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Abstract

Summary: The performance of docking calculations can be improved by tuning parameters for the

system of interest, e.g. biasing the results towards the formation of relevant protein–ligand interac-

tions, such as known ligand pharmacophore or interaction sites derived from cosolvent molecular

dynamics. AutoDock Bias is a straightforward and easy to use script-based method that allows the

introduction of different types of user-defined biases for fine-tuning AutoDock4 docking

calculations.

Availability and implementation: AutoDock Bias is distributed with MGLTools (since version 1.5.7),

and freely available on the web at http://ccsb.scripps.edu/mgltools/ or http://autodockbias.word

press.com.

Contact: forli@scripps.edu or marti.marcelo@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The AutoDock suite is a widely used free open-source software to

perform protein–ligand docking and virtual screening (VS) (Forli

et al., 2016; Morris et al., 2009). Recent comparative reviews of

popular docking methods showed that success rates are highly

system-dependent and performance is similar when the testing set is

diverse. Overall results are good for pose prediction, with binding

free energy errors of 2–3 kcal/mol for small drug-like molecules in

absence of significant receptor conformational adjustment.(Sousa

et al., 2013) It is also known that better results can be obtained

when the method is adjusted for particular systems using previous

knowledge (Cleves and Jain, 2015; Hu and Lill, 2014).

A common way of tuning docking performance is to introduce a re-

striction or bias towards the formation of a given protein–ligand inter-

action which is known to be important or essential. For example, in

metalloproteins specific ligand groups often coordinate the metal atom.

In addition, if several protein–ligand complex structures are available

for the same target, a key ligand pharmacophore can be inferred and

used to improve docking accuracy (Hu and Lill, 2014). In this context,

biased docking has great potential and a wide range of applications.
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In the last decade, several strategies have been developed to identify

specific protein–ligand interaction sites using small molecular fragments

or different solvents. Recently, we showed that water and ethanol sites

derived from molecular dynamics (MD) simulations allow to identify

over 79% of known protein–ligand interactions, especially those that

represent the ligand-derived pharmacophore (Arcon et al., 2017), sug-

gesting that this knowledge could be used to improve docking.

Here, we present AutoDock Bias, a general method that

allows guiding AutoDock4 docking calculations towards the for-

mation of any user-defined protein–ligand interaction. As an

example, we show how biases from MD-derived solvent sites sig-

nificantly improve docking both in terms of pose prediction and

VS enrichment.

2 Materials and methods

AutoDock Bias is built on top of AutoDock4 and AutoDockTools.

It is based on a Python script that modifies the desired energy grid

maps and Docking Parameter File to include the bias and, if neces-

sary, the ligand-targeted atom(s) in the PDBQT file (see User Guide

in Supplementary Material for details). Biases are introduced as en-

ergy wells (i.e. rewards) for each desired ligand atom type in the cor-

responding energy maps. Several wells can be introduced for a given

atom type, and different types of bias (hydrogen bond donors/

acceptors, aromatic, or user-defined) can be applied simultaneously.

The bias is introduced as an additional energy term defining an

inverted Gaussian well according to Equation (1).

Vbias ¼ Vori þ Vsetexpf�½ðx� xiÞ2 þ ðy� yiÞ2 þ ðz� ziÞ2�=ri
2g;
(1)

where Vbias corresponds to the modified potential at a given grid

point, Vori is the original AutoDock4 energy at the same grid point,

Vset is the biased energy well depth (i.e. negative value), (x, y, z) are

the grid point coordinates, (xi, yi, zi) are the coordinates of the

bias site centre, and ri is the bias site radius. Values for Vset, ri and

(xi, yi, zi) are user-defined. The bias functional form and parameters

(Vset and ri) regarding ligand binding thermodynamics are discussed

in previous works(Arcon et al., 2017; Gauto et al., 2013) and in the

user guide (Supplementary Material). Modified maps built by

AutoDock Bias are then used in place of conventional AutoDock4

maps.

3 Results

The key to AutoDock Bias improved performance is the use of modi-

fied maps that enhance AutoDock4 potential driving ligands toward

the formation of selected interactions. Figure 1 shows significant im-

provement, both in terms of pose prediction (Fig. 1A) and VS enrich-

ment (Fig. 1B), after applying biases from solvent sites obtained in

water/ethanol MD simulations of AmpC b-lactamase. Two hydro-

phobic/aromatic and four hydrophilic solvent sites were identified

(Supplementary Fig. S1) and used to generate specific biases for ap-

propriate ligand atoms. Results for cross docking of 10 known bind-

ers with available crystal structures (Ki below 100 lM,

Supplementary Table S1) using standard AutoDock4 and AutoDock

Bias are shown in Figure 1A. The plot shows the difference in cluster

size (Dpopulation) versus difference in docking score (DDG) between

the correctly predicted pose (ligand heavy atom RMSD < 2Å against

the reference complex) and the best ranked of the remaining pre-

dicted poses. Comparatively, the biased method tends to increase

the energy difference and the statistical relevance (i.e. cluster size)

between the correct pose and false positive results (upper left quad-

rant of Fig. 1A). Figure 1B presents comparative ROC curves for a

VS application, showing a significantly higher early enrichment with

AutoDock Bias (blue solid line) compared with conventional

AutoDock4 (green dashed line). Overall, solvent site biased docking

improves conventional results for nine targets, with increases up to

0.35 in AUC and up to 7-fold in enrichment factors at 1%

(J.P.Arcon et al., 2019, manuscript in preparation.

Knowledge-based biased docking is widely used and many

docking programmes include options to encourage the formation

of specific molecular interactions (Corbeil et al., 2012; Friesner

et al., 2004; Jones et al., 1997; Ruiz-Carmona et al., 2014) even

metal coordination bonds or pose based restraints (tethered dock-

ing). In this context, AutoDock Bias complements AutoDock4

by providing a highly versatile, powerful and easy to use tool to

improve docking performance, which can be applied in a high-

throughput fashion for VS. It allows guided docking towards phar-

macophoric interactions (hydrogen bonds, hydrophobic/aromatic)

and precise localization of atoms (e.g. metal atoms or anchors for

covalent docking) or groups (e.g. substructure core for congeneric

ligands or fragment growth) in a defined 3D region relative to the

target structure.
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