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Abstract

Motivation: MEDLINE is the primary bibliographic database maintained by National Library of

Medicine (NLM). MEDLINE citations are indexed with Medical Subject Headings (MeSH), which is a

controlled vocabulary curated by the NLM experts. This greatly facilitates the applications of bio-

medical research and knowledge discovery. Currently, MeSH indexing is manually performed by

human experts. To reduce the time and monetary cost associated with manual annotation, many

automatic MeSH indexing systems have been proposed to assist manual annotation, including

DeepMeSH and NLM’s official model Medical Text Indexer (MTI). However, the existing models

usually rely on the intermediate results of other models and suffer from efficiency issues. We pro-

pose an end-to-end framework, MeSHProbeNet (formerly named as xgx), which utilizes deep learn-

ing and self-attentive MeSH probes to index MeSH terms. Each MeSH probe enables the model to

extract one specific aspect of biomedical knowledge from an input article, thus comprehensive bio-

medical information can be extracted with different MeSH probes and interpretability can be

achieved at word level. MeSH terms are finally recommended with a unified classifier, making

MeSHProbeNet both time efficient and space efficient.

Results: MeSHProbeNet won the first place in the latest batch of Task A in the 2018 BioASQ chal-

lenge. The result on the last test set of the challenge is reported in this paper. Compared with other

state-of-the-art models, such as MTI and DeepMeSH, MeSHProbeNet achieves the highest scores

in all the F-measures, including Example Based F-Measure, Macro F-Measure, Micro F-Measure,

Hierarchical F-Measure and Lowest Common Ancestor F-measure. We also intuitively show how

MeSHProbeNet is able to extract comprehensive biomedical knowledge from an input article.

Contact: gx5bt@virginia.edu

1 Introduction

MEDLINE (https://www.nlm.nih.gov/bsd/medline.html), the primary

component of PubMed (https://www.ncbi.nlm.nih.gov/pubmed/), is a

bibliographic database maintained by U.S. National Library of

Medicine (NLM). As the online counterpart to MEDLARS (MEDical

Literature Analysis and Retrieval System), MEDLINE currently covers

more than 5200 worldwide journals, and contains more than 24 mil-

lion references to journal articles in life sciences with a concentration

on biomedicine. A distinctive feature of MEDLINE citations is that

they are indexed with NLM Medical Subject Headings (MeSH)

(https://www.nlm.nih.gov/mesh/meshhome.html). The MeSH thesaurus

is a controlled vocabulary curated by the NLM experts and used for

indexing, cataloging and searching for biomedical articles and informa-

tion (Coordinators, 2016; Nelson et al., 2004). Thus accurate MeSH

indexing greatly facilitates biomedical research and knowledge discov-

ery (Gopalakrishnan et al., 2018; Jha et al., 2017; Xun et al., 2017c).
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Currently, MeSH indexing for MEDLINE is mainly performed

by the human experts in NLM. They have to go through the full text

of each biomedical article to assign suitable MeSH terms. This

ensures high accuracy of MeSH indexing but inevitably renders it

very expensive. It is estimated that the average cost of annotating

one biomedical article is around $9.4 (Mork et al., 2013). More

than 813 500 citations were added to MEDLINE in the year of

2017, and this number is rapidly increasing by the year. Apart from

the huge monetary cost, manual MeSH indexing could also cause a

possible delay before a newly published biomedical article gets

annotated. This presents a challenge to the NLM experts to annotate

biomedical articles efficiently and promptly.

Therefore, a system that can automatically annotate biomedical

articles with relevant MeSH terms or assist human experts could be

of great help. To this end, NLM has developed Medical Text

Indexer (MTI) (Aronson et al., 2004; Mork et al., 2013, 2014). MTI

takes the title and abstract of an article as the input and outputs rele-

vant MeSH terms. MTI mainly consists of two modules: MetaMap

Indexing (MMI) and PubMed-Related Citations (PRC). MetaMap

(Aronson and Lang, 2010) is a software tool to extract biomedical

concepts from the text. MMI recommends MeSH terms based on

the biomedical concepts discovered by MetaMap. PRC recommends

MeSH terms by looking at the MeSH annotations of similar cita-

tions in MEDLINE found by the PubMed-Related Articles (PRA)

algorithm (Lin and Wilbur, 2007). The two sets of MeSH terms are

combined to generate the final list of MeSH recommendations.

In order to continue to advance the development of MeSH index-

ing systems, the BioASQ challenge (http://bioasq.org/) on biomed-

ical semantic indexing and question answering is held every year

since 2013 (Tsatsaronis et al., 2015). One of the two BioASQ tasks

is to annotate new MEDLINE documents with relevant MeSH terms

before MEDLINE curators annotate them manually. As new manual

annotations become available, they are used to evaluate the per-

formance of participating systems. Many new MeSH indexing sys-

tems have been proposed since then, e.g. MetaLabeler (Tang et al.,

2009), MeSHLabeler (Liu et al., 2015) and DeepMeSH (Peng et al.,

2016). MetaLabeler trains an independent binary classifier for each

MeSH term; MeSHLabeler proposes to integrate MetaLabeler with

multiple evidence such as similar publications and term frequencies;

and DeepMeSH is an improved version of MeSHLabeler by incorpo-

rating deep semantics in the word embedding space (Mikolov et al.,

2013; Yuan et al., 2017, 2018). They also have another classifier to

determine the number of MeSH terms to recommend.

Formally speaking, MeSH indexing is a multi-label classification

task, where each MeSH term can be regarded as a class label and

each article can be labeled with multiple MeSH terms. Compared

with regular multi-label classification problems, the large size of

MeSH vocabulary and the imbalanced nature of different MeSH

terms pose more challenges to the MeSH indexing problem.

Currently there are more than 28 000 distinct MeSH terms and new

MeSH terms are added to the vocabulary every year. The most fre-

quent MeSH term ‘humans’ appears around 8 000 000 times in

MEDLINE citations, while there are hundreds of infrequent terms

that appear less than 10 times. These challenges have been taken

into consideration by the previous researchers when designing their

MeSH indexing systems. However, there are some other challenges

and limitations that previous systems seem to have overlooked.

First, the biomedical articles are sequences in nature, but most previ-

ous systems are based on models that cannot be easily used for

sequential modeling in an end-to-end fashion, such as K-Nearest-

Neighbors (KNN) and Support Vector Machine (SVM). Second,

most previous systems train independent classifiers for each MeSH

term, resulting in extremely long training time, high disk usage and

inability to collaboratively train the classifier and exploit the correl-

ation between different MeSH terms at the same time. Third, every

time a new biomedical article is added, the previous MeSH indexing

systems need to find similar articles from the MEDLINE database.

In other words, millions of MEDLINE articles have to be stored

with the system and a thorough search has to be done for each

indexing. This further exacerbates the time and space consumption

for the existing systems.

Deep learning is a family of machine learning methods that em-

ploy multiple processing layers to learn representations of data with

multiple levels of abstraction (LeCun et al., 2015). Attention mechan-

ism (Bahdanau et al., 2014; Vaswani et al., 2017) including self-

attention (Lin et al., 2017) enables deep learning models to selectively

pay attention to different parts of the input and provides interpretabil-

ity. Deep learning and attention mechanism have improved the state-

of-the-art in many research fields such as machine translation

(Bahdanau et al., 2014) and text classification (Lin et al., 2017).

Inspired by the aforementioned challenges and the rapid develop-

ment of deep learning techniques, we propose an end-to-end deep

framework for this multi-label classification task. We propose to train

a unified classifier instead of a large number of independent classi-

fiers, thus the efficiency is improved and the correlation between dif-

ferent MeSH terms can be learned simultaneously. More specifically,

the new framework is a self-attentive deep neural network classifier.

The proposed model contains three major components: a bidirection-

al Recurrent Neural Network (RNN), a number of self-attentive

MeSH probes and a multi-view neural classifier. The proposed model

is able to extract different aspects of biomedical knowledge from an

input article. RNNs are naturally suitable for sequential text data,

and by mapping the input text into the embedding space, RNNs can

benefit from word embeddings that carry semantic regularities

(Bengio et al., 2006; Mikolov et al., 2013; Xun et al., 2017a, b).

By feeding RNN hidden states to self-attentive MeSH probes, each

article can be converted into a fixed-dimension feature matrix. The

multi-view neural classifier is a unified multi-label classifier that con-

siders the extracted feature from the input text, the journal informa-

tion as well as the correlation between different MeSH terms. The

new framework is named MeSHProbeNet (in the 2018 BioASQ chal-

lenge, we used the name xgx for our system). To sum up,

MeSHProbeNet has the following advantages:

• MeSHProbeNet is an end-to-end framework that does not rely

on any other existing MeSH indexing systems or software tools.
• MeSHProbeNet is a unified multi-label classifier, thus very effi-

cient in terms of training time consumption and disk usage for

this large-scale MeSH indexing task.
• The bidirectional RNN of MeSHProbeNet is able to make use of

the word embedding semantics and capture the context-

dependent information via sequence modeling.
• The MeSH probes on top of the RNN allow us to extract differ-

ent aspects of biomedical knowledge from the input article and

represent it as a fixed-dimension feature matrix.
• The multi-view classifier considers both the extracted features

and the journal information.
• MeSHProbeNet, as a unified multi-label classifier, simultaneous-

ly exploits the correlation between different MeSH terms as it is

being trained.

The efficacy of MeSHProbeNet was demonstrated in Task A of

the 2018 BioASQ challenge. We also provide an interpretability

visualization of the MeSH probes to show how the proposed model
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selectively pays attention to different parts of the input article and

how different aspects of biomedical knowledge are extracted by the

MeSH probes. We also perform an ablation study of MeSHProbe to

show the importance of MeSH probes.

2 Methodology

The overview of our proposed MeSHProbeNet model is shown in

Figure 1. MeSHProbeNet is a self-attentive deep neural network,

which is able to predict a set of MeSH terms for a biomedical article

based on its textual content and journal information. The textual

content of a biomedical article includes the title, abstract and body

(in the challenge dataset, only the title and abstract are available).

The journal information refers to the name of the journal it was

published in.

Briefly speaking, MeSHProbeNet consists of three main compo-

nents. The first component is a bidirectional RNN on the textual

contents of biomedical articles. The second component is a set of

self-attentive MeSH probes, which are responsible for extracting

useful information from the RNN hidden states and converting

articles of various lengths into fixed-dimension feature matrices.

The third component is a multi-view neural classifier which com-

bines the extracted textual information with the journal informa-

tion, and generates a set of relevant MeSH terms.

We will introduce our model according to how to convert the

textual contents into fixed-dimension matrices and how to recom-

mend MeSH terms based on the combined information.

2.1 Bidirectional RNN
The bidirectional RNN reads the textual contents of a biomedical art-

icle, i.e. the concatenation of the title and the abstract, and generates

a hidden state for each word in the textual contents, as shown in the

bottom left part of Figure 1. RNNs model texts in a sequential fash-

ion and are able to capture the dependency between adjacent words.

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,

1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) have

proven to be more effective in modeling long sequences than the van-

illa RNN (Chung et al., 2014). In MeSHProbeNet, we use a bidirec-

tional GRU, as GRUs are simpler and perform on par with LSTMs.

Suppose we have a sequential text which has T words as the input,

i.e. the concatenation of the title and the abstract in our case. The first

step is to represent the text as a sequence of T word embeddings:

X ¼ fx1; x2; . . . ;xt; . . . ; xTg;

where xt is a Dw dimensional real-valued vector, denoting the

embedding for the tth word in the input article. Thus a biomedical

article can be represented as a T-by-Dw matrix, which is the concat-

enation of all the word embeddings in it. Then we feed article

embedding matrix X to the bidirectional GRU:

ht

!
¼ GRU

!
ðxt; ht�1

!
Þ;

ht

 
¼ GRU

 
ðxt;htþ1

 
Þ;

where ht

!
and ht

 
are two U dimensional real-valued vectors, stand-

ing for the hidden states for the tth word in normal direction and re-

verse direction, respectively. By concatenating ht

!
and ht

 
, we derive

a 2 U dimensional hidden state ht ¼ ½ht

!
; ht

 
� which includes both the

normal direction sequential information and the reverse direction se-

quential information at time stamp t. Hence, the hidden states of the

input article can be represented as a T-by-2U matrix:

H ¼ ½h1; h2; . . . ; ht; . . . ; hT �:

2.2 Self-attentive MeSH probes
One simple way to obtain the summary of the input article is to use the

last hidden states of the bidirectional GRU: ½ht

!
; h1

 
�. Although GRUs

have proven to be more effective at modeling long sequences than the

vanilla RNNs, their performances on really long sequences are still lim-

ited, such as the entire title and abstract text in our case. Hence, we pro-

pose to use a self-attentive MeSH probe mechanism to extract

comprehensive aspects of biomedical information from the input article.

Each MeSH probe carries one aspect of biomedical knowledge, and only

Fig. 1. The framework of MeSHProbeNet
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pays attention to the RNN hidden states that contain related informa-

tion. For instance, a MeSH probe that carries disease related knowledge

is able to selectively extract the RNN hidden states that are related to

disease. Specifically, one MeSH probe generates a weight vector for the

RNN hidden states and multiply the RNN hidden states with the weight

vector. Therefore, the resulting weighted RNN hidden state can be

regarded as a summation of the input biomedical article with respect to

the biomedical knowledge carried by the MeSH probe. With the help of

the MeSH probe, biomedical articles of different lengths can be repre-

sented as a fixed-length vector containing related information. In fact,

we can have multiple MeSH probes to cover multiple aspects of biomed-

ical knowledge. Hence, given a certain number of MeSH probes, we can

obtain a fixed-dimension output matrix that carries corresponding bio-

medical knowledge extracted from the input article.

More specifically, a MeSH probe is an inherent vector of

MeSHProbeNet, which is associated with one specific aspect of bio-

medical knowledge. As with the GRU hidden state, the dimension of

a MeSH probe is also 2 U. The goal of a MeSH probe is to extract

related biomedical information from the input article and output a

fixed-length vector. We achieve that by calculating a weighted com-

bination of the T GRU hidden states. In particular, given MeSH

probe pn, we first take all the GRU hidden states H as the input and

then compute a normalized weight vector an:

an ¼ softmaxðpnHTÞ:

Hence, an is a 1-by-T vector where element ant indicates the

weight for the tth GRU hidden state and all the weights sum up to 1:

ant ¼
expðpn � htÞ

PT

t0¼1

exp ðpn � ht0 Þ
:

By taking the inner product between MeSH probe pn and each

GRU hidden state, MeSH probe pn assigns higher weights and pays

more attention to the hidden states that carry related biomedical

knowledge. Then we can use the weighted summation of the GRU

hidden states according to the weights in an to represent the input

article, denoted as context vector cn,:

cn ¼ anH ¼
XT

t¼1

ant � ht:

Context vector cn is a 2 U dimensional vector, which pays atten-

tion only to the parts of the input article related to MeSH probe pn.

However, for a research article, one MeSH probe is normally insuf-

ficient as there are multiple aspects in it. For example, a research art-

icle about Alzheimer’s disease is probably also related to aging and

treatments. Therefore, to get a more comprehensive representation

of the input article, we need multiple MeSH probes to pay attention

to different aspects of the article, for instance, one probe for disease,

one probe for treatments, another probe for anatomy, and so on. As

illustrated by the top left part of Figure 1, if we want to examine N

different aspects of the input article, N MeSH probes are required:

P ¼ ½p1; p2; . . . ; pN �;

where P is a N-by-2U matrix composed of N different MeSH probes.

Accordingly, we can obtain a N-by-T weight matrix A, where each

row an denotes the weight vector with respect to each MeSH probe pn:

A ¼ softmaxðPHTÞ;

where the softmax function is performed along the second dimen-

sion of the input. Hence, with the help of multiple MeSH probes, we

are able to extract different aspects of biomedical knowledge from

the input article, and represent it with a N-by-2U context matrix C:

C ¼ AH:

2.3 Multi-view neural classifier
With the help of the bidirectional RNN and the MeSH probes, now

we are able to convert a biomedical article of arbitrary length to a

fixed-dimension context matrix, where each row represents one par-

ticular aspect of the input article. In fact, for each input article, we

also have its journal information in addition to the textual content.

This journal information is quite useful, as biomedical journals typ-

ically have a definite research topic and focus on a specific research

domain. Therefore, it is natural to expect that research papers pub-

lished in the same journal tend to be annotated with MeSH terms

related to the journal’s research focus. To take the journal informa-

tion into consideration, our multi-view neural classifier has a journal

embedding module, where each journal name can be converted to a

unique vector of length Dj. Thus, by reshaping the extracted context

matrix C to a vector and concatenating it with the journal embed-

ding, we are able to obtain a context vector of length N � 2U þDj

that carries all the available information of the input article: the title,

the abstract and the journal information. We denote this compre-

hensive context vector by E.

Our task is to annotate a biomedical article with suitable MeSH

terms. Hence, having extracted comprehensive context vector E

from the input article, what we need to do next is to learn a function

f that maps context vector E to V conditional probability distribu-

tions, where V is the size of the MeSH vocabulary. The output of f is

a vector whose ith element estimates the probability that the ith

MeSH term should be assigned to the current article:

Pðmi ¼ 1jEÞ ¼ f ði;EÞ;

where mi denotes the ith MeSH term in the MeSH vocabulary.

Function f could be implemented by a feed forward neural network.

We employ a three layer neural network, whose first layer is the in-

put context vector E, second layer is the hidden layer with ReLU ac-

tivation and third layer is the output layer. More precisely, the

multi-layer neural network calculates the following function, with a

sigmoid output layer to guarantee each output neuron being a prob-

ability in the range of [0, 1]:

f ðEÞ ¼ rðW2ReLUðW1Eþ b1Þ þ b2Þ; (1)

where r(�) is the element-wise sigmoid function, W1 and W2 are the

weight matrices for each layer, and b1; b2 are the biases. During

training, each biomedical article comes with several manually anno-

tated MeSH terms. So it can be regarded as a multi-label classifica-

tion task, where the ground truth label is a V-length binary vector

whose ith element is set to 1 if the ith MeSH term is assigned to the

current article and set to 0 otherwise. We represent this ground truth

vector by g. Therefore, given a biomedical article k, the objective is

to minimize the following binary cross entropy loss:

Lk ¼ �
XV

i¼1

ðg½i� � logðf ði;EÞÞ þ ð1� g½i�Þ � logð1� f ði;EÞÞÞ:

Let K be the total number of articles in the training dataset, then

the overall training objective is:

L ¼
XK

k¼1

Lk: (2)
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Note that unlike most previous works that train a binary classifier

for each MeSH term separately, we train a unified multi-label classi-

fier that considers all the MeSH terms simultaneously. The advan-

tages of training a unified multi-label classifier are manifold. First, the

efficiency for both training and predicting can be drastically improved

by learning a unified classifier as there are more than 28 000 distinct

MeSH terms. Second, by learning a unified classifier, the semantics of

the word embeddings and journal embeddings can be shared by all

MeSH terms. Third, the correlation between different MeSH terms is

automatically exploited and carried by neural network weights W1

and W2. If one MeSH term frequently co-occurs with other MeSH

terms, for example, ‘Alzheimer disease’ is often accompanied by

‘aged, 80 and over’, this co-occurrence will influence the correspond-

ing neurons in W1 and W2 simultaneously, and thus the correlation

and dependency relationship can be captured.

Infrequent MeSH terms also benefit from this unified architecture.

Hundreds of infrequent terms appear in less than 10 articles. Therefore,

if an independent classifier is trained for each infrequent term, the classi-

fier inevitably suffers from the lack of training data and would encoun-

ter tons of out-of-vocabulary words during prediction. By sharing

parameters across all MeSH terms, such as word embeddings and

weight matrices, the unified classifier is able to tackle the problem of

lacking training data and the out-of-vocabulary problem for infrequent

MeSH terms. In addition, infrequent terms can further take advantages

of the correlation information in the unified classifier, especially if an in-

frequent term always co-occurs with some specific frequent terms.

The free parameters of the whole model are the word embed-

dings, the GRU weight matrix, the GRU bias, the MeSH probes, the

journal embeddings, the fully connected neural network weight

matrices and biases. Let h denote the overall free parameter set.

Then training can be achieved by looking for h that minimizes the

training corpus binary cross entropy loss in Eq. 2 via stochastic gra-

dient descent. Stochastic gradient descent iteratively updates the free

parameters after feeding the kth article of the training corpus:

h h� g
@Lk

@h
;

where g is the learning rate.

In the prediction phase, there are two approaches to determine

the final MeSH terms based on the output of function f in Eq. 1.

One approach is to find the optimal thresholds for each MeSH term

on a held-out validation set. The other approach is to learn another

neural network to predict the number of related MeSH terms given

a biomedical article. In practice, we adopt the first approach in the

prediction phase, as it is more efficient and intuitive.

3 Experiments

We carry out experiments on the large-scale MeSH indexing task to

demonstrate the efficacy of our MeSHProbeNet model. To illustrate

how MeSHProbeNet extracts different aspects of biomedical knowledge

from the input articles, we visualize MeSH probes and their attentions

on different parts of the input sequence. To investigate the quality of the

MeSH terms recommended by MeSHProbeNet, we participated in the

2018 BioASQ challenge and compare its performance with several state-

of-the-art MeSH indexing systems, including MTI and DeepMeSH. Our

system won the first place in the third batch of the challenge.

3.1 Dataset and experimental settings
The training dataset is downloaded from the challenge webpage

(http://participants-area.bioasq.org/general_information/Task6a/).

It contains 13 486 072 biomedical articles which are annotated with

relevant MeSH terms by the PubMed human experts. On average,

12.69 MeSH terms are assigned to each article. In total, 28 340 dis-

tinct MeSH terms are covered by the training dataset. For each art-

icle in the training dataset, we have the unique identifier of the

article (PMID), the title of the article, the abstract of the article, the

year the article was published, the journal the article was published

in and a set of MeSH terms assigned to the article.

In the preprocessing step, all non-alphanumeric characters, stop

words and words with a total frequency lower than 10 are removed,

and all words are converted to lowercase. The dimensionalities of

word embeddings and journal embeddings are set to 250 and 100,

respectively. The number of GRU layers is set to 2. The size of the

GRU hidden unit is set to 200 per direction, thus 400 for a bidirec-

tional unit. The dimensionality of MeSH probes is also set to 400 ac-

cordingly. The number of different MeSH probes that the model

contains is 25. The multi-view neural classifier has a hidden layer of

10 000 units. We deploy 0.5 dropout, 0.00001 L2 regularization

and snapshot ensemble (Huang et al., 2017) to prevent over-fitting.

The learning rate for stochastic gradient descent is set to 0.0005 and

we also clip the gradients whose values are larger than 5.

3.2 MeSH probe visualization
Interpretability is one of the advantages of MeSHProbeNet. For the

users of automatic MeSH indexing models, a good model should

not only be accurate, but also be able to tell them which parts of the

input support the recommended MeSH terms. For instance, the

human indexers can achieve higher annotation efficiency with the

help of interpretable MeSH indexing models, as this interpretability

of automatic MeSH indexing models can provide them with evi-

dence for adding or deleting a recommended MeSH term.

The interpretability of MeSHProbeNet can be achieved through

examining the attention weight matrix A. Each row an in attention

weight matrix A represents the weight vector with respect to MeSH

probe pn. Each element in weight vector an corresponds to how

much attention MeSH probe pn pays to each GRU hidden state and

each word. Thus we can visualize the attention by drawing a heat

map of the weight vector.

It is worth mentioning that another advantage of

MeSHProbeNet is its unsupervised nature: the MeSH probes are

learned in a completely unsupervised fashion. The training objective

function drives the MeSH probes to extract comprehensive aspects

of biomedical knowledge with each probe focusing on one specific

aspect. In other words, we do not need any prior knowledge, exter-

nal knowledge or human guidance for the MeSH probes. The probes

are automatically learned and are able to capture biomedical seman-

tics during training and provide interpretability.

We select two articles from the last test set of the 2018 BioASQ

challenge, whose PMIDs are ‘29439706’ and ‘27130306’, to visual-

ize MeSH probes and show the interpretability in Figure 2. For art-

icle 29439706, the ground truth MeSH terms assigned by human

curators are ‘biomedical research’, ‘disease eradication’, ‘HIV infec-

tions’, ‘humans’, ‘public health’ and ‘terminology as topic’; and the

MeSH terms assigned by MeSHProbeNet are ‘humans’, ‘HIV infec-

tions’, ‘research’, ‘disease eradication’, ‘public health’, ‘AIDS vac-

cines’, ‘HIV-1’ and ‘anti-HIV agents’. For article 27130306, the

ground truth MeSH terms assigned by human curators are

‘Alzheimer disease’, ‘Bayes theorem’, ‘Europe’, ‘humans’, ‘incidence’

and ‘prevalence’; and the MeSH terms assigned by MeSHProbeNet

are ‘prevalence’, ‘humans’, ‘male’, ‘female’, ‘Alzheimer disease’,
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‘aged’, ‘aged, 80 and over’, ‘incidence’, ‘Bayes theorem’ and

‘Europe’.

We first demonstrate how MeSH probe No.2 extracts disease

related information from different articles in Figure 2a and b. The

values below each word denote the normalized weights. We can see

that MeSH probe No.2 pays more attention to words like ‘HIV’,

‘virus’ and ‘disease’. Some words such as ‘incidence’ and ‘back-

ground’ also have high attention weights. This is because of the se-

quential nature of RNNs and the system recognizes those words as

related words in the context of ‘disease’. Then in Figure 2b and c,

we demonstrate how two different MeSH probes extract two differ-

ent aspects of biomedical knowledge from the same article. As we

just mentioned, in Figure 2b MeSH probe No.2 extracts disease

related information. While in Figure 2c, MeSH probe No.11

extracts Alzheimer’s related information. One can observe that in

this article, MeSH probe No.2 is sensitive to words like ‘disease’ and

‘epidemiology’, while MeSH probe No.11 is sensitive to words like

‘Alzheimer’s’ and ‘elderly’.

3.3 Evaluation metrics
In order to evaluate MeSH indexing performance, two sets of meas-

ures are used, one flat and one hierarchical.

The flat measures consist of accuracy and three sets of F-measure

based metrics: Example Based F-Measure (EBF), Macro F-Measure

(MaF) and Micro F-Measure (MiF). Accuracy represents the frac-

tion of correct predictions. EBF is computed in a per data point

manner. For each predicted label, only its score is computed, and

then these scores are aggregated over all the data points. EBF for

each data point can be computed as the harmonic mean of standard

precision (EBP) and recall (EBR) for each data point. MaF, Macro

Precision (MaP) and Macro Recall (MaR) give equal weight to each

MeSH class. Frequent MeSH terms and infrequent MeSH terms are

equally important. Thus MaP and MaR are calculated as the average

precision and recall over all the MeSH classes. MiF, Micro Precision

(MiP) and Micro Recall (MiR) aggregate the contributions of all

MeSH classes to compute the average metric. Frequent MeSH terms

therefore have higher weights than infrequent MeSH terms. We can

see that different F-Measures have different focus, for example, MiF

focuses more on the frequent MeSH terms, while MaF treats all

MeSH terms equally regardless of their frequencies. Since the

BioASQ challenge evaluates the systems based on MiF, we will also

take MiF as our major measure.

The MeSH vocabulary is organized in a hierarchical structure.

Thus hierarchical measures are also used to evaluate the perform-

ance, including Hierarchical Precision (HiP), Hierarchical Recall

(HiR), Hierarchical F-Measure (HiF), Lowest Common

Ancestor Precision (LCA-P), Lowest Common Ancestor Recall

(LCA-R) and Lowest Common Ancestor F-measure (LCA-F)

(Kosmopoulos et al., 2015).

Fig. 2. MeSH probe interpretability visualization. (a) MeSH probe No.2 extracts disease related information from article 29439706. (b) MeSH probe No.2 extracts

disease related information from article 27130306. (c) MeSH probe No.11 extracts Alzheimer’s related information from article 27130306
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3.4 Experimental results
We show the comparison result of the proposed MeSHProbeNet

model with the default MTI, MTI First Line indexing (MTIFL)

(Aronson et al., 2004), DeepMeSH (Peng et al., 2016),

AttentionMeSH (Jin et al., 2018), iria (Ribadas et al., 2014), UMass

Amherst T2T, MeSHmallow and Access Inn MAIstro on the last

test set of the 2018 BioASQ challenge. There are 15 test sets in total

(one test set per week during the challenge) and the complete results

are available on the challenge webpage (http://participants-area.bio

asq.org/results/6a/) (please note that we used the name xgx in the

challenge). The main difference between MTI and MTIFL is that

MTIFL has higher precision by limiting its recommendation to a

smaller number of MeSH terms, while MTI balances precision and

recall, and achieves better F-measure.

The comparison results based on the flat measures of each model

are reported in Table 1. The challenge allows each model to make at

most 5 attempts to try out different settings, such as different initial-

izations and parameters, as a significance test. Our model consist-

ently achieves the best performance. To conserve space, we only

show the best performance score of each model here. Interested

readers may refer to the complete result on the challenge website.

The best scores are highlighted in boldface in Table 1. Compared

with MTI, MTIFL has higher precision but lower recall, resulting in

low F-measures. DeepMeSH outperforms MTI in terms of MiF

score but its MaF score is not as good as MTI’s, which means

DeepMeSH pays more attention to the frequent MeSH terms such

as ‘humans’, ‘animals’, ‘male’ and ‘female’. We can observe that

MeSHProbeNet achieves the highest scores in all F-Measures and

accuracy. Since MeSHProbeNet is able to capture the correlation be-

tween different MeSH terms and MeSH indexing for infrequent

terms can benefit from this correlation information, MeSHProbeNet

gains both the best MiF and the best MaF scores.

The comparison results based on the hierarchical measures of

each model are reported in Table 2. As with the flat measure result,

we also only show the best performance score of each MeSH

indexing model. The best scores are highlighted in boldface. The

hierarchical measures are calculated based on the hierarchical struc-

ture of the MeSH vocabulary, thus the semantic distance between

MeSH terms is under consideration. As with their performances on

the flat measures, MTI achieves higher F-Measures than MTIFL and

DeepMeSH outperforms both of them. We can see that

MeSHProbeNet obtains the highest scores in all measures.

3.5 Ablation studies on MeSH probes
We have demonstrated strong empirical results of MeSHProbeNet.

Now we perform ablation experiments in order to better understand

the importance of the self-attentive MeSH probes. Since the 2018

BioASQ challenge is closed and the challenge test sets are currently

not available, we split the dataset into training and test sets. The test

set contains 7000 articles and is used to evaluate the ablation mod-

els. All the models are trained on this new training set.

To show the effect of MeSH probes, we include in the compari-

son bi-GRU, which directly feeds the GRU output to the multi-view

neural classifier and uses no MeSH probes. To show the influence of

different numbers of MeSH probes, MeSHProbeNet models with 5,

15 and 25 MeSH probes are also included in the comparison, among

which the MeSHProbeNet-25 model has the same amount of MeSH

probes as the model we used in the challenge. All the other parame-

ters, such as the embedding dimension and the number of GRU

layers, are the same as the challenge model for each model.

The ablation results based on the flat measures and the hierarch-

ical measures are reported in Tables 3 and 4, respectively. The best

scores are highlighted in boldface. One can observe that the self-

attentive MeSH probe mechanism significantly improves the per-

formance. Adding more MeSH probes is also helpful, although the

improvement per added MeSH probe becomes less and less signifi-

cant as the number of MeSH probes gets higher. Adding more

probes will also increase the computation cost and disk usage of the

model.

3.6 Computational efficiency
The training of MeSHProbeNet on the entire MEDLINE database

can be finished within 24 hours with one NVIDIA TITAN Xp GPU.

Given a new test set of 10 000 articles, the prediction takes less than

1 minute. Compared with other state-of-the-art MeSH indexing

models, for example, DeepMeSH needs 1 week to train on 1 million

articles and AttentionMeSH needs 4 days to train on 3 million

articles with 2 GPUs, this improved training efficiency of

MeSHProbeNet allows us to exploit the entire database of more

than 13 million annotated articles. Moreover, since MeSHProbeNet

does not need to store any article information to perform KNN to

find similar articles in the database, nor does it need to train

Table 1. Comparison results based on the flat measures

Models MiP MiR MiF EBP EBR EBF MaP MaR MaF Acc

Access Inn MAIstro 0.2351 0.3423 0.2788 0.2488 0.3558 0.2775 0.3942 0.4641 0.3905 0.1669

MeSHmallow 0.3798 0.2707 0.3161 0.3798 0.2661 0.3042 0.1333 0.0049 0.0037 0.1915

UMass Amherst T2T 0.5239 0.4759 0.4988 0.5408 0.4789 0.4881 0.4179 0.2526 0.2481 0.3392

iria 0.4654 0.5792 0.5161 0.4609 0.5929 0.5058 0.4271 0.4658 0.4147 0.3525

MTIFL 0.6730 0.5977 0.6332 0.6833 0.6121 0.6264 0.6377 0.5622 0.5408 0.4759

MTI 0.6475 0.6473 0.6474 0.6540 0.6648 0.6418 0.6086 0.6084 0.5667 0.4911

AttentionMeSH 0.6833 0.6447 0.6635 0.6853 0.6488 0.6497 0.6178 0.4943 0.4827 0.4982

DeepMeSH 0.6761 0.6517 0.6637 0.6767 0.6659 0.6544 0.6352 0.5455 0.5281 0.5020

MeSHProbeNet 0.7172 0.6611 0.6880 0.7193 0.6736 0.6789 0.6782 0.5804 0.5671 0.5310

Table 2. Comparison results based on the hierarchical measures

Models LCA-P LCA-R LCA-F HiP HiR HiF

Access Inn MAIstro 0.2722 0.3615 0.2964 0.4696 0.5921 0.5043

MeSHmallow 0.4000 0.2369 0.2871 0.5633 0.3287 0.3967

UMass Amherst T2T 0.4818 0.4087 0.4276 0.7094 0.5961 0.6262

iria 0.4251 0.4902 0.4443 0.6174 0.7290 0.6536

MTIFL 0.5662 0.5014 0.5172 0.7964 0.7186 0.7373

MTI 0.5510 0.5415 0.5325 0.7703 0.7647 0.7514

AttentionMesh 0.5627 0.5235 0.5290 0.7902 0.7396 0.7472

DeepMeSH 0.5643 0.5364 0.5366 0.7899 0.7555 0.7560

MeSHProbeNet 0.5901 0.5561 0.5596 0.8123 0.7714 0.7760
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separate classifiers for more than 28 000 MeSH terms, the disk

usage of MeSHProbeNet is just about 1 GB.

4 Conclusion

We present an end-to-end MeSH indexing model MeSHProbeNet.

MeSHProbeNet participated in the 2018 BioASQ challenge and

achieved the best performance in the latest batch. MeSHProbeNet

is a self-attentive deep neural network classifier, which is able to

extract different aspects of biomedical knowledge from an input

article with different MeSH probes, and generate MeSH recom-

mendations based on the extracted features, journal information

and MeSH correlations. The experimental results demonstrate the

effectiveness of MeSHProbeNet on both frequent and infrequent

MeSH terms.
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