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Abstract

Motivation: In genome-wide association studies (GWASs) where multiple correlated traits

have been measured on participants, a joint analysis strategy, whereby the traits are analyzed

jointly, can improve statistical power over a single-trait analysis strategy. There are two

questions of interest to be addressed when conducting a joint GWAS analysis with

multiple traits. The first question examines whether a genetic loci is significantly associated

with any of the traits being tested. The second question focuses on identifying the specific

trait(s) that is associated with the genetic loci. Since existing methods primarily focus on the

first question, this article seeks to provide a complementary method that addresses the second

question.

Results: We propose a novel method, Variational Inference for Multiple Correlated Outcomes

(VIMCO) that focuses on identifying the specific trait that is associated with the genetic loci, when

performing a joint GWAS analysis of multiple traits, while accounting for correlation among the

multiple traits. We performed extensive numerical studies and also applied VIMCO to analyze two

datasets. The numerical studies and real data analysis demonstrate that VIMCO improves statistic-

al power over single-trait analysis strategies when the multiple traits are correlated and has com-

parable performance when the traits are not correlated.

Availability and implementation: The VIMCO software can be downloaded from: https://github.

com/XingjieShi/VIMCO.

Contact: xinyi.cindy.lin@duke-nus.edu.sg or jin.liu@duke-nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) conducted in the last

decade have provided valuable insights into the genetic architecture

underlying complex traits. GWAS are generally performed by

analyzing individual traits, although multiple related traits are often

collected, and in some cases these traits may reflect a common con-

dition (Kim et al., 2009). In a GWAS where multiple traits have

been measured on the study individuals, a joint analysis strategy

whereby the multiple traits are analyzed jointly, offers improved
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statistical power when compared with a single-trait analysis strat-

egy, when a genetic variant is associated with one or more correlated

phenotypes (Korte et al., 2012; Solovieff et al., 2013). A joint ana-

lysis strategy may also be useful when the different phenotypes char-

acterize the same underlying trait.

There are typically two questions of interest to be addressed in a

joint GWAS analysis of multiple traits. The first question addresses

whether a genetic loci is significantly associated with any of the (cor-

related) phenotypes being tested. The second question focuses on the

identification of the phenotype(s) that is/are associated with the gen-

etic loci. When multiple continuous traits and genotype data are

available from the same study individuals, a joint GWAS analysis

that addresses the first question can be performed using linear mixed

models based methods (Casale, 2016). Examples of linear mixed

models based methods include the multi-trait mixed models pro-

posed by Korte et al. (2012) and the multivariate linear mixed mod-

els (mvLMM) implemented in the Genome-wide Efficient Mixed

Model Association (GEMMA) software (Zhou and Stephens, 2014).

A central limitation of these methods is that they cannot address the

second question which seeks to identify the tested trait(s) that is/are

associated with the genetic loci. Multi-trait variable selection meth-

ods based on penalization have also been proposed in this context

(Liu et al., 2016; Rothman et al., 2010). However, they cannot be

applied to assess associations while controlling the error rate

(Carbonetto et al., 2012).

In this article, we propose a novel method, Variational Inference

for Multiple Correlated Outcomes (VIMCO), for joint analysis of

multiple traits in GWAS that addresses the second question. VIMCO

is applicable when individual-level data on multiple traits and geno-

type are available on the same study individuals. Our proposed

method can be viewed as a complementary method to the widely used

mvLMM implemented in the GEMMA package, in that it addresses a

different but related scientific question and allows one to identify the

specific trait that is associated with the genetic loci when performing

a joint analysis of multiple traits. A variational Bayesian expectation-

maximization (VBEM) algorithm is used to ensure computational ef-

ficiency. Through extensive numerical studies and real data analyses,

we demonstrate that our proposed approach offers improved statistic-

al power when compared with existing single-trait analysis strategies.

The remainder of this article is organized as follows. In Section 2, we

describe the model and algorithm that VIMCO uses to perform joint

analysis of multiple traits. We then illustrate the performance of

VIMCO using numerical simulations and real data analyses in

Section 3 and conclude with a discussion in Section 4.

2 Variational inference for multiple correlated
outcome

2.1 Model
In this section, we describe the notation and model used for joint

modeling of multiple traits in a GWAS using VIMCO. Consider K

continuous phenotypes/traits, Y1; . . . ;YK, that are measured on N

individuals, where Yk is a N�1 vector for k ¼ 1; . . . ;K. Assume

that the genome-wide genotype data consists of p SNPs given by,

X1; . . . ;Xpwhere Xj is a N�1 vector for j ¼ 1; . . . ; p. Denote

X ¼ ½X1; . . . ;Xp� 2 RN�pand Y ¼ ½Y1; . . . ;YK� 2 RN�K. Without

loss of generality, we assume that both the phenotypes and geno-

types have been centered. We consider the following multivariate

linear model:

Y ¼ XBþ E; (1)

where B ¼ ½b1; . . . ; bp�> 2 Rp�K; bj ¼ ðbj1; . . . ; bjKÞ>; j ¼ 1; . . . ; p,

and E ¼ ½e>1 ; . . . ; e>N �
> 2 RN�K. We assume that en � Nð0;H�1Þ,

where H is the precision matrix of E with dimensionality K�K for

individuals n ¼ 1; . . . ;N. The entries in H are denoted by

hst; s; t ¼ 1; . . . ;K. Under this model, the correlation in the traits

(conditional on the genotypes) is modeled by the off-diagonal terms

in H�1.

We are interested in identifying genetic variants that are associ-

ated with one or more traits, which corresponds to the identification

of nonzero entries in the matrix B. We consider a spike-slab prior

for Band parameterize Bas a product of latent variables.

Specifically, we assume that bj ¼ cj
�~bj ¼ ðcj1

~bj1; . . . ; cjK
~bjKÞ>, where

�denotes the element-wise product and

~bjk � Nð0; r2
bk
Þ; cjk � a

cjk

k ð1� akÞ1�cjk :

Let U ¼ fa1; . . . ; aK;r2
b1
; . . . ; r2

bK
;Hgbe the collection of (unknown)

model parameters. Accordingly, our probabilistic model can be rep-

arameterized as:

PrðY; ~b; cjX; UÞ ¼ PrðYjX; ~b; c; UÞPrð~b; cjX; UÞ

¼
YN
n¼1

N
Xp

j¼1

Xnjðcj
� ~b jÞ;H�1

0
@

1
AYp

j¼1

YK
k¼1

a
cjk

k ð1� akÞ1�cjkNð0; r2
bk
Þ

h i
:

With this reparameterization, to identify genetic variants that are

associated with one or more traits, we need to compute the posterior

distribution of the latent variables ð~b; cÞ:

Prð~b; cjY;X; UÞ ¼ PrðY; ~b; cjX; UÞ
PrðYjX; UÞ

¼ PrðY; ~b; cjX; UÞP
c

Ð
~bPrðY; ~b; cjX; UÞd~b

: (2)

We note that VIMCO is an empirical Bayesian approach where the

parameters in the Spike-Slab and Normal priors are estimated from

the data, i.e. it does not require specification of hyperparameters.

2.2 VBEM algorithm
In this section, we describe the algorithm used for computation of

the model parameters and the posterior distribution of the latent

variables ð~b; cÞin VIMCO. Exact computation of the posterior distri-

bution (2) is computationally intensive due to the denominator

which requires marginalizing over the latent variables ð~b; cÞ. To

overcome this computational intractability, we derive a computa-

tionally efficient VBEM algorithm (Bishop, 2006) to obtain an ap-

proximation for the posterior distribution (2). The key idea of the

VBEM algorithm is to approximate our computationally intractable

posterior distribution (2), with an approximating distribution,

which is computationally tractable. The VBEM algorithm proceeds

by specifying a family of (variational) distributions, which are para-

meterized by variational parameters, and choosing the optimal

approximating distribution from this family by minimizing the KL

divergence between the approximating distributions and our true

posterior distribution (2) (Blei et al., 2017). The KL divergence can

be viewed as a measure of how different the approximating distribu-

tion is from our true posterior distribution (2). The optimal vari-

ational distribution is then used as an approximation for the true

posterior distribution (2) (Bishop, 2006).
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Let qð~b; cÞbe a candidate approximating distribution of our true

posterior distribution (2), and let Eqdenote the expectation taken

with respect to qð~b; cÞ. We can decompose the logarithm of the mar-

ginal likelihood as

log pðYjX; UÞ ¼ Lq þ KL
�

qjjPrð~b; cjY;X; UÞ
�
; (3)

where

Lq ¼ Eq log
PrðY; ~b; cjX; UÞ

qð~b; cÞ

" #

KL
�

qjjPrð~b; cjY;X; UÞ
�
¼ Eq log

qð~b; cÞ
Prð~b; cjY;X; UÞ

" #
:

Minimizing the KL divergence with respect to the approximating

distribution qð~b; cÞis equivalent to maximizing the evidence lower

bound (ELBO) Lq. If we allow any possible choice for qð~b; cÞ, then

the Kullback-Leibler divergence KL
�

qjjPrð~b; cjY;X; UÞ
�

is zero if

and only if qð~b; cÞ is identical to our true posterior distribution (2)

almost surely.

In order for the algorithm to be applicable to GWAS data, we

require a family of distributions that is sufficiently flexible to accurate-

ly approximate the true posterior distribution, while being computa-

tionally tractable. We propose using a mean field variational family

(Logsdon et al., 2010), which contains distributions qð~b; cÞof the form

qð~b; cÞ ¼
Y

j

Y
k

½qð~b jk; cjkÞ�:

The factorization used in the approximating mean field vari-

ational family of distributions makes the VBEM algorithm computa-

tionally efficient. The approximation is expected to perform best

when the SNPs are independent and in the absence of pleiotropy.

If more accurate inferences are needed, more computationally inten-

sive methods may be required.

Given this variational family of distributions, the optimal vari-

ational distribution q�ð~bjk; cjkÞthat maximizes the ELBO Lqhas the

form (Bishop, 2006)

log q�ð~bjk; cjkÞ ¼ Eðj0 ;k0 Þ6¼ðj;kÞ½log PrðY; ~b; cjX; UÞ� þ constant; (4)

where the expectation is taken with respect to all other factors

qð~bj0k0 ; cj0k0 Þ for ðj0;k0Þ 6¼ ðj; kÞ. After some derivations (details are

provided in Supplementary Material SA), the optimal variational

posterior distribution is given by:Y
j

Y
k

½acjk

jk ð1� ajkÞ1�cjkNðljk; s
2
jkÞ

cjkNð0;r2
bk
Þ1�cjk �;

where the variational parameters (ljk, s2
jk, ajk) are given by:

ljk ¼
P

thktX
>
j ½Yt �

P
j0 6¼jaj0tlj0tXj0 � �

P
t 6¼khktajtljtkXjk2

hkkkXjk2 þ 1

r2
bk

;

s2
jk ¼

1

hkkkXjk2 þ 1

r2
bk

;

ajk � qðcjk ¼ 1Þ ¼ 1

1þ exp �log
ak

1� ak
þ 1

2

l2
jk

s2
jk

þ log
s2
jk

r2
bk

 ! ! :

(5)

To solve for the variational parameters (ljk, s2
jk, and ajk) and

model parameters (U), the VBEM algorithm iterates between two

optimization (expectation and maximization) steps until conver-

gence. In the expectation step, we optimize the ELBO Lqwith re-

spect to the variational parameters (ljk, s2
jkand ajk), while holding

the model parameters fixed, i.e. compute variational parameters

using Equation (5). In the maximization step, we optimize the

ELBO Lqwith respect to the model parameters Uwhile holding the

variational parameters fixed. With the optimal variational distribu-

tion, the ELBO Lqcan be evaluated in a closed form (details in

Supplementary Material SA):

Lq ¼ �
1

2

X
s

X
t
hstðYs �

X
j
XjajsljsÞ>ðYt �

X
j
XjajtljtÞ

�1

2

X
s
hss

X
j
X>j Xj½ajsðl2

js þ s2
jsÞ � a2

jsl
2
js�

�
P

j

P
k ajk log

ajk

ak
þ ð1� ajkÞ log

1� ajk

1� ak

� �
þN

2
log jHj

þ1

2

X
j

X
k
ajk 1þ log

s2
jk

r2
bk

�
l2

jk þ s2
jk

r2
bk

 !
þ const:

(6)

By taking partial derivatives of the ELBO Lqwith respect to the

model parameters and setting them to zero, we can solve for the

model parameters and obtain the update equations for the maxi-

mization step:

ak ¼
P

jajk

p
;

r2
bk
¼
P

jajkðl2
jk þ s2

jkÞP
jajk

;

ðH�1Þkk ¼
kYk �

P
jXjajkljkk2

N

þ
P

jkXjk2½ajkðl2
jk þ s2

jkÞ � a2
jkl

2
jk�

N
;

ðH�1Þkt ¼
ðYk �

P
jXjajkljkÞ>ðYt �

P
jXjajtljtÞ

N
:

(7)

The VBEM algorithm iterates between the expectation

(Equation 5) and maximization (Equation 7) steps until conver-

gence. Further details on the VBEM algorithm are provided in

Supplementary Material SA.

2.3 Inference
With the estimated variational parameters (ljk, s2

jkand ajk) and

model parameters (U), the posterior probability Prðcjk ¼ 1jY;
X; UÞof whether genetic variant j is associated with trait k can be

estimated by â jk, and the local false discovery rate (lfdr) can be esti-

mated by 1� â jk. Statistical inference can be conducted by identify-

ing SNP-trait associations while controlling the global FDR at a

fixed value. Specifically, given a cutoff for the global FDR, the

cutoff n for the lfdr can be computed from global FDR ¼P
j

P
k
lfdrjkIðlfdrjk 	 nÞP

j

P
k
Iðlfdrjk 	 nÞ (Newton et al., 2004).

3 Results

3.1 Simulations
We conducted numerical simulations to evaluate the performance of

VIMCO. We considered the scenario where we have K ¼ 4 continu-

ous traits and P ¼ 10 000 SNPs that were measured on N ¼ 5000

individuals. For each individual, the p genotypes were simulated by

first generating a p� 1multivariate normal distribution assuming
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auto-regressive (AR) correlation with parameter qx. We then discre-

tized each variable to a trinary variable (0, 1, 2) by assuming Hardy-

Weinberg equilibrium and with a minor allele frequency randomly

selected from a uniform [0.05, 0.5] distribution. The genotype cor-

relation was varied at qx ¼ 0.2, 0.5, 0.8. To generate the coefficient

matrix B, for each trait, we selected 1% of the SNPs to be associated

with the trait, where the effect sizes were generated from a standard

normal distribution. To allow for pleiotropy where a SNP can be

associated with more than one trait, we varied the proportion of

causal SNPs that was associated with more than one trait.

Let g ¼
P

j
Ið
P

k
cjk
2ÞP

j

P
k
cjk

. The expectation of g was varied at 0, 0.15,

0.3, where increasing g reflects increasing pleiotropy. The error ma-

trix Ewas generated with rows drawn independently from a multi-

variate normal distribution, with AR correlation parameter qe ¼
0.2, 0.5, 0.8. A larger value of qe implies a higher correlation be-

tween the traits. Each error variance was adjusted according to the

pre-specified heritability of h2 ¼ 0.3.

To benchmark the performance of VIMCO, we considered both

Bayesian [variational inference-based Bayesian variable selection

regression (BVSR); Carbonetto et al., 2012] and frequentist [single-

trait linear mixed model (sLMM); Zhou and Stephens, 2012] single-

trait analysis approaches. Similar to VIMCO, BVSR utilizes a

VBEM algorithm, but can only be applied to single traits. sLMM

was implemented using the GEMMA software package. For

VIMCO and BVSR, we report the statistical power with a global

FDR controlled at 0.1. The global FDR for VIMCO and BVSR con-

trols for multiple testing across the multiple traits and SNPs. For

sLMM, we report power while controlling for the family wise Type

1 error rate at 0.05, by applying a Bonferroni correction for both

the number of SNPs and number of traits tested. We note that this

comparison between of VIMCO/BVSR with sLMM may not be on

the same footing as they are based on different metrics (FDR versus

family wise error rate). The comparison, however, mimics how the

methods are commonly used in practice, i.e. by controlling the glo-

bal FDR for VIMCO and BVSR and by controlling the family wise

error rate for sLMM. We compared the power of VIMCO, BVSR

and sLMM by considering trait-SNP associations for all traits and

SNPs. The power for VIMCO, BVSR and sLMM, for the scenario

where the genotypes were strongly correlated (qx ¼ 0.8) and plei-

otropy g ¼ 0, is shown in the left panel of Figure 1. When the traits

showed moderate (qe ¼ 0.5) or strong correlation (qe ¼ 0.8),

VIMCO had higher statistical power than BVSR. When the traits

were weakly correlated (qe ¼ 0.2), VIMCO had similar power as

BVSR. In all cases, BVSR had higher power than sLMM. We also

evaluated the global FDR control for the three approaches. Similar

to earlier papers (Brzyski et al., 2017), when evaluating the control

of global FDR, the SNPs were evaluated as a cluster of SNPs. i.e.

rejections within the same linkage disequilibrium block were

grouped and counted as a single rejection. As shown in the middle

panel in Figure 1, both VIMCO and BVSR had empirical FDRs that

were close to the nominal 0.1 level. sLMM based on controlling for

the family wise error rate had well-controlled FDR in this scenario,

but the empirical FDR was conservative at lower genotype correla-

tions qx ¼ 0.2 and 0.5 (Supplementary Figs SB1 and SB2), which is

not surprising since it controls for the family wise error rate and not

the FDR. We also compared the area under the curve (AUC) of

VIMCO, BVSR and sLMM (right panel of Fig. 1). The AUC was

evaluated by considering trait-SNP associations for all traits and

SNPs. The AUC of VIMCO was higher than that of the single-trait

approaches (BVSR and sLMM) when the traits showed moderate

(qe ¼ 0.5) or strong correlation (qe ¼ 0.8). Simulations with lower

genotype correlation qx ¼ 0.2, 0.5 and different levels of pleiotropy

g are shown in Supplementary Figures SB1–SB3, and give similar

conclusions.

As noted earlier, mvLMM assesses a different but related null hy-

pothesis of whether any of the traits are associated with the genetic

variants. Specifically, for the jth SNP, mvLMM evaluates the null

hypothesis H0b : bj1 ¼ � � � ¼ bjK ¼ 0, whereas VIMCO evaluates the

null hypothesis H0a : bjk ¼ 0 for k ¼ 1, . . ., K traits separately. We

evaluated the performance of VIMCO for assessing the null hypoth-

esis H0b. For evaluating the performance in assessing the null hy-

pothesis H0b, we performed an ad hoc modification of VIMCO,

BVSR and sLMM. In this ad hoc adaptation of VIMCO, BVSR and

sLMM, we rejected the null hypothesis H0b if H0a is rejected for any

of the traits. We examined the power of VIMCO and BVSR while

controlling the global FDR at 0.1 For sLMM, we report power

while controlling for the family wise Type 1 error rate at 0.05. We

also compared the AUC of VIMCO, BVSR, sLMM and mvLMM.

Results for the scenario where the genotypes were strongly corre-

lated (qx ¼ 0.8) and the level of pleiotropy g ¼ 0 are shown in

Figure 2. Similar to results in evaluating H0a, VIMCO improves stat-

istical power and has higher AUC when the traits showed moderate

or strong correlation. For this ad hoc adaptation of VIMCO and

BVSR, the empirical FDR were well-controlled for the settings we

considered (middle panel of Fig. 2). We note that evaluating the null

hypothesis H0b is not an intended use of VIMCO, and this ad hoc

adaptation of VIMCO was performed in order to provide a

Fig. 1. Simulation results for evaluating null hypothesis H0a, for different qe (increasing levels of qe imply increasing correlation between the traits) and genotype

correlation parameter qx ¼ 0:8 Left panel: power of VIMCO, BVSR and sLMM; middle panel: empirical global FDR of VIMCO, BVSR and sLMM; right panel: AUC

of VIMCO, BVSR and sLMM
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comparison with mvLMM. Simulations with different genotype cor-

relation and levels of pleiotropy gave similar conclusions

(Supplementary Figs SB4–SB6). To more closely mimic the linkage

disequilibrium structure present in real genotype data, we also con-

ducted simulations where we sampled genotypes from chromosome

1 in the NFBC1966 dataset. The linkage disequilibrium structure in

real genotype data is likely to be more varied and complex instead

of following a simple AR(q) structure that we previously examined.

We observed slight inflation of the FDR for these simulations

(Supplementary Figs SB7 and SB8). A possible reason is that under

more complex linkage disequilibrium structures, SNPs correlated to

causal SNP(s) may be selected even if they are not in the same link-

age disequilibrium block(s), and determining if a selected SNP is rep-

resentative of a causal SNP becomes more complicated. In cases

where tighter control of FDR is required, more computationally ac-

curate methods may be needed.

3.2 Real data analysis
To illustrate the performance of our proposed method VIMCO, we

analyzed two datasets. The first dataset is a GWAS of four moder-

ately correlated lipid traits from the Northern Finland Birth Cohort

1966 (NFBC1966). The second dataset is a GWAS of three weakly

correlated eye measurements from the Singapore Indian Eye (SINDI)

study (Cheng et al., 2013).

3.2.1 NFBC1966

The NFBC1966 dataset consists of 10 metabolic traits and 364 590

SNPs from 5402 individuals (Sabatti et al., 2009). The 10 metabolic

traits include fasting lipid levels [total cholesterol (TC), high-density

lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides

(TG)], inflammatory marker C-reactive protein, markers of glucose

homeostasis (glucose and insulin), body mass index and blood pres-

sure (BP) measurements (systolic and diastolic BP). Quality control

of the data was performed using PLINK (Purcell et al., 2007) and

GCTA (Yang et al., 2011). Individuals with missing-ness in any of

the traits and with genotype missing call-rates > 5% were excluded.

We excluded SNPs with minor allele frequency < 1%, missing call-

rates > 1%, or failed Hardy-Weinberg equilibrium. After quality

control filtering and SNP pruning, 172 412 SNPs from 5123 individ-

uals were available for analysis. We quantile-transformed each trait

to a standard normal distribution, obtained the residuals after

regressing out the effects of sex, oral contraceptives and pregnancy

status, and quantile-transformed the residuals to a standard normal

distribution.

We performed analysis on the four lipid traits (TC, LDL, HDL

and TG). The pairwise Pearson correlation for the four lipid traits

are given in Supplementary Figure SC1. Among the four traits, TC

and LDL showed the strongest correlation (corr ¼ 0:88). Modest

correlation was also observed among the following pairs of traits:

TG and TC (corr ¼ 0:41), TG and LDL (corr ¼ 0:33), TG and HDL

(corr ¼ �0:40). We applied VIMCO to perform joint analysis of the

four traits. For comparison with the results from VIMCO, we also

performed single-trait analyses whereby each of the four traits were

analyzed separately, using both Bayesian (variational inference-

based BVSR; Carbonetto et al., 2012) and frequentist approaches

sLMM (Zhou and Stephens, 2012).

For VIMCO and BVSR, we report significant SNP-trait associa-

tions at a global FDR of 0.1. The global FDR for VIMCO and BVSR

controls for multiple testing across the multiple traits and SNPs. For

sLMM, to control for multiple testing across both traits and SNPs, we

report P-values for SNP-trait associations with P-value < 1.25 � 10–8

(we applied a Bonferroni adjustment for the four traits to the common-

ly used genome-wide significance threshold 5 � 10�8).

Genomic locations of SNPs identified by VIMCO, BVSR and

sLMM are shown in Figure 3. To control the global FDR at 0.1, a

SNP has to have a lfdr < 0.73 and < 0.36 for VIMCO and BVSR,

respectively (indicated by the horizontal red lines in the plots).

VIMCO identified a total of 39 SNP-trait associations, whereas the

single-trait analysis strategies BVSR and sLMM identified 34 and 10

SNP-trait associations, respectively. In terms of the total number of

unique SNPs identified, VIMCO identified a smaller number of

SNPs than BVSR; VIMCO identified 23 SNPs to be associated with

at least one trait, while BVSR and sLMM identified 30 and 9 SNPs,

respectively. A possible explanation for the lower number of unique

SNPs identified by VIMCO is because for traits that showed strong

correlation with each other (e.g. TC and LDL), VIMCO identified

more SNPs than BVSR and sLMM; while for the remainder traits

BVSR and sLMM identified fewer SNPs than VIMCO.

The lfdrs (VIMCO and BVSR) and P-values (sLMM) of identi-

fied SNPs are given in Supplementary Table SC1. For SNPs that

were identified by either VIMCO, BVSR or sLMM, we also report

their P-values from a mvLMM fitted using the GEMMA package

(Zhou and Stephens, 2014). As noted earlier, mvLMM assesses a

different but related hypothesis of whether any of the four traits are

associated with the genetic variants.

Fig. 2. Simulation results for evaluating null hypothesis H0b, for different qe (increasing levels of qe imply increasing correlation between the traits) and genotype

correlation parameter qx ¼ 0:8 Left panel: Power of VIMCO, BVSR and sLMM; middle panel: empirical global FDR of VIMCO, BVSR and sLMM; right panel: AUC

of VIMCO, BVSR, sLMM and mvLMM
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Analysis of the NFBC1966 dataset was conducted on a machine

with 3.0 GHz Intel Xeon CPU and 32 G memory. With the BVSR

estimates as initial values (1.2 h), it took VIMCO an additional 2.5

h to complete the full variational inference procedure.

3.2.2 Singapore Indian Eye

The SINDI dataset contains three eye measurements: the ratio of BP

to intraocular pressure (BP/IOP), central corneal thickness (CCT)

and cup-to-disc ratio. These three traits are risk factors for glaucoma

(Lavanya et al., 2009). The pairwise correlation for these three traits

(Supplementary Fig. SC2) was much weaker than those observed for

the lipid traits in the NFBC1966 dataset, with the strongest correl-

ation of 0.16 observed between BP/IOP and CCT. After quality con-

trol following previous studies (Cheng et al., 2013) and SNP

pruning, 2219 individuals and 257 736 SNPs were available for ana-

lysis. Locations of SNPs identified by VIMCO, BVSR and sLMM in

the genome are shown in Figure 4. In this dataset where the traits

were weakly correlated, the performance for VIMCO was similar as

the single-trait approaches. VIMCO and BVSR identified the same

two SNPs to be associated with CCT. Among the two associations,

rs12447690 was also identified by sLMM (the P-value is 5.5 �
10�9). This SNP was located in the Zinc-Finger protein (ZNF469)

gene, and was previously reported to be associated with CCT (Gao

et al., 2016). The lfdrs and P-values of identified SNPs are given in

Supplementary Table SC2.

Analysis of the SINDI dataset used BVSR estimates as initial val-

ues (6.8 h), and used an additional 1.2 h to complete the full vari-

ational inference procedure.

4 Discussion

In this article, we have proposed a novel method VIMCO that

allows an investigator to identify the specific trait that is associated

with the genetic loci when performing a joint GWAS analysis of

multiple traits. Results from simulations and real data analyses dem-

onstrate that VIMCO improved statistical power when the traits

were correlated and had comparable performance when the traits

were not correlated, when compared with single-trait analysis strat-

egies. Furthermore, VIMCO utilizes a computationally efficient

VBEM algorithm which allows it to handle genome-wide genotype

data efficiently. The computational complexity of VIMCO is

OðK2npþ K3Þ. For a small number of traits (K) (around 10), the

overall computational cost is OðK2npÞ, i.e. the computational time

is linear with respect to the sample size n and the number of SNPs p.

To demonstrate the run times of VIMCO, Supplementary Figure

SB9 shows the average run times for 10 iterations for: (i) K ¼ 4; n 2
f5000;10 000; 15 000;20 000g and p 2 f50 000; 100 000; 500 000;

1 000 000g; (ii) p ¼ 500 000, n 2 f5000; 10 000; 20 000;40 000gand

K ¼ 1, . . ., 5. Computations were conducted on a machine with 3.0

GHz Intel Xeon CPU and 32G memory. For a specific example, for

(K, n, p) ¼ (4, 20 000, 1 000 000), the total run time was 94 h. For

larger sample sizes, VIMCO can be used if there is sufficient compu-

tational memory. For denser genotype data, to ensure computational

efficiency, analysis can be performed for each chromosome

separately.

VIMCO is, however, not without limitations. First, VIMCO is

not applicable when the number of traits analyzed exceeds the num-

ber of samples. With increasing interest in performing phenome-wide

Fig. 3. Manhattan plots for the analysis results of VIMCO (first row), BVSR (second row) and sLMM (last row), in the NFBC1966 study. In the first and second row,

the horizontal red lines correspond to a global FDR of 0.1. In the last row, the horizontal red line corresponds to a P-value cutoff of 1.25 � 10�8. The number in the

box indicates the number of SNP associations identified for each trait
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association studies whereby the number of phenotypes can be larger

than the sample size, extending VIMCO to handle larger number of

phenotypes is an avenue for future work. Second, VIMCO requires

complete genotype and phenotype data for each individual. In prac-

tice, missingness can be handled using imputation techniques. Last,

VIMCO requires individual-level trait and genotype data to be col-

lected from the same individuals. The development of a method

where summary statistics from different individuals can be used for

analysis instead of individual-level data is another avenue for future

research.
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