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Abstract

Motivation: Protein–protein interactions (PPIs) are usually modeled as networks. These networks

have extensively been studied using graphlets, small induced subgraphs capturing the local wiring

patterns around nodes in networks. They revealed that proteins involved in similar functions tend

to be similarly wired. However, such simple models can only represent pairwise relationships and

cannot fully capture the higher-order organization of protein interactomes, including protein

complexes.

Results: To model the multi-scale organization of these complex biological systems, we utilize

simplicial complexes from computational geometry. The question is how to mine these new repre-

sentations of protein interactomes to reveal additional biological information. To address this, we

define simplets, a generalization of graphlets to simplicial complexes. By using simplets, we define

a sensitive measure of similarity between simplicial complex representations that allows for clus-

tering them according to their data types better than clustering them by using other state-of-the-art

measures, e.g. spectral distance, or facet distribution distance. We model human and baker’s yeast

protein interactomes as simplicial complexes that capture PPIs and protein complexes as simpli-

ces. On these models, we show that our newly introduced simplet-based methods cluster proteins

by function better than the clustering methods that use the standard PPI networks, uncovering the

new underlying functional organization of the cell. We demonstrate the existence of the functional

geometry in the protein interactome data and the superiority of our simplet-based methods to

effectively mine for new biological information hidden in the complexity of the higher-order organ-

ization of protein interactomes.

Availability and implementation: Codes and datasets are freely available at http://www0.cs.ucl.ac.

uk/staff/natasa/Simplets/.

Contact: natasa@cs.ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Motivation
Genome is the blueprint of a cell. DNA regions called genes are tran-

scribed into messenger RNAs that are translated into proteins.

These proteins interact with each other and with other molecules to

perform their biological functions. Deciphering the patterns of mo-

lecular interactions (also called topology) is fundamental to under-

standing the functioning of the cell (Ryan et al., 2013). In system

biology, molecular interactions are modeled as various molecular

interaction networks, in which nodes represent molecules and edges

connect molecules that interact in some way. Examples include the

well-known protein–protein interaction (PPI) networks in which

nodes represent proteins and edges connect proteins that can physic-

ally bind.

Because exact comparison between networks has long been

known to be computationally intractable (Cook, 1971), the
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topological analyses of biological networks use approximate

comparisons (heuristics), commonly called network properties, such

as the degree distribution, to approximately say whether the struc-

tures of networks are similar (Newman, 2010). Advanced network

properties that utilize graphlets (small induced subgraphs) (Pr�zulj

et al., 2004) have been successfully used to mine biological network

datasets. Graphlet-based properties include measures of topological

similarities between nodes and between networks (Pr�zulj et al.,

2004, 2007; Yavero�glu et al., 2014), as well as between protein 3D

structures represented by networks (Malod-Dognin and Pr�zulj,

2014; Faisal et al., 2017). In particular, graphlets have been used to

characterize and compare the local wiring patterns around nodes in

a PPI network (Milenkovi�c and Pr�zulj, 2008), which revealed that

molecules involved in similar functions tend to be similarly wired

(Davis et al., 2015). These topological similarities between nodes

have also been used to guide the node mapping process of network

alignment methods (Kuchaiev et al., 2010; Kuchaiev and Pr�zulj,

2011; Malod-Dognin and Pr�zulj, 2015; Vijayan et al., 2015), which

allowed for transferring of biological annotation between nodes in

different networks of well-studied species to less studied ones.

Despite significant progress, these simple network (also called

graph) models of molecular interaction data can only represent pair-

wise relationships and cannot fully capture the higher organization

of molecular interactions, such as protein complexes and biological

pathways (Estrada and Rodriguez-Velazquez, 2005). Hence, we

need to model these data by using new mathematical formalisms

capable of capturing their multi-scale organization. Furthermore,

we need to design new algorithms capable of extracting new bio-

logical information hidden in the wiring patterns of the molecular

interaction data modeled by using these mathematical formalisms.

This paper addresses these issues.

1.2 Simplicial complexes basics
A candidate model for capturing higher-order molecular organization

is a simplicial complex (Munkres, 1984). A simplicial complex is a set

of simplices, where a 0D simplex is a node, a 1D simplex is an edge,

a 2D simplex is a triangle, a 3D simplex is a tetrahedron and their

n-dimensional counterparts (illustrated in Fig. 1). The dimension of

a simplicial complex is the largest dimension of its simplices.

The ðn� 1Þ-dimensional sub-simplices of an n-dimensional

simplex are called its faces (e.g. a triangle has three faces, the three

edges). A simplicial complex, K, is required to satisfy two

conditions:

• For any simplex d 2 K, any face d0 of d is also in K.
• For any two simplices, d1; d2 2 K; d1 \ d2 is either 1 or a face of

both d1 and d2.

In a simplicial complex, a facet is a simplex that is not a face of

any higher-dimensional simplex. Because of this property, a simpli-

cial complex can be summarized by its set of facets.

Note that a network is a 1D simplicial complex and thus, our

proposed methodology is directly applicable to both traditional net-

works and the higher-dimensional simplicial complexes.

While simple network statistics, such as degrees, shortest paths

and centralities, have been generalized to simplicial complexes

(Estrada and Ross, 2018), the lack of more advanced statistics cap-

turing the geometry of simplicial complexes limits their usage in

practical applications.

1.3 Contributions
To comprehensively capture the multi-scale organization of complex

molecular networks, we propose to model them by using simplicial

complexes. To extract the information hidden in the geometric pat-

terns of these models, we generalize graphlets to simplicial com-

plexes, which we call simplets. Our simplets extend the applicability

of graphlets to high-dimensional simplicial complexes. When

applied to 1D simplicial complexes, i.e. networks, they are identical

to graphlets. On large scale real-world and synthetic simplicial com-

plexes, we show that simplets can be used to define a sensitive meas-

ure of geometric similarity between simplicial complexes. Then, on

simplicial complexes capturing the protein interactomes of human

and yeast, we show that simplets can be used to relate the local

geometry around proteins in simplicial complexes with their bio-

logical functions. Comparison between 1D PPI networks and the

higher-dimensional simplicial complex representations of the inter-

actomes formed by protein interactions and protein complexes

shows that higher-order modeling enabled by simplicial complexes

allows for capturing more biological information, which can effi-

ciently be mined with our proposed simplets.

2 Materials and methods

2.1 Datasets and their simplicial complex

representations
2.1.1 Yeast and human protein interactomes

From BioGRID (v. 3.4.156)(Chatr-Aryamontri et al., 2017), we col-

lected the experimentally validated PPI networks of human (Homo

sapiens) and of yeast (Saccharomyces cerevisiae). From CORUM

(Ruepp et al., 2010), we collected (on 2 July, 2017) the experimen-

tally validated protein complexes of human, and from CYC2008

(v.2.0) (Pu et al., 2009) the experimentally validated protein com-

plexes of yeast. We consider two different models of an organism’s

interactome.

The 1D PPI network: it is the usual PPI network, in which pro-

teins (nodes) are connected by an edge if they can physically bind.

Recall that a network is a 1D simplicial complexes on which our

new simplet methodologies can be applied and are equivalent to the

standard graphlet methodologies.

The higher-dimensional PPI Complex: starting from the PPI net-

work, we additionally connect by simplices all the proteins that be-

long to common complexes. That is, the proteins belonging to a k-

protein complex are connected by a ðk� 1Þ dimensional simplex.

For human, the PPI network has 16 100 nodes and 21 319 edges.

When unifying the lower dimensional PPI data and the higher-order

protein complex data as described above, the resulting PPI Complex

is a 140D simplicial complex having 16 140 nodes (with 40 proteins

being part of proteins complexes but not having any reported PPI)

and 205 192 facets. For yeast, the PPI network has 5842 nodes and

Fig. 1. Illustration of a 3D simplicial complex. In the presented simplicial com-

plex, nodes 1, 2 and 3 are only connected by 1D simplices (edges, in black).

Nodes 2, 3 and 4 are connected by a 2D simplex (triangle, in magenta). Nodes

4, 5, 6 and 7 are connected by a 3D simplex (tetrahedron, in blue)
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80 900 edges. When unifying the lower dimensional PPI data and

the higher-order protein complex data as described above, the

resulting PPI Complex is a 80D simplicial complex having 5842

nodes and 76 790 facets.

2.1.2 Other real-world datasets

We collected real-world higher-dimensional datasets from biology

and beyond.

• A total of 1569 simplicial complexes of protein 3D structures:

Proteins are linear arrangements of amino acids that in the aque-

ous environment of the cell fold and acquire specific 3D shapes

called tertiary structures. We collected from Astral-40 (SCOPe

v.2.06) (Fox et al., 2014) the 3D structures of 1569 protein

domains that are at-least 100 amino acid long. Each protein

domain is modeled as a simplicial complex in which simplices

connect together all the amino acids (nodes) that are <7.5 Å apart

(as measured by the distances between their a-carbons).
• A total of 132 simplicial complexes of publication authorships:

From the pre-print repository arXiv, we collected all the scientific

publications in the ‘computer science’ category over 11 years

from 2007 to 2017. For each month, we model the scientific

collaborations as a simplicial complex in which simplices are

formed by all scientists (nodes) that co-authored a scientific

publication.
• A total of 60 simplicial complexes of genes’ biological annota-

tions: We collected pathway annotations from Reactome data-

base (v.63) (Fabregat et al., 2018), as well as the experimentally

validated Gene Ontology (GO)(Ashburner et al., 2000) annota-

tions from NCBI’s entrez web-server (collected in February

2018). For GO, we consider biological process, molecular

function and cellular component annotations separately. For

each annotation set, we model the functional annotations of

the genes of a given species as a simplicial complex in which

simplices are formed by all genes (nodes) that have a common

annotation term (restricted to terms annotating up-to 50 genes

for computational complexity issues). We only considered sim-

plicial complexes having more than 100 nodes. Following this

procedure, we generated 18 pathway simplicial complexes, 13

biological process simplicial complexes, 14 molecular function

simplicial complexes and 15 cellular component simplicial

complexes.
• A total of 14 simplicial complexes of PPIs: We collected the ex-

perimentally validated PPIs from BioGRID database (v.

3.4.156)(Chatr-Aryamontri et al., 2017). These PPIs are first

modeled as networks in which proteins (nodes) are connected by

edges if they can interact. The corresponding networks are con-

verted into so-called clique complexes, by creating a simplex be-

tween all nodes belonging to a maximal clique in the network.

2.1.3 Random simplicial complexes

To test our methods, we considered randomly generated simplicial

complexes, which we generate according to ten random models

(detailed in Supplementary Material, Section 1).

The first five models are based on randomly generated graphs,

which are converted into so-called clique complexes, in which sim-

plices connect nodes that belong to a clique in the graph.

• A random clique complex is the clique complex of an Erdös–

Rènyi random graph (Erdös and Rényi, 1959).
• A Vietoris–Rips complex (Hausmann et al., 1995) is the clique

complex of a geometric random graph (Penrose, 2003).

• A scale-free complex is the clique complex of a Barabàsi–Albert

scale-free graph (Barabási and Albert, 1999).
• AWatts–Strogatz complex is the clique complex of a small-world

graph (Watts and Strogatz, 1998).
• An nPSO complex is the clique complex of a non-uniform

Popularity Similarity Optimization graph (Muscoloni and

Cannistraci, 2018).

The five other models are extensions of the Linial–Meshulam

model (Linial and Meshulam, 2006; Meshulam and Wallach,

2009), which originally consists in randomly connecting nodes

with kD facets. We extended this model to randomly connect

nodes with facets while following the facet distribution of an

input simplicial complex. In this way, we can create Linial–

Meshulam variant of the five clique complex-based models pre-

sented above.

• A Linial–Meshulam random clique complex is a Linial–

Meshulam complex that follows the facet distribution of an in-

put random clique complex.
• A Linial–Meshulam Vietoris–Rips complex is a Linial–

Meshulam complex that follows the facet distribution of an in-

put Vietoris–Rips complex.
• A Linial–Meshulam scale-free complex is a Linial–Meshulam

complex that follows the facet distribution of an input scale-free

complex.
• A Linial–Meshulam Watts–Strogatz complex is a Linial–

Meshulam complex that follows the facet distribution of an in-

put Watts–Strogatz complex.
• A Linial–Meshulam nPSO complex is a Linial–Meshulam com-

plex that follows the facet distribution of an input nPSO

complex.

For each model we choose three node sizes, 1000, 2000 and

3000 nodes, and three edge densities, 0.5, 0.75 and 1%. We gener-

ated 25 random simplicial complexes for each model and each of

these node sizes and edge densities. Hence, in total, we generated

10� 3� 3� 25 ¼ 2250 random simplicial complexes. We chose

these node sizes and edge densities to roughly mimic the sizes and

densities of real-world data detailed above.

2.2 Capturing the local geometry around nodes in a

simplicial complex with simplets
We define simplets as small, connected, non-isomorphic, induced

simplicial complexes of a larger simplicial complex. Figure 2 shows

the eighteen 2- to 4-node simplets (denoted by S1–S18). Within each

simplet, because of symmetries, some nodes can have identical geo-

metries. Analogous to automorphism orbits in graphlets (Pr�zulj,

2007), we say that such nodes belong to a common simplet orbit

group, or orbit for brevity. Figure 2 shows the 32 orbits of the 2- to

4-node simplets (denoted from 1 to 32). Similar to graphlets, we use

simplets to generalize the notion of the node degree: the ith simplet

degree of node v, denoted by vi, is the number of times node v

touches a simplet at orbit i.

We define the simplet degree vector (SDV) of a node as the 32D

vector containing the simplet degrees of the node in the simplicial

complex as its coordinates. Hence, the SDV of a node describes the

local geometry around the node in the simplicial complex and com-

paring the SDVs of two nodes provides a measure of local geometric

similarity between them.

We define the SDV similarity between two nodes as an extension

of the graphlet degree similarity (Milenkovi�c and Pr�zulj, 2008). It is
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computed as follows. The distance, Diðu; vÞ, between the ith simplet

orbits of nodes u and v is defined as:

Diðu; vÞ ¼ wi �
jlogðui þ 1Þ � logðvi þ 1Þj

logðmaxfui; vig þ 2Þ ; (1)

where wi is the weight of orbit i that accounts for dependencies be-

tween orbits. Weight, wi, is computed as wi ¼ 1� logðoiÞ
logð32Þ, where oi is

the number of orbits that orbit i depends on, including itself. For in-

stance, the count of orbit 2 (the middle of a three node path) of a

node depends on its count of orbit 0 (i.e. its node degree) and on it-

self, so o2 ¼ 2. For orbit 9, o9 ¼ 3, since it is affected by orbits 0, 2

and itself. The values of oi for all 2- to 4-nodes simplet orbits are

listed in Supplementary Table S1. Finally, the SDV similarity, S(u,

v), between nodes u and v is defined as:

Sðu; vÞ ¼ 1�
P

ijðui 6¼0Þ or ðvi 6¼0ÞDiðu; vÞP
ijðui 6¼0Þ or ðvi 6¼0Þwi

: (2)

S(u, v) is in (0, 1), where similarity 1 means that the SDVs of

nodes u and v are identical.

2.3 Capturing the global geometry of a simplicial

complex with simplets
To the best of our knowledge, researchers from computational

geometry have not considered the problem of comparing two simpli-

cial complexes. However, the comparison of biological networks is

a foundational problem of system biology. Instead, computational

geometry focuses on the comparison of two spaces, each represented

by a collection of simplicial complexes (e.g. Collins et al., 2004).

Thus, we build upon network analysis and extend graphlet and non-

graphlet-based network distance measures to directly compare sim-

plicial complexes as follows.

2.3.1 SCD

Simplets are like Lego pieces that assemble with each other to build

larger simplicial complexes. We exploit this property to summarize

the complex structures of simplicial complexes and to compare

them, by generalizing Graphlet Correlation Distance (Yavero�glu

et al., 2014), which is a sensitive measure of topological similarity

between networks.

Analogous to graphlets, the statistics of different simplet orbits

are not independent of each other. The reason behind this is the fact

that smaller simplets are induced sub-simplicial complexes of larger

simplets. In Supplementary Material, Section 2, we present the four,

non-redundant dependency equations between the simplet degrees

of a given node u that we used to assess the correctness of our ex-

haustive simplet counter.

In addition to these redundancies there also exist dependencies

between simplets, which are dataset dependent. We use these dataset

dependent simplet orbit dependencies to characterize the global

geometry of simplicial complexes. We capture the dependencies be-

tween simplet orbits by the simplicial complex’s Simplet Correlation

Matrix (SCM), which we define as follows. We construct a matrix

whose rows are the SDVs of all nodes of the simplicial complex. We

calculate the Spearman’s correlation between each two pairs of col-

umns in the resulting matrix, i.e. correlations between the orbits

over all nodes of the simplicial complex. We present these correla-

tions in a 32 � 32 dimensional SCM: it is symmetric and contains

Spearman’s correlation values in [�1, 1] range. As presented in

Supplementary Figure S1, the SCMs of simplicial complexes from

different random simplicial complex models are indeed very differ-

ent. We exploit these differences in SCMs to compare simplicial

complexes.

We define the simplet correlation distance (SCD) to measure the

distance between two simplicial complexes, K1 and K2, by the

Euclidean distance between the upper-triangles of their SCMs:

SCDðK1;K2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX32

i¼1

X32

j¼iþ1

ðSCMK1
½i�½j� � SCMK2

½i�½j�Þ2
vuut ; (3)

where SCMK1
½i�½j� is the ði; jÞth entry in the SCM of K1 (similar for

K2). The ability of SCD to group together simplicial complexes

according to their underlying models is demonstrated in Section 3.1.

2.3.2 Facet distribution distance

In analogy to degree distribution and graphlet degree distribution

(Pr�zulj, 2007), we define the measure of connectivity of a k-dimen-

sional simplicial complex, K, as the distribution of its facets, dK: it is

a kD facet distribution vector whose ith entry is the percentage of

the facets in K having dimension i. The facet distribution distance

(FDD) measures the distance between two simplicial complexes, K1

and K2, by the Euclidean distance between their facet distribution

vectors, dK1
and dK2

:

FDDðK1;K2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðdK1
½i� � dK2

½i�Þ2
r

: (4)

2.3.3 Spectral distance

Spectral theory captures the topology of networks and simplicial

complexes by using the eigen-values and eigen-vectors of matrices

representing them, such as the adjacency matrix, or Laplacian ma-

trix (Wilson and Zhu, 2008). Let H be the incidence matrix of a sim-

plicial complex, K, having n nodes and f facets: H is a n � f matrix

in which entry H½i�½j� ¼ 1 if node i is in facet j, and 0 otherwise. The

corresponding degree matrix, D, is a n � n diagonal matrix in which

entry D½i�½i� is the number of facets containing node i. The adjacency

matrix, A, of a simplicial complex is: A ¼ HHT �D, where HT is

the transpose of H (Zhou et al., 2006). The corresponding

Laplacian matrix, L, is: L ¼ 1
2 D�1=2AD�1=2.

The eigen-decomposition of the Laplacian matrix, L, of simpli-

cial complex, K, is L ¼ /kK/T , where kK ¼ diagðk1
K; k

2
K; . . . ; kn

KÞ is

Fig. 2. Illustration of 2- to 4-nodes simplets. The eighteen 2- to 4-nodes simp-

lets are denoted by S1–S18. Within each simplet, geometrically interchange-

able nodes, belonging to the same orbit, have the same color. These simplets

have 32 different orbits, denoted from 1 to 32. Note that simplets S4, S8, S11

and S14 have only one 2D face (triangle, in blue), while S12 and S15 have two

triangles, S16 has 3 triangles and S17 has four triangles. S18 has four triangles

and one 3D face (tetrahedron, in red)
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the diagonal matrix with the ordered eigen-values, ki
K as elements

and / ¼ ð/1j/2j . . . j/nÞ is the matrix with the ordered eigen-vectors

as columns. The spectrum of simplicial complex, K, is the set of its

eigen-values SK ¼ fk1
K; k

2
K; . . . ; kn

Kg, which are reordered so that

k1
K � k2

K � . . . � kn
K.

We define the spectral distance (SD) between two simplicial

complexes, K1 and K2, as the Euclidean distance between their spec-

tra (Wilson and Zhu, 2008):

SDðK1;K2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðki
K1
� ki

K2
Þ2

r
: (5)

When the two spectra are of different sizes, 0 valued eigen-

values are added at the end of the smaller spectrum.

3 Results and discussion

3.1 Comparing simplicial complexes
A sensitive measure of simplicial complex similarity should find

smaller distances between simplicial complexes from the same

model than between simplicial complexes from different models.

We visually assess if our SCD (presented in Section 2.3.1) has

this property by embedding simplicial complexes as points in 3D

space, so that the Euclidean distances between the points in the 3D

space best approximate the SCD distances between the correspond-

ing simplicial complexes. We do by using multi-dimensional scaling

(MDS) (Borg and Groenen, 2005). As presented in Figure 3, when

using the 2250 model simplicial complexes described in Section

2.1.2, we observe that simplicial complexes from the same models

are grouped together (i.e. they have small SCD distances), while sim-

plicial complexes from different models are well separated (i.e. they

have larger SCD distances).

We apply SCD and of the two other distances measures

described in Section 2.3 on the 2250 model simplicial complexes

described in Section 2.1.2, which results for each distance measure

between all 2 530 125 pairs of these 2250 simplicial complexes. We

formally assess the ability of the distance measure to group together

the simplicial complexes from the same model by using the standard

precision-recall and receiver operating characteristic (ROC) curves

analyses. The resulting precision-recall and ROC curves, which are

presented in Supplementary Figures S2 and S3, confirm our visual

illustration of the ability of SCD to classify simplicial complexes.

We find that SCD achieves the highest classification performance

with average precision (AP) of 97.58% and an area under the ROC

curve (AUC) of 84.93%. It is followed by the FDD (AP of 96.00%

and AUC of 78.73%) and by the SD (AP of 91.42% and AUC of

60.52%).

We further validate our methodology by assessing its ability

to correctly group our 1775 real-world simplicial complexes.

We calculate the distances between all pairs of the 1775 real-world

simplicial complexes, which results in distances between

1775
2

� �
¼ 1 574 425 pairs for each of the three distance measures

presented in Section 2.3. As illustrated in Figure 4, when the real-

world simplicial complexes are embedded into 3D space based

on their SCD distances by using MDS, the simplicial complexes

from the same data type group well together. Out of the four types

of real-world simplicial complexes, the ones capturing PPIs are less

well clustered, i.e. these simplicial complexes are more variable

than the other ones. This could be due to the incompleteness

and noisiness of PPI data (Sprinzak et al., 2003), as well as to evo-

lutionary differences in the wiring patterns of the species’ interac-

tomes, as our dataset includes diverse species, such as Arabidopsis

thaliana (a plant), H.sapiens (a mammal) and S.cerevisiae (a

fungus).

Nevertheless, the precision-recall curves presented in

Supplementary Figures S4 and S5 show that SCD achieves the high-

est classification performances (AP of 98.72% and AUC of

99.58%), followed by SD (AP of 94.93% and AUC of 98.64%) and

by FDD (AP of 76.10% and AUC of 93.11%). Taken altogether,

our results demonstrate that SCD is a very sensitive measure of sim-

plicial complex similarity.

Fig. 3. Illustration of MDS-based embedding of simplicial complexes from 10

random models. The randomly generated simplicial complexes (color-coded)

are embedded into 3D space according to their pairwise SCD distances using

MDS. The 10 models and simplicial complex sizes and densities are

described in Section 2.1.2. As described in Section 2.1.2, 25 simplicial com-

plexes are generated for each model and each of its sizes and densities. The

grouping of the same colored nodes correspond to simplicial complexes

from the same model, which may be of different sizes and densities

Fig. 4. Illustration of MDS-based embedding of real-world simplicial

complexes based on their SCDs. The real-world simplicial complexes

(color-coded) are embedded into 3D space according to their pairwise SCD

distances using MDS
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3.2 Uncovering biological information from PPI

Complexes
In the experiments presented above, we measured the ability of

simplets to capture global geometric features of simplicial com-

plexes. In this section, we focus on the local geometry around nodes

in simplicial complexes. We assess if the local geometries of proteins

in PPI Complexes (which we capture with SDVs, see Section 2.2)

relate to their functional annotations using two different methodolo-

gies: clustering and enrichment analysis of the resulting clusters, and

canonical correlation analysis (CCA).

3.2.1 Clustering and enrichment analysis

In system biology, studies, such as Davis et al. (2015) have shown

that proteins having similar local wiring patterns in PPI networks

tend to have similar biological functions. This suggests that specific

protein functions are performed through specific patterns of PPIs,

and that the biological functions of unannotated proteins can be pre-

dicted from their wiring patterns in the PPI network (Milenkovi�c

and Pr�zulj, 2008). This may be explained by evolutionary processes,

as genomes are believed to have evolved through gene (and some-

times entire genome) duplication and mutation events. Genes with

the same origin have similar sequences and their protein product

structures, resulting in similarities in the wiring patterns of their

PPIs.

Here, we investigate if a similar property holds in our higher-di-

mensional representations of interactomes, i.e. if proteins with simi-

lar local geometries (as captured by simplets) also tend to have

similar biological functions. To this aim, we cluster proteins having

similar local geometries (i.e. having similar SVDs) and assess if the

obtained clusters are functionally enriched in biological functions as

follows. For both human and yeast, we computed the simplet degree

similarity of the proteins in each of the two models of their interac-

tomes (PPI network and PPI Complex, see Section 2.1.1). We used

these pairwise similarities as input for spectral clustering (Von

Luxburg, 2007), which performs k-means clustering on the eigen-

vectors of the matrix encoding the pairwise simplet degree similar-

ities between the nodes. Spectral clustering is favored over tradition-

al k-means as it does not make strong assumptions on the shape of

the clusters. While k-means produces clusters corresponding to con-

vex sets, spectral clustering can solve a more general problem such

as intertwined spirals (Von Luxburg, 2007). To account for the ran-

domness of the underlying k-means, each clustering experiments is

repeated 10 times. As there is no gold-standard way of setting the

number of clusters, k, we choose the frequently used rule of thumb

(Kodinariya and Makwana, 2013), k ¼
ffiffi
n
2

p
, where n in the number

of nodes in the simplicial complex. To further motivate our choice

of k, we performed 10 spectral clusterings for each k from 10 to 150

in steps of 10. For each value of k, we measured the consistency of

the obtained clusterings by using both their sum of square error and

their normalized mutual information scores. We observe that the

rule of thumb leads to stable clusterings, as k ¼
ffiffi
n
2

p
is after the

elbows of the two consistency scores. That is, we set k ¼ 90 for

human and k ¼ 54 for yeast dataset. For comparison purposes, we

also generated for both human and yeast 100 random clusterings

having same cluster sizes as the ones obtained by spectral clustering

on the PPI Complexes.

Then, we measure the biological coherence of the obtained clus-

tering by the percentage of clusters that are statistically significantly

enriched in at-least one GO annotation (Ashburner et al., 2000). To

this aim, we collected the experimentally validated GO annotations

of genes from NCBI’s entrez web portal (collected on 8 March, 2018).

We considered GO biological process (GO-BP), GO molecular func-

tion (GO-MF) and GO cellular component annotations separately.

A cluster is statistically significantly enriched in a given annotation

if the corresponding enrichment P-value is lower than or equal to

5% after Benjamini–Hochberg (Benjamini and Hochberg, 1995)

correction for multiple hypothesis testing.

As presented in Figure 5, over all ten runs, for both species and

for the three GO annotation types, the biological coherence in terms

of enriched clusters is larger for the PPI Complexes than for the PPI

networks. On average, 79.5% of the clusters from the PPI

Complexes are significantly enriched in GO-BP annotations, versus

50.7% for the clusters from the PPI networks. Similarly, 69.8% of

the clusters from the PPI Complexes are significantly enriched in

GO-MF annotations, versus 44.8% for the clusters from the PPI net-

works. Finally, 74.2% of the clusters from the PPI Complexes are

significantly enriched in GO-BP annotations, versus 53.1% for the

clusters from the PPI networks. These results are all statistically sig-

nificant (with empirical P-values �1%), as the randomly generated

clusters are never observed to be as enriched in biological functions

than the clusters obtained from the PPI Complex (the random clus-

terings have, on average, <1% of their clusters with at least one

enriched function).

These results demonstrate that proteins having similar geome-

tries in PPI Complexes, i.e. that form complex interactions in similar

ways, indeed tend to have similar biological functions. This may be

due to duplications and divergence of the genome regions coding for

these molecular machines. Also, our results show that PPI Complex

representation captures more biological annotations than simple PPI

network representation of these complex data. This illustrates the

importance of modeling and wiring of protein interactomes.

3.2.2 Canonical correlation analysis

To quantify the relationships between the local geometry around

proteins in simplicial complexes and their biological functions, i.e.

to measure how well the simplet degrees of the proteins are predict-

ive of their GO-BP annotations, we adapt the CCA methodologies

from Yavero�glu et al. (2014). The local geometry around n proteins

in a simplicial complex is captured in an n� 32 matrix, R, whose

Fig. 5. Biological relevance of clusters of genes, as measured by the percent-

age of clusters having at least one enriched GO annotation. For PPI networks

and PPI Complexes, the error bars present minimum, average and maximum

enrichment values over 10 runs of spectral clustering, while for Random the

error bars present minimum, average and maximum enrichment values over

100 random clustering having same cluster sizes as the ones obtained for

PPI Complexes
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entry R½v�½i� is the ith simplet degree of node v. Similarly, the

biological functions of the proteins are captured in an n� f matrix,

A, whose entry A½v�½i� is 1 if protein v is annotated by term i, and 0

otherwise. For both matrices, we excluded the genes that do not

have any GO-BP annotations. CCA is an iterative process that iden-

tifies linear relationships between the 32 simplet degrees and the

f GO-BP annotations. First, CCA outputs two weight vectors, called

canonical variates, so that the weighted sum of R is maximally

correlated with the weighted sum of A. The correlation between the

two weighted sums is called their canonical correlation. After find-

ing the first canonical variates, CCA iterates minf32; fg times to

find more weight vectors, such that the resulting canonical variates

are not correlated with any of the previous canonical variates. We

refer the interested reader to Weenink (2003) for the mathematical

aspects of CCA.

As presented in Figure 6 and Supplementary Figure S6, the PPI

Complex allows for uncovering a larger number of linear relation-

ships that the PPI network model. This is because only 15 out of the

32 simplets can appear in 1D simplicial complexes, i.e. a PPI net-

work, which corresponds to the fifteen 2- to 4-node graphlets.

Hence, CCA can only produce up-to 15 variates for a PPI network

and up-to 32 variates for the PPI Complex. Moreover, these linear

relationships have higher canonical correlations. This means that by

using simplets on the PPI Complexes we can capture more and better

quality relationships between local geometry around nodes in sim-

plicial complexes and their biological functions than if we use PPI

networks. The same is observed when using GO cellular component

and GO-MF annotations (not shown due to space limitations).

4 Conclusion

We demonstrate that by the new way of accounting for multi-scale

organization of PPI data both through modeling and new algorithms

that we propose, we can uncover substantially more biological infor-

mation than can be obtained by considering only pairwise interac-

tions between proteins in PPI networks. This pioneering observation

can further be utilized to predict biological functions of unannotated

genes, which is a subject of further research.

We demonstrate the existence of the functional geometry in

the PPI data by capturing the higher-order organization of these

molecular networks by using simplicial complexes. To mine the

geometry of simplicial complexes, we propose simplets, which gen-

eralize graphlets to simplicial complexes. On randomly generated

and real-world datasets, we define a sensitive measure of global geo-

metrical similarity between simplicial complexes. Also, we propose

a higher-dimensional, simplicial complex-based model of a species’

interactome that we call PPI Complex, which combines PPI and

protein complex data. On human and yeast interactomes, by using

clustering based on our new simplet-based measures of geometric

similarity and cluster enrichment analysis, we show that our PPI

Complexes are more biologically coherent than PPI networks and

that our simplets can efficiently mine PPI Complexes as a new

source of biological knowledge. Furthermore, while we focus on

simplicial complexes emerging from molecular network organiza-

tion, our methodology is generic and can be applied to multi-scale

datasets from any scientific field, such as the multi-scale network

data from physics, social sciences and economy.
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