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Abstract

Motivation: The development of single-cell RNA-sequencing (scRNA-seq) provides a new perspec-

tive to study biological problems at the single-cell level. One of the key issues in scRNA-seq ana-

lysis is to resolve the heterogeneity and diversity of cells, which is to cluster the cells into several

groups. However, many existing clustering methods are designed to analyze bulk RNA-seq data, it

is urgent to develop the new scRNA-seq clustering methods. Moreover, the high noise in scRNA-

seq data also brings a lot of challenges to computational methods.

Results: In this study, we propose a novel scRNA-seq cell type detection method based on similar-

ity learning, called SinNLRR. The method is motivated by the self-expression of the cells with the

same group. Specifically, we impose the non-negative and low rank structure on the similarity

matrix. We apply alternating direction method of multipliers to solve the optimization problem and

propose an adaptive penalty selection method to avoid the sensitivity to the parameters. The learn-

ed similarity matrix could be incorporated with spectral clustering, t-distributed stochastic neigh-

bor embedding for visualization and Laplace score for prioritizing gene markers. In contrast to

other scRNA-seq clustering methods, our method achieves more robust and accurate results on

different datasets.

Availability and implementation: Our MATLAB implementation of SinNLRR is available at, https://

github.com/zrq0123/SinNLRR.

Contact: limin@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Analysis of transcriptomic profiling has become a powerful approach

to mine biological functions, regulatory relationships and biomarkers

of diseases. However, the traditional transcriptomic analysis can only

provide the bulk expression of cells, which is insufficient to reveal the

states or differences of cells. Recently, the development of single-cell

RNA-sequencing (scRNA-seq) techniques has provided a new per-

spective to study the biological mechanism at the cellular level. One

of the major and popular applications of scRNA-seq is to analyze the

cellular heterogeneity and identify subtypes of cells from a bunch of

cells. The identification of cell types from scRNA-seq is an unsuper-

vised clustering problem. However, the high level of technical noise

and notorious dropouts in scRNA-seq would lead to the failure of

existing clustering methods (Elowitz et al., 2002; Stegle et al., 2015),

it is urgent and challenging to develop new statistical and computa-

tional methods (Stegle et al., 2015).
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Up to now, a number of computational methods have been pro-

posed to identify cell types based on scRNA-seq profiles. Most of these

methods focus on learning better cell–cell similarities. Xu and Su

(2015) proposed a clustering method by calculating the similarities be-

tween cells based on shared nearest neighbors. Seurat 2.0 (Butler et al.,

2018) applied the canonical correlation to construct the weighted K-

nearest neighbors graphs. As the single type of similarity cannot charac-

terize all information of scRNA-seq, Wang et al. (2017) designed a

multi-kernel based clustering method, called SIMLR, which learned the

final similarities from 55 different Gaussian kernels. MPSSC (Park and

Zhao, 2018) improved SIMLR by the additional doubly stochastic

similarity learning and pairwise sparse structure of the similarity ma-

trix. Zhu et al. (2019) proposed a method to detect the cell type from

structural entropy of graphs. Consensus clustering methods enhanced

the accuracy by assembling different results of clustering, which

avoided the sensitivity of single clustering method. SC3 (Kiselev et al.,

2017) obtained different clustering results based on Euclidean distance,

Pearson correlation and Spearman correlation, then constructed the

consensus matrix by counting the number of each pair of cells in the

same cluster and clustered on it again. Tsoucas and Yuan (2018) pro-

posed GiniClust2, a weighted ensemble clustering method based on

Gini index-based and factor-based gene selection, to detect rare and

common cell types simultaneously. A series of methods, such as CIDR

(Lin et al., 2017), scImpute (Li and Li, 2018), netSmooth (Ronen and

Akalin, 2018), improved the performance of clustering methods by

imputing the dropouts of scRNA-seq. The imputation of dropouts

depended on the local similarities of cells or certain biological know-

ledge. Jiang et al. (2018) defined differentiability correlations between

two cells to avoid the bias brought by dropouts. ZIFA (Pierson and

Yau, 2015) and ZINB-WaVE (Risso et al., 2018) learned the special

low-dimensional representation from the noisy scRNA-seq. SCENIC

(Aibar et al., 2017) defined the regulons’ activities based on recon-

structed gene regulatory networks to analyze the states of cells, which

gave a biological insight into the cellular heterogeneity. In addition to

similarity learning, non-negative matrix factorization (NMF) has been

successfully applied in the scRNA-seq profiles by regarding the latent

dimension as types of metacells (Shao and Höfer, 2017). For large scale

scRNA-seq, Sinha et al. (2018) proposed dropClust, a computationally

efficient method, which clustered thousands of cells in several minutes.

However, most of the above methods just considered the simi-

larities between pairwise of cells, which were hard to capture the

complex relationships among cells. In order to learn more accurate

similarity matrix, we proposed a self-expression of data driven clus-

tering method with non-negative and low-rank constraints, called

SinNLRR. In SinNLRR, we assumed the cells with the same type

were in the same subspace, so the expression of one cell can be

described as the combination of the same type of cells’ expressions.

SinNLRR found the low-rank and non-negative representation of

the expression matrix from all candidate subspaces. It is an opti-

mization problem to learn the similarities among cells. Naturally,

an alternating direction method of multipliers (ADMM) (Boyd

et al., 2011) is applied to solve the optimization problem. In prac-

tice, the learned similarities are really sensitive to the penalty coeffi-

cient of low rank. We further designed a criterion to select the

proper penalty factor automatically. The criterion takes the min-

imal number of neighbors of the localized similarity graph into ac-

count. Finally, spectral clustering is applied on the learned

similarity graph to obtain the clusters. SinNLRR captures the better

global structure of the similarity graph from the scRNA-seq pro-

files, and is effective to get more accurate and robust clustering

results. In addition, the similarity matrix can be also used to visual-

ize or prioritize gene markers.

2 Materials and methods

2.1 Non-negative and low-rank representation
Constructing the similarity or distance matrix is a key step in most

of the computational methods for identifying cell types. Several pair-

wise evaluation criterions of similarity or distance, such as

Euclidean distance, Pearson and Spearman, have been used.

However, these criteria can only capture the local similarities of

cells. Recently, a kind of clustering method, called subspace cluster-

ing (Liu et al., 2010; Vidal and Favaro, 2014), have been successful-

ly applied to subspace segmentation of images and can characterize

the similarity more globally. In this paper, we introduce a typical

subspace clustering with low-rank representation and present a

modified version to make it applicable to scRNA-seq.

Given a scRNA-seq data matrix X ¼ ½X1;X2; . . . ;Xn� with n cells

and m genes, the subspace clustering method assumes the expressions of

X are drawn from a combination of unknown independent sub-

spaces S ¼ ½S1; S2; . . . ; Sh�. The expression of cells’ drawn from the same

subspaces means these cells’ are of the same type. Generally, it is impos-

sible to obtain the full information of subspaces. The NMF (Shao and

Höfer, 2017) is a kind of feasible solution to find the latent dimension

and regards them as ‘metacells.’ However, it is still rough and slightly dif-

ferent from the definition of subspace clustering. In subspace clustering,

each subspace Si may have several independent vectors, while NMF

applies each latent vector as a cell’s type. Therefore, for subspace cluster-

ing, the solution is to determine if some samples are from the same sub-

space rather than to find the exact subspace vectors. The dimension of

the subspace is assumed much lower than the number of cells and genes

(Liu et al., 2010), so the problem can be formulated as follows:

minrank Cð Þ s:t:; X ¼ XC; (1)

where X is the expression matrix with each column denotes a cell, C

is a coefficient matrix, in which Cij denotes the confidence of cells i

and j in the same subspace.

The optimization problem above is difficult to solve because the

discrete value of rank. Previous studies (Cai et al., 2010) applied the

nuclear norm as alternatives. We also add the non-negative con-

straint to keep the elements in C is equal or larger than zero, which

intuitively reflects the non-negative similarity of the same type of

cells. Moreover, we relax the constraint X ¼ XC to minimizing

X�XC. Equation (1) can be redefined as follows:

min
1

2
jjX�XCjjF þ kjjCjj� s:t:; C � 0; (2)

where jj � � � jjF denotes the Frobenius norm, which is square root of

the sum squares of all elements while jj � � � jj� represents the nuclear

norm, which is the sum of all singular values of C, k is a penalty factor.

To solve Equation (2), we apply ADMM. We rewrite Equation

(2) as follows:

min
1

2
jjX�XCjj2F þ kjjJjj�

s:t:; J � C ¼ 0 and C � 0;
(3)

where J is an auxiliary matrix.

According to the schema of ADMM (Boyd et al., 2011), the aug-

mented Lagrangian formulation of Equation (3) is as follows:

‘1
c

C; J;Yð Þ ¼ 1

2
jjX�XCjj2F þ k Jj jj j� þ YT J � Cð Þ þ 1

2c
J �Cj jj j2;

(4)

where Y is the dual variable or Lagrange multiplier, c > 0 is a user-

defined parameter. The dimension of C, J, Y is n*n. The ADMM
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optimizes one of the matrices by fixing the others. The iterations of

updating are as follows:

Ckþ1 ¼ argminC ‘1
c

C; Jk;Yk
� �

(5)

Jkþ1 ¼ argminJ ‘1
c

Ckþ1; J;Yk
� �

(6)

Ykþ1 ¼ Yk þ 1

c
Ckþ1 � Jkþ1Þ
�

(7)

The optimized Ckþ1 and Jkþ1 can be derived from Equations (4–

6). So we have Ckþ1 and Jkþ1 as follows:

Ckþ1 ¼ XTXþ 1

c
I

� ��1

XTXþ Yk þ 1

c
Jk

� �
(8)

Jkþ1 ¼ Softk;c Ckþ1 � cYk
� �

(9)

where Softk;c is the soft-thresholding operator, and for the nuclear

norm, singular value thresholding (Cai et al., 2010) is applied to

solve it. At each iteration, we keep the elements in J and C non-nega-

tive. The similarity learning algorithm described above is called non-

negative low-rank representation (NLRR). The part of code for solv-

ing low-rank representation is from SubKit (Tierney et al., 2015).

The schema of algorithm is shown in Figure 1. The detail of the pro-

cess can be found in Supplementary Material Section A. To keep

symmetry of similarity matrix, it is naturally to use matrix

S ¼ ðCT þ CÞ=2.

2.2 Selection of penalty coefficient of low rank
According to the schema of the optimization algorithm, there are

two user-defined parameters, k and c. In the experiments, we find

the structure of learned similarity matrix is really sensitive to the se-

lection of parameter k. Taking the Pollen’s dataset (Pollen et al.,

2014) as an example, the effect of different values of k is shown in

Figure 2.

Figure 2 shows that a proper value of k would lead to a better

similarity matrix corresponding to the real cell types. However, the

optimal k is distinct for different datasets. The parameter k controls

the learned similarity matrix S as follows: (i) when k! 0, the diag-

onal element Sii will be close to 1 and Sij;i 6¼j will be close to 1,

because the expression of cell can represent itself without the low-

rank constraint. The form of S would be similar to Figure 2A. (ii)

when k!1, matrix S can be divided into one or a few blocks. For

each block, the similarities in each column or row are approximately

the same. That is because a very large k leads to a lower rank, which

is similar to Figure 2D. (iii) when k is proper, the value of similarity

in each column will look like Figure 2B.

If the parameter k is proper, the similarities of each row (or col-

umn) in matrix S can be divided into two groups like Figure 3

shows, whose similarities in one group are larger than another one.

Inspired by this characteristic, we propose an approach to select the

proper k automatically based on analyzing the locality of coefficient

matrix C before constructing the similarity matrix. First, we obtain

a localized similarity matrix as follows:

Pij ¼
Cij if Cij > ðCii=f Þ
0 Otherwise

�
(10)

where C denotes the self-similarity of cell i for a selected k. We use

Cii as a reference similarity score and retain the similarities larger

than Cii=f . f is a coefficient of relaxation, which is set to 1.5 in this

study.

Based on the localized similarity matrix P, we further analyze

the number of minimal neighbors (NoMN). The NoMN is defined

as the minimal degree of all cells. The degree of a cell is defined as

follow:

degi ¼ Countfor all j Pij 6¼ 0
� �

(11)

Count where ‘Count’ denotes the number of similarities satisfy-

ing the Boolean function. When we raise parameter k gradually, the

NoMN will drastically jump to a value larger than one. The param-

eter k around the tipping point is selected to obtain the final similar-

ity matrix. The detail of the analysis could be found in the Section

3.2. The final similarity is S ¼ PT þ P.

Fig. 1. The schema of ADMM for solving NLRR

Fig. 2. The heatmaps of learned similarity matrix from Pollen’s dataset with

(A) k¼ 0.01, (B) k¼0.7, (C) k¼5 and (D) k¼ 10. Each color in the color bar

denotes a specific type of cells and the depth of color indicates the strength

of similarity
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2.3 Spectral clustering
Spectral clustering is a popular and efficient method to cluster the

points based on the similarity matrix (Von Luxburg, 2007). Spectral

clustering has been applied to identify cell types successfully (Park

and Zhao, 2018; Wang et al., 2017). In the proposed method, we

also adopt the spectral clustering on the learned similarity matrix.

The process of spectral clustering used in our method is shown in

Figure 4. The details of the spectral clustering could be found in Von

Luxburg (2007).

2.4 Framework of SinNLRR
SinNLRR contains three elementary steps, including preprocessing,

similarity matrix learning and analysis. Data preprocessing is an effi-

cient mean to reduce the noise of original data. Previous studies

applied different preprocessing methods, such as gene filter (Kiselev

et al., 2017; Wang et al., 2017;), imputation (Li and Li, 2018;

Lin et al., 2017), dimensionality reduction (Lin et al., 2017; Pierson

and Yau, 2015). In SinNLRR, we apply the gene filtering and L2-

norm as preprocessing approach. For the gene filter step, we remove

the genes whose expressions (the expression of the gene is non-zero)

are <5% of all cells. The L2-norm is applied on gene expression of

each cell as follows:

Xij
norm ¼ Xij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
all i

Xij
2

r
(12)

where Xij denotes the expression of gene i in cell j. L2-norm is wide-

ly used in subspace clustering to eliminate the scale differences

among samples (Vidal and Favaro, 2014). Then, SinNLRR learns

the similarity matrix based self-expression learning with non-nega-

tive and low-rank constraints. The proper penalty factor k is selected

automatically based on finding the tipping point of NoMN. Finally,

spectral clustering is performed on the similarity matrix to get the

final clusters. Besides, the learned similarity matrix could also be

used in visualizing and prioritizing gene markers. The whole frame-

work of SinNLRR is shown in Figure 5.

3 Results

3.1 Datasets
We collect 10 datasets of human and mouse scRNA-seq that involve

in various tissues and different biological process such as cell devel-

opment and cell differentiation. These datasets contain different

scales of cells from dozens to thousands. Moreover, the datasets are

derived from various single-cell RNA-seq techniques (Wu et al.,

2013), such as SMARTer, Drop-seq and use different unit count,

e.g. RPKM (reads per kilobase of transcript per million mapped

reads), FPKM (fragments per kilobase of transcript per million

mapped reads). Especially, the Lin dataset (Lin et al., 2017) is a

mixed dataset, including GSE41265, GSE42268 and GSE45719

from GEO database. All the original expressions are applied with

the log transformation. The detailed descriptions of the datasets are

shown in Table 1.

3.2 Performance metrics
To evaluate the performance of clustering methods, we select two

common metrics: normalized mutual information (NMI) (Strehl and

Ghosh, 2003) and adjusted rand index (ARI) (Wagner and Wagner,

2007). NMI and ARI are calculated as follows:

NMI T;Pð Þ ¼ IðT;PÞ
½H Tð Þ þH Pð Þ�=2

(13)

ARI T;Pð Þ ¼

P
ij

nij

2

� �
�
P

ij
nij

2

� �P
ij

nij

2

� �h i
= n

2

� �
1
2

P
i

ai
2

� �
þ
P

j
bj

2

� 	h i
�
P

i
ai
2

� �P
j

bj

2

� 	h i
= n

2

� � ; (14)

where T ¼ T1;T2 . . . ;Tkf denotes the true group of cells, and P ¼
P1;P2 . . . ;Pkf consists of the predicted groups. H denotes the en-

tropy while I T;Pð Þ denotes the mutual information of T and P. nij

means the number of cells in both Ti and Pj, ai is the number of cells

in Ti while bi is the number of cells in Pi.
n
2

� �
¼ n n� 1ð Þ=2. The two

metrics evaluate the similarity of predicted labels and true labels

based on different theories. Previous study (Romano et al., 2016)

has showed NMI should be selected when the numbers in reference

clustering labels are unbalanced, and ARI otherwise. The larger

value of NMI or ARI implies the better performance. In this paper,

we select metrics to compare different clustering methods.

3.3 Parameter selection by NoMN
To solve the sensitivity of SinNLRR with the parameter k, we pro-

pose the NoMN to select k automatically. The description of

NoMN can be found in Section 2.2. We increase the k from 0 to 2

or 2.5 with interval 0.1 for datasets whose number of cells is smaller

than 1000 or otherwise, respectively. The responding change of

NoMN, NMI and ARI in datasets of Darmanis, Pollen and

Macosko is shown in Figure 6. The NoMN jumps from 1 to a bigger

value and increase quickly when k reaches a certain point. Figure 6

shows that SinNLRR achieves the better performance when k is

Fig. 3. The ordered similarity of a cell in Pollen’s dataset. The similarities of

cells in the yellow dashed circle are far larger than the remaining part

Fig. 4. The process of spectral clustering based on the learned similarity
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around the tipping point. In practice, we determine the proper value

of k when the NoMN is larger than three for the first time for small

dataset (the number of cells is smaller than 1000), and larger than one

for large scale datasets. The search for the proper k requires multi-

runs of NLRR. However, NLRR can be in parallel computed, and we

increase the value of k with the increment of 0.2 to further speed the

calculation up. The analysis of k in remaining datasets and the effect

of parameter c could be found in Supplementary Figures S1 and S2.

3.4 Comparative analysis of clustering
In this section, we apply SinNLRR on 10 scRNA-seq datasets

described in Table 1. These datasets contain different scales of cells

and the subtype numbers. We select five state-of-art methods, SNN-

Cliq (Xu and Su, 2015), SIMLR (Wang et al., 2017), NMF (Shao and

Höfer, 2017), Corr (Jiang et al., 2018) and MPSSC (Park and Zhao,

2018). In these methods, SNN-Cliq, Corr, SIMLR and MPSSC focus

on calculating pairwise similarities between cells or learning the simi-

larity from multi-kernels, and NMF identifies the cell types based on

the values in the latent dimension. For fairness, we provide the true

number of clusters to Corr, SIMLR, MPSSC and NMF while SNN-

Cliq cannot be set to a certain number of clusters, and other parame-

ters are set to default. We use the native spectral clustering (SC) (Von

Luxburg, 2007) with Pearson similarity as a baseline method. As the

algorithm Corr is time-consuming for big datasets (more than 3 days

for cells larger than 1000), we abandon the results of Corr on the

datasets Tasic, Zeisel and Macosko. Figure 7 summarizes the NMI

and ARI of these methods on the 10 datasets. The proposed method

SinNLRR gets the best performance in seven datasets based on NMI

and ARI, and gets top two performances in nine datasets. Although

the identification of cell types is an unsupervised problem and is com-

plex according to different conditions, the results show the better ro-

bustness and ability of generalization of SinNLRR. Moreover, we

also analyze the time complex of SinNLRR and the comparison of

running times with other methods. The details can be found in

Supplementary Material Section D.

In the real biological experiment, the number of clusters is usually in-

accessible, so evaluating the number of clusters is another important as-

pect in clustering methods. Based on the normalized Laplacian matrix L,

we apply eigengap (Von Luxburg, 2007) to determine the number of

cluster k by maximizing the eigenvalues gap jkk � kk�1j, where k1 <

k2 . . . < kn is the eigenvalues of the Laplacian matrix L. This approach

is also applied in SIMLR and MPSSC. SNN-Cliq and Corr also provided

the methods to estimate the number of clusters. The comparison results

on 10 datasets are shown in the Supplementary Table S1. Although these

methods are weak to estimate the number of clusters accurately,

SinNLRR could be a better selection which is closest to the true numbers.

3.5 Visualization and gene markers
Visualization of the scRNA-seq data in the lower dimensional is a

powerful approach for biologists to pre-identify the subgroups of

Fig. 5. The framework of SinNLRR. SinNLRR takes the scRNA-seq expression matrix as input, and applies data preprocessing, including gene filtering and nor-

malization. Then SinNLRR learns the proper similarity matrix by self-expression with non-negative and low rank constraints. SinNLRR could select proper penalty

factor of low rank constraint automatically. The learned similarity matrix could be incorporated with spectral clustering for identifying the cell types, with t-SNE

for visualization and Laplacian score for prioritizing gene markers

Table 1. The description of datasets used in experiments

Dataset Cells Genes Cell types Protocol Units Species

Darmanis (Darmanis et al., 2015) 420 22085 8 SMARTer CPM Homo sapiens

Goolam (Goolam et al., 2016) 124 40315 5 Smart-seq CPM Mus musculus

Lin (Lin et al., 2017) 402 9437 16 Fusion TPM Mus musculus

Pollen (Pollen et al., 2014) 249 14805 11 SMARTer TPM Homo sapiens

Usoskin (Usoskin, et al., 2015) 622 17772 4 Usoskin(2010) RPM Mus musculus

Treutlein (Treutlein et al., 2014) 80 959 5 SMARTer FPKM Mus musculus

Engel (Engel et al., 2016) 203 23337 4 Smart-seq2 TPM Homo sapiens

Tasic (Tasic et al., 2016) 1727 5832 48 SMARTer TPM Mus musculus

Zeisel (Zeisel et al., 2015) 3005 4412 48 – UMI Mus musculus

Macosko (Macosko et al., 2015) 6418 12822 39 Drop-seq UMI Mus musculus
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cells (Dong et al., 2018; Zhong et al., 2018). The t-distributed sto-

chastic neighbor embedding (t-SNE) is one of the most popular tools

for visualization (Maaten and Hinton, 2008). We use the similarity

matrix learned by SinNLRR as the input of the modified t-SNE,

which is the same with previous studies (Wang et al., 2017), to dis-

tinguish the subgroups of cells intuitively. We focus on two datasets

Darmanis and Goolam described in Table 1. Darmanis dataset

(Darmanis et al., 2015) is a crowd of 420 cells from the adult and

fetal human brain, consisting of 62 astrocytes, 20 endothelial, 110

fetal quiescent neurons, 25 fetal_replicating neurons, 16 microglia,

131 neurons, 38 oligodendrocytes and 18 oligodendrocyte precursor

cells. The second dataset is from Goolam et al. (2016). The cells in

this dataset are derived from mouse embryos, including five stages

of development: 2-cell (16 cells), 4-cell (64 cells), 8-cell (32 cells),

16-cell (6 cells) and 32-cell (6 cells). We select the native t-SNE, and

similarity matrix based on SIMLR and MPSSC as comparison meth-

ods. It should be noted that SIMLR and MPSSC need the true cluster

number to learn the similarity matrix, while native t-SNE and

SinNLRR don’t, so we use the estimated cluster number instead.

The two-dimensional t-SNE plots of two datasets are shown in

Figure 8. In Figure 8A, SinNLRR groups the same type of cells better

overall. The groups of SIMLR are more compact because of its

block structure, but it divides the fetal quiescent neurons and neu-

rons into a few subgroups. All the visualizations based on the

Fig. 6. The corresponding NoMN, NMI and ARI with different values of parameter k. The left y-axis is the value of NoMN, while right y-axis denotes the value of

NMI and ARI

Fig. 7. The (A) NMI and (B) ARI of SC, SNN-Cliq, Corr, SIMLR, NMF, MPSSC and SinNLRR on 10 datasets. Corr is not applied on Tasic, Zeisel and Macosko be-

cause of the time complexity
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learned similarity matrices are better than native t-SNE. As seen in

Figure 8B, SinNLRR performs better in Goolam dataset.

The learned cell-to-cell similarity matrix can be further applied

to identify the gene markers in each type of cells. We perform the

bootstrapped Laplacian score proposed by Wang et al. (2017) on

the similarity matrices of Darmanis and Goolam datasets. We select

top 10 gene markers of the two datasets, and present the average of

log transformed counts and sparsity (the proportion of non-zero

expressed cells) in each cell type. The results are shown in Figure 9.

In Darmanis dataset, the selected top 10 genes are in agreement with

previous studies. The genes AGXT2L1, AQP4, FGFR3 and GJA1

are highly expressed in astrocytes and had been recognized as gene

markers, while Opalin and ERMN are oligodendrocytes-specific

genes related to the novel transmembrane proteins (Cahoy et al.,

2008; Darmanis et al., 2015; Oldham et al., 2008). Especially,

FGFR3 and AQP4 act as the important receptors for early astrocyte

development. Popson et al. (2014) had identified IFITM1 as a pan-

endothelial marker of endothelial cells in the bladder, brain and

stomach. STMN2 is a neuron-specific gene both in adult and fetal

neurons, and SOX11 is the enriched gene in fetal neurons

(Darmanis et al., 2015). In Goolam dataset, OMT2A, OMT2B and

OOG1 had been reported as the potential stage-specific genes (Tang

et al., 2010). KLF17 was validated to highly expresses in earlier

stages of development and was absent in blastocysts (Blakeley et al.,

2015) and BTG4 showed the declining trend of expression in early

mouse embryos (Yu et al., 2016). OBOX8 was found to express

highly around 4-cell stage. APELA, B020004C17rik, EXOC3L2

and PPP1R16B are the novel potential gene markers.

4 Discussion

Identification of the cell types based on scRNA-seq data is one of

the basic issues in Human Cell Atlas project (Rozenblatt-Rosen

Fig. 8. Visualization of the cells in (A) Darmanis dataset and (B) Goolam dataset based on the native t-SNE and modified t-SNE with learned similarity matrix from

SIMLR, MPSSC and SinNLRR

Fig. 9. The top 10 gene marker in (A) Darmanis and (B) Goolam datasets. The x-axis is the gene name while y-axis is the cell types. The color denotes the expres-

sion level of genes and the size of the circles denotes the sparsity of the genes expressing in cells
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et al., 2017). However, the scRNA-seq data contains high noise and

dropouts, which bring great challenges for clustering. In this paper,

we have proposed a novel similarity based clustering method, called

SinNLRR. SinNLRR is motivated by the self-expression among cells

in the same type and assumes the non-negative and low-rank charac-

teristics of the similarity matrix.

SinNLRR exposes global and robust similarity structures than

the traditional pairwise similarity metric, such as Pearson correl-

ation or Gaussian kernel. We apply the ADMM to solve the corre-

sponding convex problem and define the NoMN to select the proper

penalty factor. The learned similarity matrix could be incorporated

with spectral clustering for grouping cells, t-SNE for visualization

and Laplacian score for selecting gene markers. We evaluate the per-

formance of SinNLRR on scRNA-seq datasets derived by different

single-cell techniques and scales and find SinNLRR achieves more

robust and accurate results than other state-of-the-art methods. In

additional, SinNLRR could be useful in other applications of

scRNA-seq analysis, such as pseudo-time reconstruction (Ji and Ji

et al., 2016) and potency measure of cells (Guo et al., 2017; Shi

et al., 2018), which require the clustering results or the cell-to-cell

networks as a preliminary process.

Besides, several available biological information, such as pro-

tein–protein interaction networks and subcellular localization (Li

et al., 2019), provides a lot of auxiliary information, which is help-

ful in gene selection and data imputation while gene

regulatory networks (Li et al., 2017; Zheng et al., 2018) present a

biological interpretation of cell states. It is promising to incorporate

SinNLRR with these data to further enhance the performance.

Currently, SinNLRR can handle the datasets with thousand cells in

a reasonable time. However, designing the version for really large

scale scRNA-seq would be one the of directions in the future

researches.
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