
Data and text mining

Predicting runtimes of bioinformatics tools

based on historical data: five years of Galaxy

usage

Anastasia Tyryshkina1, Nate Coraor2 and Anton Nekrutenko2,*

1Huck Institute of Life Sciences, Neuroscience Program and 2Department of Biochemistry and Molecular Biology,

The Pennsylvania State University, University Park 16801, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on August 15, 2018; revised on January 11, 2019; editorial decision on January 16, 2019; accepted on January 25, 2019

Abstract

Motivation: One of the many technical challenges that arises when scheduling bioinformatics

analyses at scale is determining the appropriate amount of memory and processing resources.

Both over- and under-allocation leads to an inefficient use of computational infrastructure. Over al-

location locks resources that could otherwise be used for other analyses. Under-allocation causes

job failure and requires analyses to be repeated with a larger memory or runtime allowance. We

address this challenge by using a historical dataset of bioinformatics analyses run on the Galaxy

platform to demonstrate the feasibility of an online service for resource requirement estimation.

Results: Here we introduced the Galaxy job run dataset and tested popular machine learning

models on the task of resource usage prediction. We include three popular forest models: the

extra trees regressor, the gradient boosting regressor and the random forest regressor, and find

that random forests perform best in the runtime prediction task. We also present two methods of

choosing walltimes for previously unseen jobs. Quantile regression forests are more accurate in

their predictions, and grant the ability to improve performance by changing the confidence of the

estimates. However, the sizes of the confidence intervals are variable and cannot be absolutely

constrained. Random forest classifiers address this problem by providing control over the size

of the prediction intervals with an accuracy that is comparable to that of the regressor. We show

that estimating the memory requirements of a job is possible using the same methods, which as

far as we know, has not been done before. Such estimation can be highly beneficial for accurate re-

source allocation.

Availability and implementation: Source code available at https://github.com/atyryshkina/algo

rithm-performance-analysis, implemented in Python.

Contact: anton@nekrut.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Purpose
Galaxy (at http://galaxyproject.org) is a platform that allows

researchers to analyze large biological datasets and run popular bio-

informatics analyses on high performance computing infrastructure

(Afgan et al., 2016; Blankenberg et al., 2010; Goecks et al., 2010).

In particular Galaxy’s main North American site at http://usegalaxy.

org leverages high performance computing provided by the Extreme

Science and Engineering Discovery Environment. A challenge faced

by administrators of this (and many other) Galaxy instances is coor-

dinating the high throughput of analysis requests and efficiently

completing them.

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3453

Bioinformatics, 35(18), 2019, 3453–3460

doi: 10.1093/bioinformatics/btz054

Advance Access Publication Date: 30 January 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

https://github.com/atyryshkina/algorithm-performance-analysis
https://github.com/atyryshkina/algorithm-performance-analysis
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz054#supplementary-data
http://galaxyproject.org
Deleted Text: (HPC)
http://usegalaxy.org
http://usegalaxy.org
Deleted Text: HPC
Deleted Text: (XSEDE)
https://academic.oup.com/

Currently, the administrators of Galaxy main site use tool-

specific heuristics to estimate the time and space requirements of a

job. Most jobs have a flat allocation of 32 Gb of RAM and a wall-

time of 72 h. This varies depending on the known behavior of the

tool in question. In addition, there is a computer cluster dedicated

for large jobs (e.g. genome and transcriptome assembly) that pro-

vides unlimited amount of runtime and 128 Gb of memory. These

heuristics are undoubtedly naive. To find a more intelligent way of

assessing resource allocation we sought to leverage the historical

dataset of job runs that have been collected over the past 5 years.

In the case of space and time allocation, the Galaxy main admin-

istrators choose to overestimate the amount required by a job to pre-

vent failures due to memory overflow or timeout. An accurate

estimate of the amount of memory and time required by a job will

allow administrators to more efficiently allocate resources and in-

crease the volume of jobs processed by the server.

If resource usage estimation is possible cross-platform, an online

estimation service will be of use to administrators of other Galaxy

instances and to independent users of bioinformatics software. As of

yet, cross-platform experiments have not been performed, but the

results presented in this paper are promising for a single platform

service.

1.2 Previous work
The prediction of runtimes of complex algorithms using machine

learning approaches has been done before (Duan et al., 2009; Gupta

et al., 2008; Hutter et al., 2006; Matsunaga and Fortes, 2010;

Nadeem and Fahringer, 2009; Phinjaroenphan et al., 2005; Sonmez

et al., 2009). Typically, these prediction models have been built on

datasets of jobs run on identical hardware. The popularity of cloud

computing has also stimulated activity in the problem of resource

usage prediction (Bankole and Ajila, 2013; Gong et al., 2010; Islam

et al., 2012). The methods developed for cloud computing, however,

scale virtual machines with no knowledge of the programs or algo-

rithms that are being run. The predictions are based on traffic and

usage patterns at discrete time steps. Since we are not interested in

predicting resource usage based on time usage patterns, we forego

these methods.

The most comprehensive survey of runtime prediction models

was done by Hutter et al. (2014). These authors compared 11

regressors including ridge regression, neural networks, stochastic

gradient descent and random forests. They found that the random

forest outperforms the other regressors in nearly all runtime predic-

tion assessments and is able to handle high dimensional data with-

out the need of feature selection. Based on these results we have

chosen random forest approach as the general framework for solv-

ing our problem.

In our paper, we compare the performance of the classical ran-

dom forest against two variations: extra random trees and gradient

boosting. We consider the use of quantile regression and classifica-

tion for walltime and maximum memory usage estimation. Finally,

we discuss the plausibility of an API that provides resource use esti-

mation for Galaxy jobs.

2 Results and discussion

2.1 Random forests
We will briefly describe random forests (Breiman, 2001) as they are

fundamental to the methodology used in this paper. A random forest

is a collection of decision trees. A decision tree is a flowchart that

accepts an object with known attributes as an input in order to guess

an unknown attribute of the object. The object begins at the root

node of the tree, and the unknown attribute guesses are stored in the

leaf nodes. At each node of the tree (except for the leaf nodes) a test

is performed on an attribute of the object in question, and the result

of that test determines to which node the object traverses. Once the

object reaches a leaf node, the value stored in the leaf is the decision

tree’s prediction of the object’s unknown attribute. An example of a

simple decision tree can be seen in Figure 1, in which the input ob-

ject is a job and the unknown attribute is the runtime of the job. At

each node an attribute of the job is tested. For instance, the root

node tests the input data size is greater than or lesser than a certain

amount.

The decision tree’s control flow is determined by training on a

set of objects. Training begins with all of the objects at the root

node. It then considers at a subset of attributes and a subset of object

instances of the dataset, and chooses to split the data in the way that

minimizes variability of the attribute of interest in the subsequent

two nodes. This split corresponds with the attribute test used later

to make decisions. In this way, the tree sorts objects by similarity of

the attributes. Once the tree is trained, it can then be used to predict

the unknown attributes of previously unseen objects.

A random forest is a collection of decision trees, each of which

are trained with a unique random seed. The random seed determines

on which sub-sample of the data each decision tree is trained and

which sub-sample of data each node of each tree uses when making

decisions. By implementing these constraints, the random forest pro-

tects itself from overfitting—a problem to which decision trees are

susceptible.

A random forest can be used as either a classifier or a regressor.

As a classifier, the trees vote on the correct class attribute, and the

class that is voted for the most is the forest’s prediction. As a regres-

sor, a weighted average of the tree’s predictions is taken to be the

forest’s prediction.

There are other variations to the random forest. We use a few

variations, such as extra trees and gradient boosting, in this work

and describe them further in the Section 4.

2.2 Data collection
The main public server of the Galaxy has been collecting extensive

job run data on all analyses since 2013 (memory data collection has

begun in early 2018). These data represent the largest, most compre-

hensive dataset available to date on the runtime dynamics for some

of the most popular biological data analysis software (a summary

for tool popularity and the relationship between the number of

Fig. 1. Control flow of a short decision tree. The root node is at the top, and

the leaf nodes are at the bottom

3454 A.Tyryshkina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: five
Deleted Text:
Deleted Text: W
Deleted Text: ,
Deleted Text: D
Deleted Text: F
Deleted Text: &hx2013;
Deleted Text: Methods s
Deleted Text: C
Deleted Text: a

errors and the number of jobs are shown in Supplementary Figs S1

and S2, respectively). This large collection of job runs with attrib-

utes can be leveraged to determine more efficient ways for allocation

of server resources.

The job run attributes collected by the Galaxy can be seen in

Table 1. Generic information about each job are collected, such as

tool used, job creation time, and basic hardware attributes. In add-

ition to this, job specific attributes are collected. For the data used to

generate the runtime prediction models, we supply Supplementary

Material 1 which was generated by the steps outlined in the Sections

4.5 and 4.6. For the data used to generate the memory prediction

models, we supply Supplementary Material 2 which contains the

attributes used to train the memory usage prediction models for the

four tools that were tested.

2.3 Model comparison
In this work, we were first interested in comparing models in the

task of runtime prediction, including two regression models that had

not been tested by Hutter et al. (2014): extremely randomized trees

and gradient boosting. These two forest methods have comparable

performance to random forests in many tasks, which is why we were

interested in measuring their performances.

As seen in Figure 2, the random forest, the extra trees regressor

and the gradient boosting regressor have comparable performances,

but the random forest performs slightly better. We also are able to

verify that the random forest outperforms other regressors that were

tested by Hutter et al. (2014) Those results are not presented here.

The performance of all of the regression models in the task of run-

time prediction can be seen in Supplementary Table S1.

2.4 Estimating a range of runtimes
Estimating a range of runtimes the random forest gave us the best

results for estimating the runtime of a job. It is also be of interest

to calculate a confidence interval for the runtime of a job, so that,

when using the model to choose walltimes, we lower the risk of end-

ing jobs prematurely. We used a standard deviation random forest

as described in the Section 4.

As seen in Figure 3a, the performance of the standard deviation

random forest increases with the size of the confidence interval.

However, as the accuracy increases, the precision decreases. In add-

ition, as seen in Figure 3b, the precision of the predictions varies

between tools. This indicates that some tools have more consistent

runtime behavior given a set of user-selected parameters. The cause

of this may be a combination of several factors: the amount of his-

torical data to train on, the variability in user-selected parameters

and the amount and effect of bifurcations in the algorithm.

The confidence intervals produced also vary between job instan-

ces, as seen in Figure 3c. The largest drawback of the quantile re-

gression forest is this lack of control over the time ranges that are

produced. The predicted time range sizes are volatile, and can vary

from seconds to hours. The sizes of the confidence intervals can be

scaled with the confidence factor, but they cannot be absolutely con-

strained. Large time ranges perhaps may be useful to administrators

creating walltimes, but they are not be useful approximating the

length of time needed for an analysis to complete within a reason-

able time window. To counter the volatility of the sizes of the confi-

dence interval made by the standard deviation random forest, we

tested the performance of a classifier. With a classifier, we can spe-

cify the runtime intervals to be used. We choose the runtime inter-

vals as described in the Section 4.

The performance of the standard deviation regression forest and

the random forest classifier for all of the tools can found in

Supplementary Tables S2 and S3, respectively. A comparison of the

performance of the two methods on a select number of tools can be

seen in Figure 4a. The performance of the classifier is comparable to

the performance of the regression forest when a confidence of 1 SD

is used. The sizes of the runtime intervals are similarly comparable

to the sizes of confidence intervals produced by the regression forest

when 1 SD is used (Fig. 4b). However, when the size of the standard

deviation is increased, the regression forest begins to outperform the

Table 1. Job attributes tracked by the Galaxy main server

Attribute group Attributes

Job Info Id

tool_id

tool_version

state

create_time

Numeric metrics processor_count

memtotal

swaptotal

runtime_seconds

galaxy_slots

start_epoch

end_epoch

galaxy_memory_mb

memory.oom_control.under_oom

memory.oom_control.oom_kill_disable

cpuacct.usage

memory.max_usage_in_bytes

memory.memsw.max_usage_in_bytes

memory.failcnt

memory.memsw.limit_in_bytes

memory.limit_in_bytes

memory.soft_limit_in_bytes

User selected parameters Tool specific

Datasets ob_id

dataset_id

extension

file_size

param_name

type (input or output)

Fig. 2. Performance of regression models on the prediction of runtime of

jobs. The performance metric used is the coefficient of determination (r 2).

The value displayed is the mean value of a 3-fold validation. The total mean

and median were taken as the performance of the tool over every tool with

more than 100 recorded runs

Predicting runtimes of bioinformatics tools based on historical data 3455

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz054#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz054#supplementary-data
Deleted Text: Data
Deleted Text: Feature Selection and Attribute Preprocessing s
Deleted Text: Data
Deleted Text: C
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz054#supplementary-data
Deleted Text: R
Deleted Text: R
Deleted Text: R
Deleted Text: R
Deleted Text: T
Deleted Text:
Deleted Text: Methods
Deleted Text: ,
Deleted Text: can
Deleted Text: Methods s
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz054#supplementary-data
Deleted Text: one standard deviation
Deleted Text: one standard deviation

classifier. Because of their close level of performance, the choice of

which model to use depends the goal of the project. If the importance

of constraining the maximum prediction window size is greater than

the importance of accuracy, then a classifier may be more suitable.

Conversely, a regression forest with a static runtime interval may also

suit those purposes with similar accuracy. For our project, we favor

the accuracy provided by the standard deviation regression forest.

2.5 Memory requirement prediction
Galaxy Main began collecting memory use data in early 2018.

Because of this, the dataset of memory usage of jobs is not as large

as that for runtimes. Consequently, we will focus on a subset of the

most popular jobs for our predictive models. We use a modified re-

gression forest which, as far as we know, has not been tested on

space resource requirements estimation before.

As can be seen in Table 2, the performance of the regression for-

est in this task is similar to its performance in the runtime predic-

tion, achieving about 0.9% accuracy with the use of a confidence

interval of 2 SD. It is important to note here that the dataset of

memory usage of jobs was collected over the course of one month.

This may have led to a less representative sample of the possible be-

havior of the tools, and an inflated accuracy for these tests.

Shown in Figure 5 are sample predictions of the standard devi-

ation regression forest in the task of memory requirement predic-

tion. The figure was produced by training the models on a random

sample of 80% of the recorded jobs of a tool and testing the models

on the remaining 20% of jobs. The confidence interval of 2 SD was

used, as it gave reasonable results with performance hovering

around 0.9 for most of the tools. The results are an encouraging step

to the goal of an online memory resource estimation service.

2.6 Walltime and memory requirement estimations via

an API
It is beneficial for Galaxy server administrators to know the resource

requirements of a job before it is run. Allocating the appropriate

computational resources, without using more than necessary, would

lead to shorter queue times and more efficient use of resources.

First, we will discuss the possibility of an online runtime estima-

tion service. One item that we had glossed over earlier is that the

runtime of a job is hardware specific. It depends on the CPU clock,

CPU cache, memory speed and disk read/write speed. Because of the

high variability in server hardware configurations, it is unclear

whether a runtime prediction service would be accurate across dif-

ferent servers, as these tests still need to be completed. An alternative

Fig. 3. (top) Performance of a random forest modified to calculate standard

deviations. (middle) Average size of on standard deviation predicted the ran-

dom forest on the testing set over 3-fold cross validation. (bottom)

Distribution of standard deviations output by the standard deviation forest for

predictions of Megablast runtimes

Fig. 4. (top) Performance of a random forest classifier compared to the

performance of a random forest modified to calculate standard deviations.

(bottom) The average size of classified runtime range predicted by the

random forest classifier compared to one runtime range predicted the

random forest on the testing set over 3-fold cross validation

3456 A.Tyryshkina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

Deleted Text: R
Deleted Text: P
Deleted Text: percent
Deleted Text: two standard deviations
Deleted Text: a
Deleted Text: two standard deviations
Deleted Text: M
Deleted Text: R
Deleted Text: E
Deleted Text: ,

solution to an online service is an addition of a package to the

Galaxy code base that would allow Galaxy administrators to train

unique models on their own job run histories. The drawback is that

Galaxy instances that have a smaller user basis may be lacking in the

training data to build such models. It is of interest, therefore,

to complete these tests to determine to feasibility of a cross-server

runtime estimation model.

On the other hand, maximum memory usage of a job is mostly

hardware independent. This is of benefit, since we can then train

one random forest (per tool) on jobs across all the Galaxy servers to

create a more robust model. The one concern with this proposal

is that some Galaxy servers are tailored for specific analyses. One

Galaxy instance may process more bacterial genome alignments,

whereas another Galaxy instance processes more plant genomes.

The differences in the omics in the different groups of organisms

may cause difficulty in creating a universal memory estimation ser-

vice, and begs for more cross-Galaxy instance tests. Still, a generic

online estimation service is certainly feasible for generic Galaxy

instances such as Galaxy Main and Galaxy Europe.

2.7 Application to real world job scheduling
Jobs on Galaxy Main (http://usegalaxy.org) are managed a distrib-

uted resource manager (DRM), Slurm (https://slurm.schedmd.com/).

DRM software provides cluster scheduling and execution function-

ality. When jobs are submitted for execution, the submitter can

specify the job’s maximum allowable run time (‘walltime’), as well

as the required number of number of CPU cores and amount of

memory. Once a job is queued, the DRM decides when jobs should

be allocated nodes, and which nodes to allocate, based on multiple

factors, including the requested cores/memory and walltime.

In a simple configuration where all jobs are homogeneous with

respect to requested walltime and cores/memory, the DRM sched-

ules jobs using a simple first-in first-out algorithm. Currently on

Galaxy Main, all jobs for tools that are able to run in parallel on

multiple cores are submitted with a walltime of 36 h, and are allo-

cated six CPU cores and 30 GB of memory. Slurm will assign these

to nodes in the order in which they are received. If a job is enqueued

and there are not enough free cores or memory to allocate, that job,

and all jobs submitted after it, will remain queued until resources

become available.

More complex scheduling algorithms are possible when jobs

vary in their requested limits and resources, which can yield higher

throughput, lower wait times and better utilization of compute

resources. This is done primarily through an algorithm commonly

referred to as backfill scheduling. Consider a scenario in which the

cluster consists (for the sake of example) of only a single 12 core

node with 64 GB of memory. On this node, two jobs are running:

Job A, allocated 6 cores and a 12 h walltime, has been running for

4 h, and Job B, allocated 4 cores and a 8 h walltime, has been run-

ning for 2 h. With a total of 10 cores in use, this leaves 2 cores on

the node standing idle. Also for the sake of example, assume that

jobs run for their entire walltime, and no less. Next, two new jobs

are enqueued: first, job C requiring 6 cores and having a walltime of

12 h, and second, job D requiring 2 cores and having a walltime

of 30 min. Using first-in first-out scheduling, despite there being ad-

equate cores free, job D will not be allocated resources until: (i) Job

B completes, (ii) Job C is scheduled and (iii) Job A completes. This is

8 h from the time of submission of job D.

Using backfill scheduling, however, the DRM sees that no job is

expected to finish within the next 6 h, and therefore, it can schedule

and complete job D immediately. Job C will run at the same time

as it would have otherwise. In a real world scenario where jobs can

finish before their runtime, the worst case scenario is that job C

starts a short time after it would have had job D not been backfilled,

so the negative impact of backfilling is quite low. Thus, having

accurate runtime predictions allow for significant improvements in

job throughput and a reduction of user wait times.

3 Future work

In addition to performing cross-server tests to determine the trans-

ferability of the resource prediction models, we are also interested in

studying effect of parallel processors on runtime. Currently, every

job on Galaxy main that can be run on parallel processors is allotted

six processor cores. Because of this, we do not have the historical

data to investigate the effect of core count on runtime. Adding ran-

dom fluctuations to the allotment of cores will be the place to start.

Once this is done, analyses may be completed to determine if there is

an optimal number of cores a tool, or job, should be allocated.

4 Materials and methods

4.1 Caveats of data collection
There are several caveats associated with the historical dataset of

jobs runs. Galaxy Main has three server clusters to which it sends

jobs. The clusters have different hardware specifications and under-

lying configurations. Because the jobs are run on a remote site, the

Galaxy Main instance does not know which hardware is assigned to

which job. In addition, The CPUs of the nodes are shared with other

jobs running concurrently, so the performance of jobs is also

affected by the server load at the time of execution. These attributes

are not in the dataset because of the difficulty of tracking them.

4.2 Undetected errors
A hurdle the job run dataset presents is that it contains undetected

errors—errors that occurred but were not recorded. One type of un-

detected error is the input file error, in which jobs are recorded to

have completed ‘successfully’ without the requisite input data. For

instance, there are 49 jobs of the tool bwamem Galaxy version

0.7.15.1 that completed successfully without the requisite input.

This comprises.25% of ‘successful’ jobs recorded for this tool.

Whether these errors are caused by bugs in the tool code, malfunc-

tions in the server, mistakes in record keeping or a combination of

these, the presence of these of errors casts uncertainty to the correct-

ness of other anomalous instances in the dataset. If there are many

Table 2. Performance of random forest on predicting the memory requirements of tools

Tool Number of jobs in dataset r2 score (mean) Accuracy: 1SD Accuracy: 2SD Accuracy: 3SD

bowtie2 3985 0.95 0.77 0.95 0.99

hisat2 2811 0.96 0.70 0.92 0.96

bwa mem 2199 0.78 0.71 0.93 0.97

stringtie 1399 0.90 0.68 0.89 0.94

Predicting runtimes of bioinformatics tools based on historical data 3457

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

http://usegalaxy.org
https://slurm.schedmd.com/
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text: 6
Deleted Text: ,
Deleted Text:
Deleted Text: &hx2009;
Deleted Text: our
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text: &hx2009;
Deleted Text: our
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text: hours
Deleted Text: &hx2009;
Deleted Text: utes
Deleted Text: 1
Deleted Text: .
Deleted Text: 2
Deleted Text: .
Deleted Text: ,
Deleted Text: 3
Deleted Text: .
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text: &hx2009;
Deleted Text: ours
Deleted Text: W
Deleted Text: 6
Deleted Text: M
Deleted Text: D
Deleted Text: C
Deleted Text: E
Deleted Text: -
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,

jobs similarly mislabeled as ‘successfully completed’ that are not as

easily identified as are input file errors, it will bias the predictions

and the performance metrics, which are computed on the same, pos-

sibly flawed, dataset.

In order to deal with the questionable job runs, we tested two

methods of removing undetected errors: the exclusion of extreme

values and the exclusion of anomalies detected by an isolation for-

est. We tested the methods in two ways: visually by plots and by the

effect of removal of the outliers on the performance of the models.

Visually, we expect certain correlations to appear between

input data and runtime—as the size of input data increases, so

should the runtime. Both methods failed at removing the anomal-

ous instances that were seen in such plots. As for model perform-

ance, the performance of the prediction models did not change

significantly when using a dataset trimmed by either method. For

these reasons, we did not implement either method to remove

anomalous job instance in this project and opted for using the full

dataset.

4.3 Variations of the random forest
We use a few variation of the random forest. Here, we describe

them in the order they appear in the text.

Extremely randomized trees (Geurts et al., 2006) and gradient

boosting (Friedman, 2001) are two forest methods that have com-

parable performance to classical random forests on many tasks.

Extremely randomized trees are a forest model with a modification

in how the trees are trained. The extremely randomized trees will

choose the best split over a sub-sample of random splits, where ease

a random forest will choose the best split over a sub-sample of the

dataset that it is using. The gradient boosting model uses shallower

trees than the random forest, and the trees are trained sequentially.

The construction of one tree is built by taking the negative gradient

of the cost function of the previous trees.

Next, we describe the isolation forest (Ting et al., 2008), which

is a forest model that is used for anomaly detection. In an isolation

forest, the data are split based on a random selection of an attribute

and split. The shorter the path to isolate a data instance, the more

likely that it is an anomaly. The data instances with the shortest

average isolation paths are considered to be the outliers.

Finally, we discuss the quantile and standard deviation regres-

sion forests. A quantile regression forest (Meinshausen, 2006) and

a standard deviation forest (Hutter et al., 2014) can each be used

to calculate confidence prediction intervals. A quantile regression

forest can be trained the same way as a random forest, except that

at the leaves of its trees, the quantile regression forest not only

stores the means of the variable to predict, but all of the values

found in the training set. By doing this, it is able to calculate a con-

fidence interval for the runtime of a job based on the quantile

chosen.

However, storing the entire dataset in the leaves of every tree can

use a large amount of memory. For this reason, we used a standard

deviation regression forest instead. A standard deviation regression

forest only stores the means and the standard deviations in its leaves.

Doing so reduces the precision of the confidence interval, but saves

space.

In this work, we use the random forest implementation provided

by the scikit-learn library (Pedregosa et al., 2011). We also use

scikit-learn library for the extra trees regressor, the gradient boost-

ing regressor and the isolation forest. We use the implementation

provided in the expanded scikit-garden library for the standard devi-

ation random forest.

Fig. 5. Actual maximum memory usage versus predicted memory usage of

the modified random forest with confidence intervals of 2 SD. The models

were trained on a random sample of a training set consisting of 0.8 jobs of

the dataset, and the predictions shown are on the remaining 0.2 jobs of the

dataset. The tools shown are (top) bowtie2, (middle) hisat2, (bottom) bwa

mem and (respectively) stringtie

3458 A.Tyryshkina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

Deleted Text: l
Deleted Text: &hx201D;
Deleted Text: &hx201D;
Deleted Text: -
Deleted Text: R
Deleted Text: F
Deleted Text: is
Deleted Text: is
Deleted Text: ,

4.4 Model parameters
The random forest, extra trees and isolation forest models used in

this project each exhibit 100 trees and a maximum depth of 12. The

gradient boosting models used in this project exhibit 100 trees and a

maximum depth of 3.

For the random forest classifier, we chose buckets in the follow-

ing manner.

• We ordered the jobs by length of runtime.
• Then, we made (0, median) our first bucket.
• We recursively took the median of the remaining runtimes until

the number of remaining bucket held <100 instances.

For example, for bwamem the buckets we found (in seconds)

were (0, 155.0, 592.5, 1616.0, 3975.0, 7024.5, 10523.0, 60409.0).

As the buckets become larger the number of jobs in the bucket

decreases. For bwamem, the last bucket holds only 0.78% of the

jobs. Dividing it further would make it so the next bucket created

has <100 jobs, which we chose as the threshold.

4.5 Feature selection
Galaxy records all parameters passed through the command line.

This presents in the dataset as a mixed bag of relevant and irrelevant

attributes as seen in Table 1.

For a few, popular tools, we manually select which parameters

to use. However, since we have many tools, with incongruous nam-

ing schemes and unique parameters, we cannot do this for each tool.

Instead, we created a heuristic to eliminate common irrelevant

features. The simple heuristic attempts to remove any labels or iden-

tification numbers that are present. Although it does not search for

redundant parameters, it can be altered to do so.

The parameters are screened in the following way:

1. Remove likely irrelevant parameters such as:
• workflow_invocation_uuid
• chromInfo
• parameters whose name begins with

a. job_resource

b. rg (i.e. read groups)

c. reference_source (this is often redundant to dbkey)
• parameters whose names end with

a. id

b. indices

c. identifier

2. Remove any non-numerical parameter whose number of unique

values exceeds a threshold

3. Remove parameters whose number of undeclared instances ex-

ceed a threshold

4. Remove parameters that are list or dict representations of

objects.

With these filters, we are able to remove computationally costly

parameters. Because identifiers and labels are more likely to explode

in size when binarized and dilute the importance of other attributes,

we are most concerned with removing those. In this paper, we used

a unique category threshold of 100 and an undeclared instance

threshold of 0.75 multiplied by the number of instances.

4.6 Attribute pre-processing
For the data presented in Supplementary Material 1, the categorical

variable is binarized using sklearn.preprocessing.LabelBinarizer.

The values of the numerical attributes are left unaltered; however,

the names of the user-selected numerical attribute parameters are

anonymized. The data presented in Supplementary Material 2,

was not binarized or anonymized because there was no identifying

information present in the data.

Before training the random forest model, we ensure to

scale the numerical variables to the range [0, 1] with

sklearn.preprocessing.MinMaxScaler, and to binarize the categoric-

al variables if they have not yet been binarized.

4.7 Performance evaluation
The 3-fold cross validation was performed on a shuffled dataset.

The performance metrics used were the coefficient of determination

(r 2), the accuracy and the precision.

Acknowledgements

We thank Martin �Cech, Nathan Coraor and Emil Bouvier for building, main-

taining and guiding us through the Galaxy codebase and the Galaxy database.

We are grateful to Marzia Cremona for providing feedback on the models

and for aid in the methods used for performance evaluation. We also thank

Chen Sun for giving us insight into the behavior of bioinformatics algorithms

from a computer science perspective.

Funding

This project was supported by National Institutes of Health Grants [U41

HG006620, R01 AI134384-01]; and National Science Foundation Grant

[1661497 to A.N.]. A.T. has been partially funded by the Penn State College

of Engineering Multidisciplinary Seed Grant Program.

Conflict of Interest: none declared.

References

Afgan,E. et al. (2016) The Galaxy platform for accessible, reproducible and

collaborative biomedical analyses: 2018 update. Nucleic Acids Res., 44,

W3–W10.

Bankole,A.A. and Ajila,S.A. (2013) Predicting cloud resource provisioning

using machine learning techniques. In: 2013 26th IEEE Canadian

Conference on Electrical and Computer Engineering (CCECE). pp. 1–4.

Regina, SK, Canada.

Blankenberg,D. et al. (2010) Galaxy, a web-based genome analysis tool for

experimentalists. Curr. Protoc. Mol. Biol., 89, 1–21.

Breiman,L. (2001) Random Forests. Mach. Learn., 45, 5–32.

Duan,R. et al. (2009) A Hybrid Intelligent Method for Performance Modeling

and Prediction of Workflow Activities in Grids. In: 2009 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid. Washington,

DC, USA, pp. 339–347.

Friedman,J.H. (2001) Greedy function approximation: a gradient boosting

machine. Ann. Stat., 29, 1189–1232.

Geurts,P. et al. (2006) Extremely randomized trees. Mach. Learn., 63, 3–42.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting ac-

cessible, reproducible, and transparent computational research in the life

sciences. Genome Biol., 11, R86.

Gong,Z. et al. (2010) PRESS: PRedictive Elastic ReSource Scaling for cloud

systems. In: 2010 International Conference on Network and Service

Management. pp. 9–16. Niagara Falls, ON, Canada.

Gupta, C. et al. (2008) PQR: predicting Query Execution Times for

Autonomous Workload Management. In: 2008 International Conference

on Autonomic Computing. pp. 13–22. Chicago, IL, USA.

Hutter,F. et al. (2006) Principles and Practice of Constraint Programming -

CP 2006. Lecture Notes in Computer Science. Performance Prediction and

Automated Tuning of Randomized and Parametric Algorithms. Springer,

Berlin, Heidelberg, pp. 213–228.

Hutter,F. et al. (2014) Algorithm runtime prediction: methods & evaluation.

Artif. Intell., 206, 79–111.

Predicting runtimes of bioinformatics tools based on historical data 3459

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

Deleted Text: P
Deleted Text: ,
Deleted Text:]
Deleted Text: less than
Deleted Text: [
Deleted Text:]
Deleted Text: ,
Deleted Text: less than
Deleted Text: S
Deleted Text: P
Deleted Text: Data
Deleted Text: are
Deleted Text: Data
Deleted Text: E
Deleted Text: Three
Deleted Text: ,

Islam,S. et al. (2012) Empirical prediction models for adaptive resource provi-

sioning in the cloud. Future Gener. Comput. Syst., 28, 155–162.

Matsunaga,A. and Fortes,J.A.B. (2010) On the Use of Machine Learning

to Predict the Time and Resources Consumed by Applications. In: 2010

10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing. pp. 495–504. Washington, DC, USA.

Meinshausen,N. (2006) Quantile Regression Forests. J. Mach. Learn. Res., 7,

983–999.

Nadeem,F. and Fahringer,T. (2009) Using Templates to Predict Execution Time

of Scientific Workflow Applications in the Grid. In: 2009 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid. Shanghai,

China, pp. 316–323.

Pedregosa,F. et al. (2011) Scikit-learn: machine Learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Phinjaroenphan,P. et al. (2005) Advances in Grid Computing - EGC 2005.

Lecture Notes in Computer Science. A Method for Estimating the Execution

Time of a Parallel Task on a Grid Node. Springer, Berlin, Heidelberg,

pp. 226–236.

Sonmez,O. et al. (2009) Trace-based evaluation of job runtime and queue wait

time predictions in grids. In: HPDC ’09 Proceedings of the 18th ACM

International Symposium on High Performance Distributed Computing.

pp. 111–120. ACM, New York, NY, USA.

Ting,K.M. et al. (2008) Isolation Forest. In: 2008 Eighth IEEE International

Conference on Data Mining (ICDM). Pisa, Italy, pp. 413–422.

3460 A.Tyryshkina et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3453/5304359 by guest on 20 April 2024

