes (p¼7.0e�12). PFCð4–6Þ identifies 18 validated genes by pre-

dicting 235 genes (p¼3.018e�9), whereas ST� St: PFCð1–3Þ þ
ð4–6Þ identifies 19 validated genes by predicting 256 (p¼1.836e�9).

The increase in the number of validated genes demonstrate that ST-

Steiner can leverage temporal information.

Due to q, the network size is increased to include more genes by

considering the time dimension (i.e. if q ¼ 0:1 network is 10%

larger compared with using a static network—see Supplementary

Text 1.1 for details on selecting parameters). Therefore, the above

comparison is slightly unfair. What we want is to see if the leveraged

information comes just from network getting bigger or is due to the

incorporated spatio-temporal information. To investigate this, we

obtain two additional results: ST-St. PFC(3–5)þ10% and ST-St.

PFC(4–6)þ10%. With these results, we are investigating if the algo-

rithm would be as successful by just adding 10% more genes to

PFC(3–5) and to PFC(4–6) without any spatio-temporal analysis.

We use the following parameters: k¼0, b is selected such that they

have comparable sizes to PFC(1–3)þ(3–5) and PFC(1–3)þ(4–6), re-

spectively. ST-St. PFC(3–5)þ10% and ST-St. PFC(4–6)þ10% con-

tain 230 and 266 genes and identify 20 and 19 validated genes,

respectively. These numbers are less significant compared with

PFC(1–3)þ(3–5) and PFC(1–3)þ(4–6) despite having similar sizes.

This suggests that the spatio-temporal prize mechanism successfully

promotes selecting ASD-related genes.

We also perform a robustness analysis similar to the one in Liu

et al. (2014). That is, we remove the genetic signal from 1/30 ran-

domly selected genes and rerun ST-Steiner. This is repeated 30 times

for each fold to see how frequently each gene is selected. The visual-

ization of ST-St. PFC(1–3)þ(3–5) in comparison to ST�
St: PFCð3–5Þ þ 10% is illustrated in Figure 3 along with these

robustness values. See Supplementary Figure S1 for a similar compari-

son of ST� St: PFCð1–3Þ þ ð4–6Þ and PFC(4–6)þ10%. We provide

a detailed investigation of alternative uses of spatio-temporal infor-

mation and effect of parameter selection in Supplementary Text 1.4.

3.3 Biological insights from ST-Steiner’s predictions
3.3.1 ST-Steiner predicts new ASD-risk genes related to motor

activity over microtubules

We investigated the biological meaning of the genes predicted by

ST-Steiner. We performed a GO analysis and found strong enrich-

ment for the following top two biological process terms: mitotic sis-

ter chromatid segregation (adjusted P-value: 0.0009), regulation of

cytokinesis (adjusted P-value: 0.002). These are followed by positive

regulation of excitatory postsynaptic potential (adjusted P-value:

0.002), Notch signaling pathway (adjusted P-value: 0.002). Notch

signaling pathway and excitatory postsynaptic potential (hence, syn-

aptic transmission) are well known disrupted circuitries in ASD eti-

ology (Cau and Blader, 2009; De Rubeis et al., 2014). However,

cytokinesis and chromatid segregation are less pronounced in the

ASD literature. The genes associated with these two GO terms are

BIRC6, CUL3, DLGAP5, KIF18A, KIF20A, KIF23, KLHL9,

NCAPG, NDC80, NUSAP1, POGZ, PRC1, PRPF40A and SPAST.

Among these 14 genes, only 5 (BIRC6, CUL3, POGZ, PRPF40A

and SPAST) have de novo LoF mutations in De Rubeis et al. (2014),

which shows relatively low prior association. Despite not annotated,

ST-Steiner detects 2 other KIF genes: KIF1A and KIF11. Note that

TADA q-values are available only for 6 KIF genes and ST-Steiner

selects 5 of them. Investigating the top GO molecular function terms

also shows that motor activity and microtubule motor activity are

ranked first and third (adjusted P-values: 0.002 and 0.03,

respectively). These terms capture all five KIF genes predicted by

ST-Steiner. In addition, an enrichment test on MSigDB pathways

shows that the Reactome Kinesin pathway has the most significant

overlap with the genes detected by ST-Steiner (5/24,

P-value¼3:9e� 5). Kinesins are known to transport cargo to den-

dritic spines undergoing synaptic plasticity over microtubules

(McVicker et al., 2016). They also play a role in organization of

spindle microtubules during mitosis (Ems-McClung and Walczak,

2010). In summary, the algorithm returns a coherently co-expressed

functional cluster of genes related to kinesins and their activity on

microtubules during cell division and it predicts that the disruption

of this circuitry is potentially related to ASD risk.

3.3.2 ST-Steiner predicts new genes with temporal information

Next, we investigate the genes whose prediction is enabled by the

use of temporal information. That is, we evaluate only genes that

Fig. 2. Precision–recall curve for all benchmarked methods when their param-

eters/thresholds are varied. The ground truth set contains 200 genes which

have at least one de novo LoF mutation in denovo-db after removing (i) the

probands included in De Rubeis et al. (2014), (ii) genes with de novo LoF

mutations in SSC siblings, and (iii) removing genes with pLI<0.9
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are included both in ST� St: PFCð1–3Þ þ ð3–5Þ and ST-St. PFC(1–

3)þ(4–6), but excluded from PFCð3–5Þ þ 10% or PFC(4–6)þ10%.

Here, focus on novel predictions, only. There are nine such genes

and we focus on the six that are detected neither by DAWN nor by

MAGI. Furthermore, these genes are not pointed out in WES stud-

ies: they all have low scores in TADA, and ranked at most as

Category 4 in SFARI gene which stands for ‘minimal evidence’, if

included at all. Among these six genes, we did not find any evidence

of association with ASD for the following ones: KIF23, NDC80 and

SGOL2. Interestingly, NDC80 and SGOL2 also take part in

kinetochore-microtubule attachment during cell division. These two

genes and five KIF genes closely interact in Figure 3 and form a mod-

ule of their own. We checked if a similar module exists on an or-

thogonal source of interaction information such as PPI. Using

InWeb-InBiomap tool (Li et al., 2017), we found a striking motif in

the PPI network of the predicted genes by ST-Steiner. The only cli-

que with more than three genes was formed by BUB1B, CASC5,

KIF18A, NDC80 and SGOL2. BUB1B is localized to the kineto-

chore and performs spindle checkpoint function. CASC5 links

BUB1B to kinetochore and performs spindle assembly checkpoint

signaling for chromosome alignment during cell division. These

results further support our findings in Section 3.3.1.

Among the above-mentioned six genes, the following genes have

subtle clues in the literature. MEGF10 is also related to cell prolifer-

ation and adhesion, and recently variants in its regulatory region

have tied it to ASD (Wu et al., 2017). The fifth gene is CMIP, which

is a signaling protein previously associated with language delay and

whose truncation is found to be related to cytoskeleton reorganiza-

tion (Grimbert et al., 2003). There are two studies (one very recent)

indicating haploinsufficiency of CMIP leads to ASD (Luo et al.,

2017; Van der Aa et al., 2012). Selection of CMIP in ST-St. PFC(1–

3) þ (3–5) enables inclusion of another gene L1CAM with a link to

CMIP, which is related to neurite outgrowth and cell migration. The

final gene, which is time induced (ironically), is TIMELESS. It is

related to circadian rhythm, and it is also linked to ASD before in a

study (Yang et al., 2016).

3.3.3 Synaptic and chromatin genes form distinct modules

Here, we analyze how genes representing some well-known and pre-

dicted biological processes are laid out on the subnetwork shown in

Section 3. Supplementary Figure S6 shows how synaptic genes (green),

chromatin modeling genes (blue) and cytoskeleton-related genes (pink)

are organized within the topology of the predicted Steiner tree. The list

of synaptic genes is obtained from Genes to Cognition (http://www.

genes2cognition.org/). We use lists L09–L16, which include the human

orthologues of various synaptic complexes in mouse. The list of chro-

matin modifiers is obtained from Khare et al. (2012) and Huang et al.

(2013). List of cytoskeleton-related genes is obtained by a manual

search on GeneCards (Stelzer et al., 2016).

Fig. 3. Image visualizes ST-St. PFC(1–3)þ(3–5) network which is laid over ST-St. PFC(3–5)þ10%. Turquoise bordered genes are common in ST� St: PFCð1–3Þ þ
ð3–5Þ and ST� St: PFCð3–5Þ þ 10%. Pink bordered genes are only in ST-St. PFC(1–3)þ(3–5), highlighting the effect of using the temporal dimension and informa-

tion coming from PFC(1–3). Gray genes are present only in PFC(3–5)þ10% and are not included by ST-St. PFC(1–3)þ(3–5). Size of a node indicates its significance

w.r.t. its TADA q-value in De Rubeis et al. (2014) (the larger, the more significant). The thickness of the border of a node indicates its robustness. The thickness of

an edges represents the correlation coefficient between the gene pair (the thicker, the higher). Visualized using the CoSE layout (Dogrusoz et al., 2009) in

Cytoscape (Shannon et al., 2003)
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Despite being two of the major affected circuitries in ASD eti-

ology, it was reported in literature that synaptic and chromatin

genes are not interacting and form separate groups on protein inter-

action networks (De Rubeis et al., 2014; Sanders et al., 2015). We

confirm this finding in our results which is based on a gene co-

expression network. We observe six interactions between these two

groups, which is much lower than expected (expected: 8.93, P-value:

0.777, 1000 random draws for two distinct gene sets of respective

sizes on this subnetwork). On the contrary, synaptic genes and chro-

matin genes are tightly interacting within their modules (number of

connections: 12 and 10; expected: 4.24 and 4.45; P-values: 0.004

and <0.001, respectively). This result may indicate two functional-

ities. We observe that cytoskeleton genes are almost uniformly dis-

tributed interacting and even overlapping with synaptic and

chromatin genes.

3.3.4 ST-Steiner provides interpretable predictions

Here, we focus on genes that are relatively more established in litera-

ture compared with the genes in the previous subsection. However,

them not being selected by ST-Steiner without the time information

allows us to traceback the information and show that ST-Steiner is

able to also return more interpretable results.

The first two genes are NOTCH2 and NOTCH3, membrane

receptors of NOTCH signaling pathway. The former gene is selected

in both ST� St: PFCð1–3Þ þ ð3–5Þ and ST� St: PFCð1–3Þ þ ð4–6Þ,
the latter is selected in ST� St: PFCð1–3Þ þ ð4–6Þ. This pathway is

important for neuron differentiation (Cau and Blader, 2009). More

importantly, it is active during embryogenesis (time-point 1)

(Wolter, 2013). Thus, its disruption is expected to have a cascaded

effect during time window 3–5. Another gene that is retained is

TCF3, which has been highlighted in De Rubeis et al. (2014) as one

of the few hub transcription factors to regulate many ASD-risk genes

along with many histone modifiers. Similar to NOTCH signaling

pathway, which regulates neuron differentiation, TCF3 is found to

promote differentiation in embryonic stem cells (Merrill et al., 2001;

Nguyen et al., 2006). More importantly, it represses neuron differ-

entiation in neural precursor cells (Kuwahara et al., 2014; Ohtsuka

et al., 2011), which again corresponds to the time window 1–3.

Thus, in line with our hypothesis that clustering of genes is spatio-

temporal, ST-Steiner predicts these genes by considering the effect of

the earlier time window. This also means that one can trace back the

information source which enables the selection of these genes. This

adds further interpretability to our results.

3.4 ST-Steiner is not specific to ASD: epilepsy analysis
ST-Steiner can work with any disorder with a progression model

and corresponding cascade of ‘gene-interaction’ networks. One such

disorder is epilepsy, which was shown to might have its genetic roots

during embryogenesis (Vadlamudi et al., 2010) and could be pro-

gressive (Pitkänen and Sutula, 2002). It is also known to be comor-

bid to ASD (Jeste and Tuchman, 2015). We analyze the epilepsy

WES data of 356 trios and corresponding extTADA (an extension of

the TADA method) results provided in Nguyen et al. (2017). We use

the PFC(1–3) þ (3–5) cascade as frontal lobe epilepsy is one of the

most prominent types and the disorder and prenatal period is known

to be a factor in the future phenotype (Scher, 2003). This cascade

also enables us to compare the results of ASD and epilepsy analyses.

Details about the analysis are given in Supplementary Text 1.8 and

the resulting network is shown in Supplementary Figure S7. As

expected ST-Steiner picks up a very different subnetwork compared

the ASD results despite using the same underlying network. We find

that the predicted cluster is mostly enriched in genes related to

GABA receptor activity, which has a well-established tie to epilepsy

(Treiman, 2001). The next enriched term is ‘myosin V binding’ and

the related genes RAB27B and RAB6B have very low TADA priors

(q¼0.98). There are not many associations of myosins to epilepsy

in the literature. One rare example is Mercer et al. (1991) in which a

mutation in MYO5A causes epileptic phenotype in a mouse model

(Pitkänen et al., 2017). Note that MYO5A is also detected by

ST-Steiner despite its low prior (q¼0.55). Despite the direct link

between myosins and epilepsy is blurred, myosin Vb was shown

to mediate glutamate receptor subunits in developing neurons

(Lisé et al., 2006). As glutamatergic signaling is a key pathway that

is denoted as a potential therapeutic target for epilepsy (Barker-

Haliski and White, 2015), myosins could as well have a role in this

disorder, as suggested by ST-Steiner.

4 Discussion and conclusion

ASD is a common neurodevelopmental disorder which is a life-long

challenge for many families all around the world. Gaining an under-

standing of the cause of ASD and opening a way to the development

of new treatments would certainly have a major impact on the lives

of many. Even though we have long ways to go to understand the

etiology of the disorder, network-based gene discovery algorithms

have proven useful for gene discovery. In this work, we propose a

novel ASD gene discovery algorithm that for the first time models

the cascading effect of disrupted functional circuits in

neurodevelopment.

We show that ST-Steiner achieves a good balance between preci-

sion and recall. While other methods output a graph of genes, ST-

Steiner outputs a tree/forest. That is, no multiple paths exist between

any pair of genes and some genes can be left out if they are not es-

sential for connectivity due to having low prior risk or high-cost

edges. Precision is also achieved via rewarding selected genes from

earlier periods, which makes the algorithm more confident on

the predictions it makes. We show that once the temporal informa-

tion is employed, predictive power increases, which supports our hy-

pothesis that the clustering of genes is spatio-temporal rather than

static.

We also think there is still room for improvement in ST-Steiner’s

formulation. Considering that PPI networks give MAGI an orthog-

onal source of information, one future extension direction would be

the incorporation of information from this source. Note that the

goal of this paper is to show that the clustering of ASD genes are dy-

namic rather than static. This is the reason why we do not consider

PPIs, but restrict the problem definition and our tests to observe the

cascaded effects of dysregulation in earlier time windows.
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