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Abstract

Motivation: Computationally predicting disease genes helps scientists optimize the in-depth ex-

perimental validation and accelerates the identification of real disease-associated genes. Modern

high-throughput technologies have generated a vast amount of omics data, and integrating them

is expected to improve the accuracy of computational prediction. As an integrative model, multi-

modal deep belief net (DBN) can capture cross-modality features from heterogeneous datasets to

model a complex system. Studies have shown its power in image classification and tumor subtype

prediction. However, multimodal DBN has not been used in predicting disease–gene associations.

Results: In this study, we propose a method to predict disease–gene associations by multimodal

DBN (dgMDL). Specifically, latent representations of protein-protein interaction networks and gene

ontology terms are first learned by two DBNs independently. Then, a joint DBN is used to learn

cross-modality representations from the two sub-models by taking the concatenation of their

obtained latent representations as the multimodal input. Finally, disease–gene associations are

predicted with the learned cross-modality representations. The proposed method is compared

with two state-of-the-art algorithms in terms of 5-fold cross-validation on a set of curated disease–

gene associations. dgMDL achieves an AUC of 0.969 which is superior to the competing algo-

rithms. Further analysis of the top-10 unknown disease–gene pairs also demonstrates the ability of

dgMDL in predicting new disease–gene associations.

Availability and implementation: Prediction results and a reference implementation of dgMDL in

Python is available on https://github.com/luoping1004/dgMDL.

Contact: faw341@mail.usask.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ever since the discovery of the first disease gene in 1949 (Bromberg,

2013), thousands of genes have been identified to be disease-

associated. Identifying disease–gene associations helps us decipher

the mechanisms of diseases, find diagnostic markers and therapeutic

targets, which further leads to new treatment strategies and drugs.

High-throughput technologies usually predict a few hundreds of

candidate genes, and validating all these candidates requires an ex-

tensive amount of cost and time. Thus, a commonly used approach

is to first computationally predict/prioritize candidate genes associ-

ated with the diseases under consideration, then experimentally val-

idate a subgroup of candidates based on the results of

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3735

Bioinformatics, 35(19), 2019, 3735–3742

doi: 10.1093/bioinformatics/btz155

Advance Access Publication Date: 2 March 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3735/5368487 by guest on 20 April 2024

https://github.com/luoping1004/dgMDL
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz155#supplementary-data
https://academic.oup.com/


computational prediction so that the yield of the experiments can be

greatly improved.

Currently, various types of data have been used to predict disease–

gene associations, and protein-protein interaction (PPI) networks are

the most widely used evidence. Previous algorithms tried to predict

disease–gene associations by directly using the topological structure of

PPI networks (Köhler et al., 2008; Vanunu et al., 2010). However,

universal PPI networks downloaded from online databases contain

lots of false positives, and only using them cannot further improve the

prediction accuracy. Thus, researchers tend to combine more types of

data with PPI networks to predict disease–gene associations.

One strategy is to combine PPI networks with clinical data which

capture the difference between patients (case) and normal people

(control). This resulted in a group of GWAS-based methods

(Jia et al., 2011; Wu et al., 2017; Lee et al., 2011) and gene expres-

sion (GE)-based methods (Hou et al., 2014; Luo et al., 2019;

Wang et al., 2015). GWAS-based methods first map the single-

nucleotide polymorphisms and their corresponding P-values to the

human genome. Then, the mapped P-values are combined with PPI

networks and other evidence to predict disease–gene associations.

GE-based methods analyze the expression level of each gene in case

and control subjects and identify differentially expressed genes or

rewired co-expressions, which are then combined with PPI networks

to predict disease–gene associations.

Although algorithms based on clinical data are more accurate

than the previous methods, their performance is still limited by the

amount and quality of the data. For diseases not well studied, the

amount of available data limits the performance of the algorithms.

For other diseases like cancers, although projects such as TCGA

(Network et al., 2012) have generated a large amount of omics data,

not all disease–gene associations can be successfully identified be-

cause of the following reasons. The tumorigenesis of most patients is

associated with several frequently mutated genes, and clinical data-

based algorithms can easily identify the associations between can-

cers and these genes. However, for other less mutated genes, the

overwhelming abundance of frequently mutated genes would make

the computational model believe that the less mutated ones are not

disease-associated. As a result, algorithms based on clinical data

tend to generate results that do not include less mutated genes.

Therefore, the key issue now is to identify those critical but less

mutated genes (Davoli et al., 2013).

To address the problems of existing methods, a generic model

which combines different types of non-clinical data would be more

valuable. On the one hand, this model predicts disease–gene associa-

tions using evidence that can reveal the intrinsic properties of diseases

and genes, such as disease similarities, gene similarities, PPI networks,

gene ontology (GO) terms, protein domains etc. Integrating such mul-

tiple types of information could complement the shortage of previous

PPI-based algorithms. On the other hand, since clinical data is not

used in the prediction, the results are less likely to be affected by the

frequency of the disease-associated mutations.

Methods based on matrix factorization (MF) are generic models

and can leverage the disease similarities and gene similarities to pre-

dict disease–gene associations (Luo et al., 2018; Natarajan and

Dhillon, 2014; Zeng et al., 2017). However, MF-based algorithms

usually need too much time to converge and most of them can only

use limited types of data, which limits their performance. Since stud-

ies have shown that integrating multiple types of data could enhance

the prediction of disease–gene associations (Chen et al., 2014, 2015,

2016; Tranchevent et al., 2016), a good generic model should be

able to integrate multiple types of data with a unified framework so

that the advantages of multi-view data can be properly utilized.

Currently, many algorithms have been proposed to integrate

multi-view biological data. Among these algorithms, multimodal

deep learning reveals great potential in capturing cross-modality fea-

tures to uncover the mechanisms of biological systems (Li et al.,

2016b). Deep learning algorithms, such as deep belief net (DBN),

have been applied to drug repositioning (Wen et al., 2017) and can-

cer subtype prediction (Liang et al., 2015). Although these studies

have shown the abilities of deep learning in analyzing biological sys-

tems, no studies have used deep learning in disease gene prediction

because of two reasons. First, if deep learning is used to predict the

disease genes of a specific disease, the number of known disease

genes would be too small to train a deep model. Second, if DBN is

used to extract features from the biological data, Gaussian units

have to be used in the visible layer so that the model can accept real-

valued data. The corresponding restricted Boltzmann machine

(RBM) in the DBN is a Gaussian-Binary RBM (GBRBM), which is

hard to train (Cho et al., 2011; Krizhevsky and Hinton, 2009).

More attention is needed to choose appropriate hyperparameters.

To solve the above issues, in this study, instead of predicting associ-

ated genes for a specific disease, we build a generic model to predict

disease–gene associations for all known diseases. This strategy greatly

increases the number of positive samples, making it possible to train a

deep network. Meanwhile, the Gaussian visible layer is used to learn la-

tent features from original real-valued features. To leverage the advan-

tage of deep learning in data fusion and improve prediction accuracy,

multimodal DBN is used to fuse different modalities and obtain joint

representations. Specifically, two sub-models are first trained based on

PPI networks and GO terms, respectively. Then, a joint DBN is used to

combine the two sub-models to learn cross-modality representations.

In the rest of the paper, Section 2 describes the details of the al-

gorithm and the experiments. Section 3 discusses the results of the

evaluation. Section 4 draws some conclusions.

2 Materials and methods

2.1 RBM
RBM is a graphical model which consists of a visible layer and a hid-

den layer. In this model, every unit in one layer is connected to every

unit in another layer, and there are no within layer connections.

Figure 1 shows an example RBM with four visible units and five hid-

den units. RBM can characterize the distribution of input data, and

the learned probabilities of hidden units can be used as features to

characterize raw data. When data is binary, the corresponding RBM

is a Binary-Binary RBM (BBRBM), and the probability distribution

is defined by the following likelihood function:

PðvÞ ¼
X

h

Pðv; hÞ ¼
X

h

e�Eðv;hÞ

Z
(1)

where Eðv;hÞ ¼ �b0v� c0h� h0Wv is the energy function. Z ¼P
v e log

P
h

e�Eðv;hÞ
is known as the partition function. W is the weight

Fig. 1. Schematic example of an RBM
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matrix that connects visible and hidden units. b and c are the biases

of visible and hidden layers, respectively.

RBM can be learned by using the stochastic gradient descent (SGD)

on the empirical negative log-likelihood of training data, which results

in the following gradients for a BBRBM (Bengio et al., 2009)

� @ log pðvÞ
@Wij

¼ Ev½pðhijvÞ � vj� � v
ðiÞ
j � sigmðWi � vðiÞ þ ciÞ (2)

� @ log pðvÞ
@ci

¼ Ev½pðhijvÞ� � sigmðWi � vðiÞÞ (3)

� @ log pðvÞ
@bj

¼ Ev½pðvjjhÞ� � v
ðiÞ
j (4)

where sigm denotes the sigmoid function sigmðxÞ ¼ 1=ð1þ expð�xÞÞ.
These equations compute the expectations over all possible configu-

rations of input data, which is difficult. A feasible solution is to esti-

mate the expectations with a fixed number of samples. Several

sampling techniques have been developed to calculate the gradients

(Cho et al., 2010; Hinton, 2002; Tieleman, 2008). In this study, we

choose the contrast divergence (CD) because of its simplicity.

Details of the algorithms can be found in Hinton (2002).

For GBRBM, the energy function becomes:

Eðv;hÞ ¼
X
i2vis

ðvi � aiÞ2

2r2
i

�
X
j2hid

bjhj �
X

i;j

vi

ri
hjwij (5)

where ri is the standard deviation of the Gaussian noise for visible

unit i. Since learning the variance is difficult with CD, we use the

same strategy as in Hinton and Salakhutdinov (2006) which normal-

izes each feature to have zero mean and unit variance. The variance

in Eq. (5) is then set to 1, and the resulted learning procedures

remain the same except for that when CD is performed, the recon-

structed value of a Gaussian visible unit changes from sigmðW0hþ
bÞ to ðW0hþ bÞ.

2.2 Multimodal DBN
Multimodal DBN was originally proposed to learn joint representa-

tions from image and text data (Srivastava and Salakhutdinov,

2012). In this study, multimodal DBN is used to learn cross-

modality features with raw features extracted based on PPI net-

works and GO terms. Figure 2 gives a schematic multimodal DBN

for predicting disease genes. The left and right subnetworks denote

two DBNs which model PPI-based features and GO-based features,

respectively. The top network is a DBN that models the joint distri-

bution and a sigmoid activation function as the output layer for

decision making.

According to Bengio et al. (2007), each DBN in Figure 2 can be

regarded as a stack of RBMs and trained in a greedy layer-wise man-

ner. Starting from the visible layer, every pair of adjacent layers

form an RBM, which can be trained by the approach discussed in

Section 2.1. In this study, the visible layers in the two sub-models

use Gaussian units, and the corresponding RBMs formed by vp;h
1
p

and vg;h
1
g are GBRBM. All the rest RBMs formed by adjacent hid-

den layers are BBRBM. Once an RBM is trained, the activation

probabilities of its hidden layer are used as the input data to train

the next RBM, and the DBN can be trained in this layer-wise man-

ner. After training the two sub-DBNs, their output (hidden probabil-

ities of the top layers) are concatenated, and the resulted

representations are used as the input to train the joint DBN.

The whole model is trained in an unsupervised way, and the

resulted multimodal DBN can be further analyzed by many

approaches. In this study, we add an output layer with a sigmoid

function to predict the probability of each disease–gene pair being

associated using the cross-modality representations learned by the

joint DBN.

2.3 Raw feature extraction
The input data of the multimodal DBN is the raw features of dis-

ease–gene pairs. These features are extracted from disease similarity

networks and gene similarity networks. Specifically, for each sub-

model, a disease similarity network and a gene similarity network

are first constructed. Then, features of diseases and genes are

extracted from their corresponding similarity networks, respectively,

by node2vec (Grover and Leskovec, 2016), which is an algorithm

that can learn features for nodes in networks. This algorithm per-

forms random walk on a network and captures both local topologic-

al information and global structural equivalent properties to extract

features. We choose node2vec because it can generate independent

features which are suitable for the input of the multimodal DBN.

In addition, experiments have shown that features obtained

by node2vec are more informative than those of other algorithms in

classification task (Grover and Leskovec, 2016).

The following two sections discuss the strategies used to con-

struct similarity networks based on PPI networks and GO terms.

2.3.1 Similarity networks in PPI-based sub-model

In the PPI-based model, gene–gene interaction network mapped

from the PPI network is regarded as the gene similarity network.

This strategy is chosen because interacting proteins may have similar

functions and protein interactions can reflect the functional similar-

ities between the corresponding genes. Meanwhile, instead of con-

structing another gene similarity network, the topological structure

of the PPI network is also valuable when extracting features with

node2vec.

The disease similarity network NPPI
d is constructed according to the

disease module theory. A disease module in an interactome is a subgraph

consisting of genes associated with the disease (Menche et al., 2015).

Fig. 2. Schematic example of a multimodal DBN for disease gene prediction

Multimodel predicting disease–gene associations 3737

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/19/3735/5368487 by guest on 20 April 2024



Let M1 ¼ ðV1;E1Þ denote the disease module of disease d1 in the inter-

actome (gene–gene interaction network). V ¼ fg11; g12; . . . ; g1n1
g is a

set of disease genes associated with d1, and E1 is a set consisting of their

interactions. M2 ¼ ðV2;E2Þ is another disease module with similar def-

inition. According to Ni et al. (2018), the similarity between two disease

modules M1 and M2 can be calculated as follows:

simppiðM1;M2Þ ¼
P

1� s�n1
FM2
ðg1sÞ

P
1� t�n2

FM1
ðg2tÞ

n1 þ n2
(6)

where FMðgÞ ¼ avgð
P

gi2M simðg; giÞÞ measures the relations be-

tween gene g and disease module M, which is the sum of the trans-

formed similarities between g and the genes in disease module M.

Given two genes g1 and g2 in the PPI network, their transformed

similarity is calculated by

simðg1; g2Þ ¼
1; g1 ¼ g2

e�spðg1 ;g2Þ; otherwise

�

where spðg1; g2Þ is the length of the shortest path between g1 and g2

in the PPI network. The larger the transformed similarity, the closer

the relationship between g1 and g2.

After calculating the similarities between modules M1 and M2,

the similarities between diseases d1 and d2 can be obtained by nor-

malizing the module similarities as follows:

SIMd
ppiðd1;d2Þ ¼

2 � simppiðM1;M2Þ
simppiðM1;M1Þ þ simppiðM2;M2Þ

(7)

Finally, NPPI
d is constructed by k nearest neighbors (KNN) algo-

rithm (Cover and Hart, 1967). Specifically, edges are added to NPPI
d

for each disease and its top-k most similar diseases obtained by

Eq. (7). These edges are weighted by the similarity scores of their

two connected diseases. In this study, k¼10 is chosen according to

our previous experience (Luo et al., 2019).

2.3.2 Similarity networks in GO-based sub-model

Similar to the construction of NPPI
d , the GO-based similarity net-

works are also built by KNN algorithm, except that the similarities

between diseases and genes are calculated based on GO instead of

PPI network.

GO database provides a set of vocabularies to describe gene

products based on their functions in the cell. Three types of ontolo-

gies are defined in GO: biological process, cellular component and

molecular function. All the GO terms exist as directed acyclic graphs

(DAGs) where nodes represent terms while edges represent semantic

relations. In this study, we use the approach developed by

Wang et al. (2007) to measure the semantic similarities of GO terms

and genes.

Let DAGA ¼ ðTA;EAÞ represent GO term A, where TA contains

all the successor GO terms of A in the DAG, and EA contains the

semantic relations between A and other terms in TA. Each term t in

TA has an S-value related to A:

SAðtÞ ¼ 1; if t ¼ A
SAðtÞ ¼ maxfwe � SAðt0Þjt0 2 children of tg;otherwise

�
(8)

where we is the weight of the edge (semantic relations) in the DAG.

Two types of semantic relations are used in the DAG: ‘is_a’ and

‘part_of’, and the corresponding we is set as 0.8 and 0.6, respective-

ly, as recommended in Wang et al. (2007).

Given DAGA ¼ ðTA;EAÞ and DAGB ¼ ðTB;EBÞ for two GO

terms A and B, the semantic similarity of these two terms is com-

puted by:

SGOðA;BÞ ¼
P

t2TA\TB
ðSAðtÞ þ SBðtÞÞP

t2TA
SAðtÞ þ

P
t2TB

SBðtÞ
(9)

The semantic similarity of one GO term t0 and a set of GO terms

GO ¼ ft1; t2; . . . ; tlg is defined as:

simgoðt0;GOÞ ¼ max
1� i� l

ðSGOðt0; tiÞÞ (10)

Then, the functional similarity of two genes g1 and g2, annotated by

GO term set GO1 ¼ ft11; t12; . . . ; t1n1
g and GO2 ¼ ft21; t22; . . . ; t2n2

g,
is calculated by:

SIMg
goðg1; g2Þ ¼P

1� i� n1
simgoðt1i;GO2Þ þ

P
1� j� n2

simgoðt2j;GO1Þ
n1 þ n2

(11)

The similarity of two diseases d1 and d2, associated with two sets

of genes V1 ¼ fg11; g12; . . . ; g1n1
g; V2 ¼ fg21; g22; . . . ; g2n2

g, is

defined as:

SIMd
goðd1;d2Þ ¼P

1� i�n1
SGðg1i;DG2Þ þ

P
1� j� n2

SGðg2j;DG1Þ
n1 þ n2

(12)

where SGðg0;DGÞ ¼ max1� i� lðSIMg
goðg0; giÞÞ.

2.3.3 Sub-model input construction

After obtaining the similarity networks, features are extracted by

node2vec. Let /p
i denote the extracted feature vector of disease i,

and up
j denote the extracted feature vector of gene j in the PPI-based

model. Their concatenation, wp
ij ¼ ð/

p
i ;u

p
j Þ, is the feature vector of

disease–gene pair (i, j) in the PPI-based model, which is then used as

the input of the PPI-based sub-DBN. Similarity, wgo
ij is constructed

and used as the input of the GO-based sub-DBN.

2.4 Evaluation metrics
The area under Receiver Operating Characteristics (ROC) curve

(AUC) is used to evaluate the algorithms. ROC curve plots the true

positive rate [TP/(TPþFN)] versus the false positive rate [FP/

(FPþTN)] at different thresholds, and a larger AUC score represents

better overall performance. In this study, a true positive (TP) is a

known disease–gene association (positive sample) predicted as a dis-

ease–gene association, while a false positive (FP) is a non- disease–

gene association (negative sample) predicted as a disease–gene associ-

ation. A false negative (FN) is a positive sample predicted as negative

while a true negative (TN) is a negative sample predicted as negative.

Considering that negative samples are not included in existing

databases, we combine our previous study in Luo et al. (2019) and

the idea of reliable negatives in Yang et al. (2012) to collect a subset

of unknown samples as potential negative samples (PN). Taking the

PPI-based model as an example, let wp
avg denote the average feature

vector of all positive samples. For each unknown sample u, we cal-

culate the Euclidean distance dp
u between u and wp

avg. The average

distance is then denoted as dp
avg. If dp

u > dp
avg, sample u is considered

as a reliable negative sample. With this approach, two sets of reli-

able negative samples are collected from the PPI-based model and

GO-based model, respectively. disease–gene pairs in the intersection

of the two sets are regarded as PN. In our experiment, 4432 samples

(the same as the number of positive samples) are randomly selected

from PN as negative samples and the dataset contains 8864 samples

in total. This random selection is performed three times to generate

three sets of data.
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The proposed method is evaluated in three steps. First, the whole

dataset is randomly split into three subsets: training set (80%), valid-

ation set (10%) and testing set (10%). The optimized hyperpara-

meters are determined based on the average AUC obtained from 10

randomly split validation sets. The average AUC obtained from test-

ing sets with the optimized hyperparameters is used to evaluate the

overall performance of the model. Second, dgMDL is compared with

two newly developed algorithms: PBCF (Zeng et al., 2017) and

Know-GENE (Zhou and Skolnick, 2016) in 5-fold cross-validation.

PBCF is an MF-based algorithm and Know-GENE uses the boosted

regression to predict disease–gene associations. Both of them are gen-

eric models which use similar types of data as dgMDL does. For each

set of data, the cross-validation is run for five times to remove the in-

fluence of the random splitting. Associations left for testing are not

used to calculate disease similarities. Third, unknown disease–gene

pairs are ranked by their probabilities of being associated predicted

by dgMDL. The top-10 pairs and top-10 unknown lung cancer-

related genes are further studied in existing literature to evaluate the

performance of dgMDL in predicting new disease–gene associations.

2.5 Hyperparameters
In this study, several hyperparameters affect the accuracy of the pre-

diction. For the multimodal DBN, the numbers of hidden layers and

the number of nodes in each hidden layer determine the architecture

of the model. In our experiments, the model is found to be insensitive

to the number of hidden nodes. Thus, we set the number of hidden

nodes in the sub-modal and the joint-model to 256 and 512, respect-

ively. In addition, since the performance of the model becomes stable

when the numbers of hidden layers are larger than 2, we set the num-

bers of hidden layers to be 3 in both the sub-DBN and the joint-DBN.

Another three hyperparameters [learning rate (lr), batch size (bs)

and number of epochs (ne)] determine whether the model is well

trained. For lr, 0.01 is recommended for training BBRBM in Hinton

(2012). In our study, we find that 0.01 is small enough to train the

BBRBM. A smaller or adaptive lr barely changes the prediction ac-

curacy. Thus, lr used for training BBRBM is set to 0.01. Meanwhile,

it is recommended that lr used for training GBRBM should be one

or two orders of magnitude smaller than that for BBRBM. Thus, we

search lr of the GBRBM from {0.001, 0.0005, 0.0002, 0.0001}. For

bs, a recommended value is usually equal to the number of the

classes, and it would be better if each mini-batch contains at least

one sample from each class. Considering that we only have two

classes in this study and using a bs equals to two can hardly guaran-

tee the recommendation, bs is searched from {2, 4, 8, 10}. For ne,

we fix it to 30 because the performance of dgMDL becomes stable

after being trained for 30 epochs. Supplementary Table S1 in the

Supplementary gives the average AUC obtained from the validation

sets with different combinations of lr and bs. The optimized lr for

the GBRBM and bs are 0.0005 and 4, respectively.

For node2vec, the hyperparameters include: dimension of fea-

tures (d); return parameter (p); in-out parameter (q); number of

walks (r); length of walk (l) and context size (k). The corresponding

default values recommended in Grover and Leskovec (2016) are

128, 1, 1, 10, 80 and 10, respectively. Although these hyperpara-

meters should be changed for networks with different numbers of

nodes and edges, searching all of them with brute force would be

time-consuming. In our study, we do test different combinations of

d, p, q and l, but the results are all worse than the ones obtained

with the default values. To determine the real optimized hyperpara-

meters used in node2vec, one might need a large amount of time on

the grid search, which is not the key issue of the deep learning

model. Therefore, the default values of node2vec are used in our

study.

2.6 Data sources
The disease–gene association data are downloaded from the Online

Mendelian Inheritance in Man (OMIM) database (Amberger et al.,

2015). The latest Morbid Map at OMIM contains nearly seventy-

five hundred entries sorted alphabetically by disease names, thirty-

nine hundred genes and more than sixty-one hundred diseases. Each

entry represents an association between a gene and a disease.

Different entries are labelled with different tags [‘(3)’, ‘[]’ and ‘?’]

indicating their reliabilities. To get the most reliable entries, in this

study three steps are performed to preprocess the originally down-

loaded dataset. The first two steps are similar to the approach used

in Goh et al. (2007). From the website of OMIM, diseases with tag

‘(3)’ indicate that the molecular basis of these diseases is known,

which means the associations are reliable. Entries with ‘[]’ represent

abnormal laboratory test values while entries with ‘?’ represent pro-

visional disease–gene associations. At the first step, entries with the

tag ‘(3)’ are selected while others are abandoned. At the second step,

we classify these disease entries into distinct diseases by merging dis-

ease subtypes based on their given disorder names. For instance, 14

entries of ‘46XX sex reversal’ are merged into disease ‘46XX sex re-

versal’, and the 9 complementary terms of ‘Renal cell carcinoma’

are merged into ‘Renal cell carcinoma’. During the classification,

string match is first used to classify adjacent entries, and then the

classified results are manually verified. At the third step, 475 dis-

eases are removed because each of them is associated with only one

gene which is not associated with any other diseases. As a result, we

obtain the final dataset consisting of 4432 associations between

1154 diseases and 2909 genes. All these disease–gene associations

are included in Supplementary Table S2.

The PPI network is obtained from the InWeb_InBioMap database

(version 2016_09_12) (Li et al., 2016a), which consists of more than

600, 000 interactions collected from eight databases. The proteins in

the network are mapped to their corresponding genes to form a gene–

gene interaction network. In total, there are 17429 genes in the net-

work. GO data are downloaded from the GO database (Ashburner

et al., 2000; Consortium, 2017). For genes that have no ontology infor-

mation, the values of their features in the GO-based model are all 0.

3 Results

3.1 Overall performance
Figure 3 shows the average AUC obtained with the hidden represen-

tatives learned from different layers of the model. The raw feature

vectors and the activation probabilities learned in each hidden layer

are used to predict disease–gene associations in the testing set. The

blue bars and purple bars show the AUC scores obtained from the

PPI-based DBN and GO-based DBN, respectively. AUC scores

obtained from the joint DBN are shown by the red bars. Clearly, the

accuracy of the prediction improves when the model is continuously

trained, which shows that the multimodal DBN successfully learns

valuable information in different stages of the training and improves

the prediction of disease–gene associations.

3.2 Comparison with other algorithms
Figure 4 shows the ROC curves of dgMDL (red), Know-GENE

(blue) and PCFM (orange) obtained with 5-fold cross-validation, re-

spectively. dgMDL achieves an AUC of 0.969 which is the best

among three competing algorithms. The AUC of Know-GENE is
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0.941, which is slightly worse than that of dgMDL. PCFM ranks the

3rd with an AUC of 0.791.

3.3 Prediction of new disease–gene associations
To further evaluate dgMDL, we rank the unknown disease–gene pairs

according to their probabilities of being associated calculated by the

model. Since known disease genes are more likely to be associated with

other diseases, we rank the unknown pairs of diseases and existing dis-

ease genes in this study. Meanwhile, we also rank the unknown pairs by

Know-GENE and PCFM for comparison. Table 1 lists the top-10 ranked

pairs of dgMDL, Know-GENE and PCFM, respectively. For dgMDL, 8

out of the 10 pairs have been studied in existing literature. While for

Know-GENE and PCFM, only 3 of the 10 pairs have been studied.

In addition to the top-10 prediction, we test the ability of

dgMDL in predicting new associated genes for a specific disease.

Table 2 lists the top 10 unknown genes associated with lung cancer.

9 out of 10 pairs have been studied in existing literature. All these

results demonstrate that dgMDL is valuable in predicting new dis-

ease–gene associations.

4 Conclusion

Integrating multiple types of data with machine learning model is a

challenging task, especially for predicting disease genes where the

number of known associations is limited. In this study, we have pro-

posed a method to predict disease–gene associations with the cross-

modality features obtained by multimodal DBN. The deep learning

model learns joint representations from raw features extracted from

PPI-based similarity networks and GO-based similarity networks.

Results show that the proposed method is overall more accurate

than the competing algorithms. Further analysis of the top-10 dis-

ease–gene pairs and top-10 lung cancer-related genes also reveal the

potential of dgMDL in predicting new disease genes. The current

Fig. 3. AUC of dgMDL in different layers. Among the bars correspond to the

sub-DBNs (v, h1, h2 and h3), the left ones show the AUC scores of PPI-based

sub-DBN and the right ones show the AUC scores of GO-based sub-DBN

Fig. 4. ROC curves of the three algorithms

Table 1. Top-10 associations predicted by dgMDL, Known-GENE

and PCFM

Disease Gene Supporting evidence

dgMDL

Deafness PIK3CD Zou et al. (2016)

Deafness PIK3CA

Deafness PIK3R1 Avila et al. (2016)

Diabetes AR Yu et al. (2014)

Deafness PTPN11 Bademci et al. (2016)

Diabetes SMAD4 Kim et al. (2017)

Cataract AR

Diabetes GATA3 Muroya et al. (2010)

Mental retardation SMAD4 Caputo et al. (2012)

Deafness STAT3 Wilson et al. (2014)

Know-GENE

Acne inversa familial NLRP12

Basal cell nevus syndrome HGF

Bladder cancer somatic PIK3CA Kompier et al. (2010)

Bladder cancer somatic NRAS

Cardiofaciocutaneous

syndrome

EGFR

Complement factor I

deficiency

C3 Alba-Domı́nguez et al. (2012)

LADD syndrome PIK3CA

Meckel syndrome B9D1 Hopp et al. (2011)

Nevus epidermal somatic ERBB2

Nevus epidermal somatic RET

PCFM

Mental retardation CLCN7

Mental retardation PDE3A

Mental retardation RBM12

Mental retardation BPTF Stankiewicz et al. (2017)

Mental retardation TAP1

Mental retardation LAMTOR2 Sonmez et al. (2017)

Mental retardation DYSF

Mental retardation TPRKB

Mental retardation HERC1 Nguyen et al. (2016)

Mental retardation RORC

Table 2. Top-10 susceptible lung cancer-associated genes

Gene Supporting evidence

PTPN11 Prahallad et al. (2015)

PIK3R1 Cheung and Mills (2016)

HRAS Kiessling et al. (2015)

GATA3 Miettinen et al. (2014)

PIK3CD

JAK2 Xu et al. (2017)

STAT3 Grabner et al. (2015)

C5 Pio et al. (2014)

SIK1 Yao et al. (2016)

PPM1D Zajkowicz et al. (2015)
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model integrates two types of data. It is possible that a gene is not

included in any of these data, and its associations cannot be correct-

ly predicted. In the future, more types of data should be integrated

by the multimodal DBN, such as disease-disease associations, pro-

tein domain and sequence information, to solve this issue and im-

prove the prediction accuracy.
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