
Genome analysis

Assembly Graph Browser: interactive

visualization of assembly graphs

Alla Mikheenko 1,* and Mikhail Kolmogorov2

1Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University,

Saint Petersburg 199034, Russia and 2Department of Computer Science and Engineering, University of California,

San Diego, CA 92093, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on October 15, 2018; revised on January 22, 2019; editorial decision on January 23, 2019; accepted on February 1, 2019

Abstract

Summary: Currently, most genome assembly projects focus on contigs and scaffolds rather than as-

sembly graphs that provide a more comprehensive representation of an assembly. Since interactive

visualization of large assembly graphs remains an open problem, we developed an Assembly Graph

Browser (AGB) tool that visualizes large assembly graphs, extending the functionality of previously

developed visualization approaches. Assembly Graph Browser includes a number of novel functions

including repeat analysis, construction of the contracted assembly graphs (i.e. the graphs obtained

by collapsing a selected set of edges) and a new approach to visualizing large assembly graphs.

Availability and implementation: http://www.github.com/almiheenko/AGB.

Contact: a.mikheenko@spbu.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many genome assembly algorithms use graphs as core data structures,

which include de Bruijn graphs (Pevzner et al., 2001), overlap-layout-

consensus graphs (Myers et al., 2000) and string graphs (Simpson and

Durbin, 2012). Visualization of an assembly graph (a graph used

by the assembler) helps to revisit the problematic parts of the graph,

modify the assembly (Wick et al., 2015), and plan additional genome

finishing experiments (Schmid et al., 2018). Assembly graphs also re-

veal unresolved repeats, such as segmental duplications with complex

mosaic structure (Kolmogorov et al., 2018; Pu et al., 2018).

Previously developed assembly visualization tools include

ABySS-Explorer (Nielsen et al., 2009), Ray Cloud Browser (Boisvert

et al., 2010), IGV (Robinson et al., 2011), Bandage (Wick et al.,

2015), Icarus (Mikheenko et al., 2016) and SGTK (Kunyavskaya

and Prjibelski, 2018). IGV and Icarus are designed to visualize con-

tigs/scaffolds, while ABySS-Explorer and Ray Cloud Browser can

visualize the assembly graphs of the corresponding assemblers

(ABySS and Ray). The recently introduced SGTK tool focuses on vis-

ualizing scaffold connections between contigs. Bandage is currently

the most popular visualization approach that works with a wide

range of assembly graph formats.

Emerging long-read technologies have enabled accurate and con-

tiguous assemblies of large genomes (Koren et al., 2017), but the

problem of visualizing the resulting assembly graphs remains open.

Although Bandage proved to be a useful tool for analyzing small as-

sembly graphs, navigation becomes difficult in large and tangled

graphs. While the authors of SGTK have improved on the visualiza-

tion of large graphs, the tool was primarily designed for scaffold

graphs, rather than assembly graphs.

To address this challenge, we developed Assembly Graph

Browser (AGB) for assembly graph visualization, which scales to

large and complex datasets. AGB automatically splits the input as-

sembly graph into subgraphs based on different criteria (such as con-

nectivity, repeat configuration or reference mapping), which makes

the exploration of large graphs feasible. Additionally, AGB provides

various graph simplification functions (removing/collapsing edges

based on length, coverage or multiplicity), which allows the user to

focus on large-scale graph structures. Given a reference genome,

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3476

Bioinformatics, 35(18), 2019, 3476–3478

doi: 10.1093/bioinformatics/btz072

Advance Access Publication Date: 4 February 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3476/5306331 by guest on 23 April 2024

http://orcid.org/0000-0003-3400-9719
http://www.github.com/almiheenko/AGB
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz072#supplementary-data
https://academic.oup.com/


AGB visualizes positions of the edges in the reference and highlights

assembly errors using QUAST.

2 Materials and methods

AGB works with assembly graphs in the GFA (https://github.com/

GFA-spec/GFA-spec), FASTG (Jaffe et al., 2012) or Graphviz

(Gansner and North, 2000) formats. It also utilizes additional

information (e.g. how contigs are traversing the graph) provided

by various popular assemblers: Canu (Koren et al., 2017), Flye

(Kolmogorov et al., 2018) and SPAdes (Bankevich et al., 2012).

AGB generates interactive JavaScript-based web pages with two

main parts: a control panel and a graph viewer (Fig. 1).

AGB uses the d3-based GraphViz (Gansner and North, 2000) li-

brary (https://github.com/magjac/d3-graphviz) for assembly graph

layout and visualization. GraphViz provides a hierarchical view of

the graph structure and the JavaScript implementation provides vari-

ous interactive features, such as zooming, navigating and interacting

with the elements of the graph.

To visualize a large assembly graph with thousands of nodes/

edges, AGB splits it into the smaller subgraphs, displaying each sub-

graph separately using the METIS library (Karypis and Kumar,

1998). Given the input graph, AGB generates minimal edge-cuts,

which define subgraphs with <100 nodes in each (Supplementary

Fig. S2). AGB also supports various graph modification operations,

such as edge removal (e.g. to remove low-coverage edges) and con-

traction (e.g. to contract repeat edges). In comparison, Bandage can

visualize subgraphs that contain a sequence homologous to a

FASTA query or induced by a specified subset of segments, but this

strategy is not optimal for exploring the graph without prior know-

ledge about the sequence of interest.

AGB classifies each edge as unique or repetitive (corresponding

to unique/repetitive sequence in the genome). Some assemblers (e.g.

Flye and Canu) already provide this classification, while if not avail-

able, AGB defines an edge as repetitive if its coverage is higher than

1.75� of the median assembly graph coverage (otherwise, the edge

is classified as unique). Adjacent repeat edges are grouped into clus-

ters. A repeat cluster is called simple (mosaic) if it consists of one

(multiple) edges.

2.1 Assembly graph representations
AGB offers several modes for representing the assembly graph:

• Default mode. In this mode, AGB splits the assembly graph

into connected components (each large component is further

split using the METIS library). This mode could be used to

explore the graph of a de novo assembly. The graph represen-

tation can be further modified using Additional options

(described below).
• Repeat-focused mode. In this mode connected components are

computed using only repetitive (but not unique) edges. Thus,

each subgraph corresponds to a simple/mosaic repeat (unique

edges that are entering/exiting this repeat component are also

shown). This allows exploration the repeat structure of the gen-

ome and investigation of the unresolved repeats (that typically

correspond to contig/scaffold breakpoints).
• Reference-based mode. If a reference genome is available, AGB

runs QUAST-LG (Mikheenko et al., 2018) to align the graph

Fig. 1. An AGB visualization of the Saccharomyces cerevisiae dataset generated with the Flye assembler (Kolmogorov et al., 2018). The left panel includes the

menu with visualization options, a search bar and tables summarizing information about the edges and connected components; the assembly graph is shown on

the right. In this graph, edges represent the genomic sequences, while nodes serve as junctions (each edge is represented in forward and reverse-complement

copies, thus the graph is always symmetric). The edge labels were hidden to simplify the overview. Unique edges are shown in black, while repetitive edges are

shown in color (adjacent repeats have the same color). Tip nodes (with zero indegree or outdegree) are shown as black circles. Unbalanced nodes are highlighted

in red. AGB splits the assembly graph into subgraphs and visualizes them separately. The top panel allows to switch between different subgraphs. By default,

subgraphs are defined as connected components of the graph. It is also possible to split the graph based on repeat edges clusters, reference mappings and con-

tig paths

Assembly Graph Browser 3477

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3476/5306331 by guest on 23 April 2024

https://github.com/GFA-spec/GFA-spec
https://github.com/GFA-spec/GFA-spec
https://github.com/magjac/d3-graphviz
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz072#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz072#supplementary-data


edges and contigs (scaffolds) produced by an assembler to the

reference genome, detecting assembly errors. This mode provides

two additional options for edge coloring: according to their

alignments to the reference (same colors represent the same

chromosomes), or based on the presence of assembly errors. It is

also possible to group connected components based on their

chromosome assignments.
• Contig-based mode. If an assembler provides paths in the assem-

bly graph corresponding to the assembled contigs/scaffolds, AGB

can display each path separately. Given the reference genome,

AGB also shows the number of assembly errors per contig.

Examples of AGB visualizations are given in the Supplementary

Material and in the GitHub repository.

2.2 Menu panel
The left panel of AGB specifies multiple options and tables describ-

ing various elements of the assembly graph (Fig. 1).

Additional options. To simplify the assembly graph, AGB has an

option to filter out edges based on read coverage and/or length.

AGB can also collapse all repetitive edges producing a contracted

assembly graph (Supplementary Fig. S1). Alternatively, a user can

remove all unique edges from the graph (as described above).

Tables. AGB displays interactive, sortable tables containing in-

formation about edges, vertices, contigs, reference chromosomes

and connected components. A user can select a contig/scaffold/

chromosome of interest from the table to either highlight edges that

belong to the selected element or to display it in the contig/

reference-based mode. A component of interest can be chosen based

on various features, e.g. the number of incoming and outgoing edges

or total length of edges.

3 Conclusion

Although assembly graphs represent a powerful tool for analyzing

and improving genome assemblies, their applications are currently

limited due to a shortage of interactive visualization tools. To ad-

dress this gap, we developed the AGB tool that provides interactive

visualizations of assembly graphs and includes various visualiza-

tion modes and options for simplifying the graph. We believe that

AGB can benefit both developers and users of various genome as-

sembly tools.

Funding

A.M. was supported by St. Petersburg State University, St. Petersburg, Russia

(grant ID PURE 28396291). M.K. was supported by NSF/MCB-BSF grant

1715911.

Conflict of Interest: none declared.

References

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Boisvert,S. et al. (2010) Ray: simultaneous assembly of reads from a mix of

high-throughput sequencing technologies. J. Comput. Biol., 17, 1519–1533.

Gansner,E.R. and North,S.C. (2000) An open graph visualization system and its

applications to software engineering. Softw. Pract. Exper., 30, 1203–1233.

Jaffe,D. et al. (2012) The FASTG Format Specification (v1.00) 2012. http://

fastg.sourceforge.net/FASTG_Spec_v1.00.pdf (9 February 2019, date last

accessed).

Karypis,G. and Kumar,V. (1998) Multilevel algorithms for multi-constraint

graph partitioning. In: Proceedings of the 1998 ACM/IEEE Conference on

Supercomputing. pp. 1–13, IEEE Computer Society, Washington, DC, USA.

Kolmogorov,M. et al. (2018) Assembly of Long Error-Prone Reads Using

Repeat Graphs. https://doi.org/10.1093/bioinformatics/bty956.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via adap-

tive k-mer weighting and repeat separation. Genome Res., 27, 722–736.

Kunyavskaya,O. and Prjibelski,A.D. (2018) SGTK: a toolkit for visualization

and assessment of scaffold graphs. Bioinformatics.

Mikheenko,A. et al. (2016) Icarus: visualizer for de novo assembly evaluation.

Bioinformatics, 32, 3321–3323.

Mikheenko,A. et al. (2018) Versatile genome assembly evaluation with

QUAST-LG. Bioinformatics, 34, i142–i150.

Myers,E.W. et al. (2000) A whole-genome assembly of Drosophila. Science,

287, 2196–2205.

Nielsen,C.B. et al. (2009) ABySS-Explorer: visualizing genome sequence

assemblies. IEEE Trans. Vis. Comput. Graph., 15, 881–888.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. PNAS, 98, 9748–9753.

Pu,L. et al. (2018) Detection and analysis of ancient segmental duplications in

mammalian genomes. Genome Res., 28, 901–909.

Robinson,J. et al. (2011) Integrative genomics viewer. Nat. Biotechnol., 29,

24–26.

Schmid,M. et al. (2018) Pushing the limits of de novo genome assembly for

complex prokaryotic genomes harboring very long, near identical repeats.

Nucleic Acids Res., 46, 8953–8965.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large

genomes using compressed data structures. Genome Res., 22, 549–556.

Wick,R.R. et al. (2015) Bandage: interactive visualization of de novo genome

assemblies. Bioinformatics, 31, 3350–3352.

3478 A.Mikheenko and M.Kolmogorov

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3476/5306331 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz072#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz072#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz072#supplementary-data
http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf
http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf
https://doi.org/10.1093/bioinformatics/bty956

