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Abstract

Summary: Mobile element insertion (MEI) is a major category of structure variations (SVs). The

rapid development of long read sequencing technologies provides the opportunity to detect MEIs

sensitively. However, the signals of MEI implied by noisy long reads are highly complex due to the

repetitiveness of mobile elements as well as the high sequencing error rates. Herein, we propose

the Realignment-based Mobile Element insertion detection Tool for Long read (rMETL).

Benchmarking results of simulated and real datasets demonstrate that rMETL enables to handle

the complex signals to discover MEIs sensitively. It is suited to produce high-quality MEI callsets in

many genomics studies.

Availability and implementation: rMETL is available from https://github.com/hitbc/rMETL.

Contact: ydwang@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mobile element insertions (MEIs) represent about 25% of structure

variations (SVs) in human genomes (Gardner et al., 2017), which

are mainly contributed by active transposons such as Alu, L1 and

SVA families (Stewart et al., 2011). Efforts have been made to detect

MEIs with short reads (Sudmant et al., 2015), however, short-read-

based approaches have their own limitations to deal with repetitive

mobile elements.

Long reads are promising to handle repeats and more sensitively

detect SVs (Sedlazeck et al., 2018a). However, with the repetitive-

ness of mobile elements and high sequencing error rates, the MEI

signals implied by long reads are highly complex. State-of-the-art

long-read-based SV detection tools use unified approaches to detect

various kinds of SVs (Sedlazeck et al., 2018b). However, this ‘one-

fits-all’ strategy does not fully consider the characteristics of MEIs,

which may affect the detection.

Herein, we propose Realignment-based Mobile Element inser-

tion detection Tool for Long read (rMETL). rMETL takes advan-

tage of its specifically designed chimeric read re-alignment approach

to handle the complex MEI signals. This novel approach has

improved ability to produce high quality MEI callsets.

2 Materials and methods

Using aligned long reads (a sorted BAM file) as input, rMETL

extracts and re-aligns chimerically aligned reads to discover MEIs

(range from 50 bp to 1 million bp) in four steps.

1. rMETL extracts the chimerically aligned parts of the

reads which have split alignment, large clippings and/or large

indels;

2. rMETL clusters the chimerically aligned read parts in pre-

defined rules to infer a set of putative MEI sites as candidates;

3. rMETL realigns the clustered read parts to the consensus

sequences of Alu, L1 and SVA families with a well-tuned

aligner;

4. rMETL investigates the realignment results to find out the evi-

dence to call MEIs as well as filter false positive candidates.
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Please also refer to Supplementary Figures S1 and S2 for sche-

matic illustrations and Supplementary Notes for more detailed in-

formation on the implementation of rMETL.

3 Results

We implemented rMETL on simulated and real datasets to assess its

ability. A state-of-the-art long-read-based SV calling approach,

Sniffles (Sedlazeck et al., 2018b), was employed for comparison.

Four PacBio-like datasets (mean read length: 8000 bp, mean

error rate: 15%) on four sequencing depths (5�, 10�, 20� and

50�) were simulated with an in silico haploid human genome hav-

ing 20 000 MEIs (Section 2.1 of Supplementary Notes). For both

rMETL and Sniffles, all the parameters were set as default values ex-

cept the numbers of supporting reads (�s parameters), which were

tuned as 5 for the 5�, 10� and 20� and 10 for the 50� datasets,

referring to previous studies on the tradeoff between sensitivity and

specificity (Sedlazeck et al., 2018b).

The sensitivities and accuracies of rMETL and Sniffles are in

Table 1 and Supplementary Table S1. Overall, rMETL achieves

higher sensitivity than Sniffles, especially on the lower depth (5�
and 10�) datasets. Moreover, both of the two approaches have low

false positive rates (0.01–0.23% for rMETL and 0.04–1.95% for

Sniffles).

Furthermore, we implemented rMETL on a 50� simulated

PacBio-like dataset from another in silico haploid human genome

having 20 000 non-MEI insertions (Section S2.1 of Supplementary

Notes). Only 366 (1.8%) of the 20 000 events were false positively

called as MEIs, suggesting that rMETL has the ability to prevent

false positives.

rMETL and Sniffles were further benchmarked with a 55� real

PacBio dataset (Zook et al., 2014) and a 28� real ONT dataset

(Jain et al., 2018). Their -s parameters were respectively set as 10

(PacBio) and 5 (ONT), referring to the previous study (Sedlazeck

et al., 2018b). A callset proposed by 1000 Genomes Project

(Sudmant et al., 2015) (which is produced by multiple approaches)

and other four callsets generated by state-of-the-art short-read-based

MEI calling tools, i.e. MELT (Gardner et al., 2017), Tangram (Wu

et al., 2014), Mobster (Thung et al., 2014) and Tea (Lee et al.,

2012), were employed as pseudo ground truth. Each of them is

termed as a ‘SR-callset’.

rMETL called 4704 and 5439 MEIs, and Sniffles called 21613

and 59870 INS/DELs, on the PacBio and ONT datasets respectively.

Sniffles’ higher numbers of calls are also reasonable since it detects all

kinds of large insertions and deletions. We assessed the numbers of

the calls supported by various SR-callsets and observed two issues.

1) It indicates that, the callsets of rMETL covered 1589 (with the

PacBio dataset) and 1588 (with the ONT dataset) of the 1628 MEIs

which co-exists in at least two SR-callsets (Fig. 1 and Supplementary

Table S2). Moreover, the upset plots (Supplementary Figs S3–S6) indi-

cate that rMETL recovered 1696 (with the PacBio dataset) and 1699

(with the ONT dataset) of 1764 MEIs in the 1000 Genomes Project

callset. This suggests that in absolute terms rMETL has good sensitivity,

considering that the MEIs called by multiple approaches could be more

confidently seen as true MEIs, and rMETL recovered most of them.

2) On the same levels of SR-callset supports (i.e. supported by

the same numbers of SR-callsets), rMETL always has more MEI

calls than Sniffles does (Fig. 1). This indicates that the sensitivity of

rMETL is higher than that of Sniffles.

We find that the good sensitivity of rMETL derives from its re-

alignment approach, which enables to transform ambiguous and

chimeric read alignments into homogenous alignments. This helps

to find strong MEI evidence from complex signals, which is still

non-trivial to unified SV detection approaches. An example is in

Supplementary Figure S7.

There are also MEIs called by rMETL which are not supported

by any of the SR-callsets (i.e. 2412 and 3120 calls for the PacBio

and ONT datasets, respectively). However, 77% (PacBio) and 79%

(ONT) of such calls also exist in the callset of Sniffles

(Supplementary Fig. S8), indicating that they could be plausible. We

found that most of such unsupported calls also have strong evidence.

That is, there are many chimeric read parts in the called MEI

regions, and most of them can be confidently aligned to mobile ele-

ments (Supplementary Fig. S9).

The elapsed times, CPU times and memory footprints with 1, 2,

4, 8 and 16 CPU threads were assessed (Supplementary Table S3).

Mainly, rMETL processed the PacBio and the ONT datasets in re-

spectively 2.1 and 1.5 h with 8 CPU threads (peak memory: 7.05

and 6.52 GB), about 2 times faster than Sniffles.

The benchmarking results suggest that overall rMETL has good

ability to detect MEIs. However, it has a few drawbacks. rMETL

might fail at the incorrect realignment of read parts or the lack of

supporting reads. These are also important future works for us to

improve rMETL. Moreover, to some extent, rMETL relies on the

consensus sequences of mobile elements. A more detailed discussion

is in Supplementary Notes.
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