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Abstract

Summary: Currently, most genome assembly projects focus on contigs and scaffolds rather than as-

sembly graphs that provide a more comprehensive representation of an assembly. Since interactive

visualization of large assembly graphs remains an open problem, we developed an Assembly Graph

Browser (AGB) tool that visualizes large assembly graphs, extending the functionality of previously

developed visualization approaches. Assembly Graph Browser includes a number of novel functions

including repeat analysis, construction of the contracted assembly graphs (i.e. the graphs obtained

by collapsing a selected set of edges) and a new approach to visualizing large assembly graphs.

Availability and implementation: http://www.github.com/almiheenko/AGB.

Contact: a.mikheenko@spbu.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many genome assembly algorithms use graphs as core data structures,

which include de Bruijn graphs (Pevzner et al., 2001), overlap-layout-

consensus graphs (Myers et al., 2000) and string graphs (Simpson and

Durbin, 2012). Visualization of an assembly graph (a graph used

by the assembler) helps to revisit the problematic parts of the graph,

modify the assembly (Wick et al., 2015), and plan additional genome

finishing experiments (Schmid et al., 2018). Assembly graphs also re-

veal unresolved repeats, such as segmental duplications with complex

mosaic structure (Kolmogorov et al., 2018; Pu et al., 2018).

Previously developed assembly visualization tools include

ABySS-Explorer (Nielsen et al., 2009), Ray Cloud Browser (Boisvert

et al., 2010), IGV (Robinson et al., 2011), Bandage (Wick et al.,

2015), Icarus (Mikheenko et al., 2016) and SGTK (Kunyavskaya

and Prjibelski, 2018). IGV and Icarus are designed to visualize con-

tigs/scaffolds, while ABySS-Explorer and Ray Cloud Browser can

visualize the assembly graphs of the corresponding assemblers

(ABySS and Ray). The recently introduced SGTK tool focuses on vis-

ualizing scaffold connections between contigs. Bandage is currently

the most popular visualization approach that works with a wide

range of assembly graph formats.

Emerging long-read technologies have enabled accurate and con-

tiguous assemblies of large genomes (Koren et al., 2017), but the

problem of visualizing the resulting assembly graphs remains open.

Although Bandage proved to be a useful tool for analyzing small as-

sembly graphs, navigation becomes difficult in large and tangled

graphs. While the authors of SGTK have improved on the visualiza-

tion of large graphs, the tool was primarily designed for scaffold

graphs, rather than assembly graphs.

To address this challenge, we developed Assembly Graph

Browser (AGB) for assembly graph visualization, which scales to

large and complex datasets. AGB automatically splits the input as-

sembly graph into subgraphs based on different criteria (such as con-

nectivity, repeat configuration or reference mapping), which makes

the exploration of large graphs feasible. Additionally, AGB provides

various graph simplification functions (removing/collapsing edges

based on length, coverage or multiplicity), which allows the user to

focus on large-scale graph structures. Given a reference genome,
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AGB visualizes positions of the edges in the reference and highlights

assembly errors using QUAST.

2 Materials and methods

AGB works with assembly graphs in the GFA (https://github.com/

GFA-spec/GFA-spec), FASTG (Jaffe et al., 2012) or Graphviz

(Gansner and North, 2000) formats. It also utilizes additional

information (e.g. how contigs are traversing the graph) provided

by various popular assemblers: Canu (Koren et al., 2017), Flye

(Kolmogorov et al., 2018) and SPAdes (Bankevich et al., 2012).

AGB generates interactive JavaScript-based web pages with two

main parts: a control panel and a graph viewer (Fig. 1).

AGB uses the d3-based GraphViz (Gansner and North, 2000) li-

brary (https://github.com/magjac/d3-graphviz) for assembly graph

layout and visualization. GraphViz provides a hierarchical view of

the graph structure and the JavaScript implementation provides vari-

ous interactive features, such as zooming, navigating and interacting

with the elements of the graph.

To visualize a large assembly graph with thousands of nodes/

edges, AGB splits it into the smaller subgraphs, displaying each sub-

graph separately using the METIS library (Karypis and Kumar,

1998). Given the input graph, AGB generates minimal edge-cuts,

which define subgraphs with <100 nodes in each (Supplementary

Fig. S2). AGB also supports various graph modification operations,

such as edge removal (e.g. to remove low-coverage edges) and con-

traction (e.g. to contract repeat edges). In comparison, Bandage can

visualize subgraphs that contain a sequence homologous to a

FASTA query or induced by a specified subset of segments, but this

strategy is not optimal for exploring the graph without prior know-

ledge about the sequence of interest.

AGB classifies each edge as unique or repetitive (corresponding

to unique/repetitive sequence in the genome). Some assemblers (e.g.

Flye and Canu) already provide this classification, while if not avail-

able, AGB defines an edge as repetitive if its coverage is higher than

1.75� of the median assembly graph coverage (otherwise, the edge

is classified as unique). Adjacent repeat edges are grouped into clus-

ters. A repeat cluster is called simple (mosaic) if it consists of one

(multiple) edges.

2.1 Assembly graph representations
AGB offers several modes for representing the assembly graph:

• Default mode. In this mode, AGB splits the assembly graph

into connected components (each large component is further

split using the METIS library). This mode could be used to

explore the graph of a de novo assembly. The graph represen-

tation can be further modified using Additional options

(described below).
• Repeat-focused mode. In this mode connected components are

computed using only repetitive (but not unique) edges. Thus,

each subgraph corresponds to a simple/mosaic repeat (unique

edges that are entering/exiting this repeat component are also

shown). This allows exploration the repeat structure of the gen-

ome and investigation of the unresolved repeats (that typically

correspond to contig/scaffold breakpoints).
• Reference-based mode. If a reference genome is available, AGB

runs QUAST-LG (Mikheenko et al., 2018) to align the graph

Fig. 1. An AGB visualization of the Saccharomyces cerevisiae dataset generated with the Flye assembler (Kolmogorov et al., 2018). The left panel includes the

menu with visualization options, a search bar and tables summarizing information about the edges and connected components; the assembly graph is shown on

the right. In this graph, edges represent the genomic sequences, while nodes serve as junctions (each edge is represented in forward and reverse-complement

copies, thus the graph is always symmetric). The edge labels were hidden to simplify the overview. Unique edges are shown in black, while repetitive edges are

shown in color (adjacent repeats have the same color). Tip nodes (with zero indegree or outdegree) are shown as black circles. Unbalanced nodes are highlighted

in red. AGB splits the assembly graph into subgraphs and visualizes them separately. The top panel allows to switch between different subgraphs. By default,

subgraphs are defined as connected components of the graph. It is also possible to split the graph based on repeat edges clusters, reference mappings and con-

tig paths
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edges and contigs (scaffolds) produced by an assembler to the

reference genome, detecting assembly errors. This mode provides

two additional options for edge coloring: according to their

alignments to the reference (same colors represent the same

chromosomes), or based on the presence of assembly errors. It is

also possible to group connected components based on their

chromosome assignments.
• Contig-based mode. If an assembler provides paths in the assem-

bly graph corresponding to the assembled contigs/scaffolds, AGB

can display each path separately. Given the reference genome,

AGB also shows the number of assembly errors per contig.

Examples of AGB visualizations are given in the Supplementary

Material and in the GitHub repository.

2.2 Menu panel
The left panel of AGB specifies multiple options and tables describ-

ing various elements of the assembly graph (Fig. 1).

Additional options. To simplify the assembly graph, AGB has an

option to filter out edges based on read coverage and/or length.

AGB can also collapse all repetitive edges producing a contracted

assembly graph (Supplementary Fig. S1). Alternatively, a user can

remove all unique edges from the graph (as described above).

Tables. AGB displays interactive, sortable tables containing in-

formation about edges, vertices, contigs, reference chromosomes

and connected components. A user can select a contig/scaffold/

chromosome of interest from the table to either highlight edges that

belong to the selected element or to display it in the contig/

reference-based mode. A component of interest can be chosen based

on various features, e.g. the number of incoming and outgoing edges

or total length of edges.

3 Conclusion

Although assembly graphs represent a powerful tool for analyzing

and improving genome assemblies, their applications are currently

limited due to a shortage of interactive visualization tools. To ad-

dress this gap, we developed the AGB tool that provides interactive

visualizations of assembly graphs and includes various visualiza-

tion modes and options for simplifying the graph. We believe that

AGB can benefit both developers and users of various genome as-

sembly tools.
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