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Gerard Martı́nez-Rosell1 and Gianni De Fabritiis1,3,*

1Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB),
2Acellera, Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain and
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Abstract

Motivation: Structure-based drug discovery methods exploit protein structural information to de-

sign small molecules binding to given protein pockets. This work proposes a purely data driven,

structure-based approach for imaging ligands as spatial fields in target protein pockets. We use an

end-to-end deep learning framework trained on experimental protein–ligand complexes with the

intention of mimicking a chemist’s intuition at manually placing atoms when designing a new com-

pound. We show that these models can generate spatial images of ligand chemical properties like

occupancy, aromaticity and donor–acceptor matching the protein pocket.

Results: The predicted fields considerably overlap with those of unseen ligands bound to the target

pocket. Maximization of the overlap between the predicted fields and a given ligand on the Astex

diverse set recovers the original ligand crystal poses in 70 out of 85 cases within a threshold of 2 Å

RMSD. We expect that these models can be used for guiding structure-based drug discovery

approaches.

Availability and implementation: LigVoxel is available as part of the PlayMolecule.org molecular

web application suite.

Contact: gianni.defabritiis@upf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many methods in structure-based drug discovery focus on exploiting

structural information of protein pockets in order to select and opti-

mize possible ligand binders. A three dimensional spatial featuriza-

tion of proteins and small molecules and a metric on such space is

usually utilized to characterize the pocket or ligand. Shape similar-

ity, for instance, is commonly used in several virtual screening pipe-

lines as is the case of the volumetric aligned molecular shapes

(VAMS) algorithm (Koes and Camacho, 2014) and the ROCS soft-

ware (Hawkins et al., 2007). Docking procedures such as

PharmDock (Hu and Lill, 2014), use this type of information to re-

fine poses. Another common application where three dimensional

features are used is de novo drug-design, in order to build a binding

site model with the intent of designing a novel ligand taking into ac-

count some constraints (Yuan et al., 2011). Grid generation is also

central in the elucidation of pharmacophores, such is the case of

FLAPpharm (Cross et al., 2012) and VolSite (Desaphy et al., 2012),

and their search (Ebalunode et al., 2008).

Whether optimal features can be automatically learned from the

data rather than imposed remains an open question. In the last few

years, deep learning based approaches (Goodfellow et al., 2016),

have demonstrated state of the art performance on tasks such as 2-D

image classification (Krizhevsky et al., 2012), natural language proc-

essing (Goldberg, 2015), speech recognition (Graves et al., 2013)

and more. The promise of deep learning in computational biology,

however, is still yet to be fully developed (Angermueller et al.,
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2016), but is increasingly common. Proteins, for instance, can be

seen from a computer vision point of view, as if they were three-

dimensional images after featurization. Variants of this approach

have already been applied in protein binding site prediction

(Jiménez et al., 2017), protein–ligand binding affinity prediction

(Jiménez et al., 2018), large-scale active-inactive classification of

drug-like compounds (Ragoza et al., 2017) and quality assessment

of protein folds (Derevyanko et al., 2018).

This work shows how end-to-end deep convolutional neural net-

work (DCNNs) models (LeCun et al., 1998) can generate ligand

fields given the structure of a protein binding site. Unlike previous

knowledge-based and hand-crafted rules approaches, the proposed

model is purely data-driven with the intention to mimic a chemist’s

intuition at manually placing atoms when designing a new com-

pound. Furthermore, one can adjust the properties of these gener-

ated fields by tuning several input parameters. We treat proteins and

ligand structures from a computer vision perspective, by voxelizing

them according to different physio-chemical properties, and show that

the learned and predicted representation can be useful in several related

applications by evaluating it against unseen co-crystal structures.

The proposed methods can be considered complementary to mo-

lecular interaction fields (MIF) methods such as GRID (Carosati

et al., 2004), where an interaction energy is calculated between a

target molecule and a probe, which may be an atom or a group.

However, there are key differences: MIFs create volumetric maps by

iteratively placing the probe at each point and calculating the inter-

action energy with the macromolecule. In contrast, the method pro-

posed here takes as input the whole area at once and produces all

outputs simultaneously. This is done in an end-to-end fashion.

Values representing protein shape are multiplied by model’s weights

generating latent feature maps. The operation is repeated sequential-

ly, until an output feature map is generated. While MIFs predict

interaction energies, the method described here gives probabilities of

seeing atoms with a property at each point.

2 Approach

Both the protein cavity and the ligand are represented spatially via

their voxelization into a discretized 1 Å cubic grid of side size 16 Å

as in Jiménez et al. (2017). The influence of each atom to each voxel

is determined by its atom type and their respective distance r:

nðrÞ ¼ 1� exp
�
� ðrvdw=rÞ12

�
; (1)

where rvdw is the corresponding van der Waals radius of a particular

atom. The pair correlation function in Eqn.1 assigns voxels in the

featurization box that are close to atoms values close to 1, while

voxels far away from the atoms will approach 0. Each of the voxels

is featurized with information according to the physio-chemical

nature of its neighbouring atoms depending on eight predefined

rules defined in Table 1. Atom types were determined based on

Autodock 4 (Morris et al., 2009) definitions. Voxelization algorithm

is available in Supplementary Material and all descriptor computa-

tions are available as part of the HTMD Python framework for mo-

lecular dynamics (Doerr et al., 2016). Voxelization rules for

defining these properties are equivalent for both protein and ligand.

A schema on how our method works can be seen in Figure 1:

Starting with a target protein pocket (A), and optionally setting up

ligand design parameters such as the number of aromatic carbons or

h-bond donors (B) we can then featurize the protein pocket using

the detailed channel descriptors (C). This featurized pocket is then

used as input for a trained 3d-convolutional neural network (D),

which produces the desired spatial ligand properties (E). The work

presented here focuses on generating four voxelized ligand proper-

ties: an approximation to the ligand shape (total excluded volume),

aromatic rings and hydrogen-bond donors and acceptors.

3 Materials, methods and evaluation procedure

3.1 Datasets
Our model was both trained and evaluated on the 2013 release of

the sc-PDB database (Desaphy et al., 2015), which provides 9190

high-quality protein–ligand co-crystals extracted from the PDB

(Berman et al., 2000). For further evaluation, we also use the Astex

diverse set, which includes 85 protein–ligand complexes considered

to be of pharmaceutical interest (Hartshorn et al., 2007) and has

been previously used in several studies for docking software bench-

marking (Davis and Baker, 2009; Ravindranath et al., 2015).

In order to provide a fair benchmarking of the method, a cross-

validation scheme based on protein sequence similarity was used.

The goal was to test how well the proposed method generalizes to

proteins that differ from the ones used in training. We extracted the

latest available sequence similarity clusters from the PDB (Berman

et al., 2000) website using a 90% similarity cutoff and assigned each

of the proteins available in the scPDB database to a particular clus-

ter only if all of its chains belong to the same one, while proteins

with chains belonging to different clusters are discarded. This pro-

cedure yielded a total of 8808 protein–ligand complexes belonging

to 3305 different sequence similarity clusters that were then ran-

domly grouped together into k¼10 splits with sizes ranging be-

tween 525 and 1230 complexes that we evaluate using k-fold cross-

validation. In practice this procedure implies that k models are

trained using all splits minus a single one, used for evaluation. All

PDB IDs used in each split are available as Supplementary Material.

In the case of the Astex diverse set, we make the sequence cluster dif-

ference between proteins in the scPDB database and the former for

training, yielding a training set of size 7147.

Table 1. Rules for atom physical chemistry properties

Property Rule

Hydrophobic Aliphatic or aromatic C

Aromatic Aromatic C

Hydrogen bond acceptor Acceptor 1 H-bond or S Spherical N Acceptor 2 H-bonds or S Spherical O Acceptor 2 H-bonds S

Hydrogen bond donor Donor 1 H-bond or Donor S Spherical H with either O or N partner

Positive ionizable Gasteiger positive charge

Negative ionizable Gasteiger negative charge

Metallic Mg, Zn, Mn, Ca or Fe

Occupancy (Excluded volume) All heavy atoms
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3.2 Neural network architecture and learning
In order to train the proposed architecture, we aim to minimize the

following two-part loss:

Lðy; byÞ ¼ 1

n

Xn

i¼1

� yi log ðbyiÞ þ ð1� yiÞ log ð1� byiÞ

þDKLðyjbyÞ
(2)

where

DKLðyjbyÞ ¼ k
n

Xn

i¼1

1

C

XC

c¼1

sðyicÞ log
sðyicÞ
sðbyicÞ

 !
; (3)

n corresponds to the total number of samples, c 2 C to a particular

and total number of channels, respectively, and s to a sorting oper-

ation. The first term in the expression corresponds to the binary

cross-entropy (De Boer et al., 2005) loss function commonly used in

classification tasks, and whose goal is to minimize incorrect label

predictions, while penalizing extremely confident wrong ones. The

second term is a discrete approximation to the Kullback–Leibler

(KL) divergence (Kullback and Leibler, 1951), which in turn aims to

preserve a good approximation between predicted and actual output

distributions. Finally, k is a user-set parameter that controls the bal-

ance of each term to the overall loss. Intuitively, if using only binary

cross-entropy, when the model is unsure where to put a property

point it would give a low probability across the whole volume. By

adding KL loss this low value distribution is incentivized to give

points with higher probabilities, proportional to number of atoms

specified in the input.

Two different types of model were trained in this work, named

conditional and unconditional. The rationale behind the distinction

is that in conditional models an additional four atom counts input

was used (hydrogen donor and acceptor, aromatic and total number

of atoms), while in the unconditional one we choose not to provide

this information. The former uses both terms of the loss, with the se-

cond (corresponding to the KL-divergence) forcing the model and its

additional input to place a fixed number of ligand fields in its pre-

dicted output. By adjusting or providing different additional chan-

nels to the same pocket channel inputs the conditional model can

therefore be fine-tuned. In contrast, the unconditional model only

uses the first part of the loss (corresponding to binary cross-

entropy). Our proposed model architecture is presented in Figure 2,

and code snippet is available in Supplementary Material. Model

consists of seven sequential and independent layers of convolution,

activated by a rectified linear unit (ReLU) non-linearity except the

last one, which instead uses a sigmoid function, outputting values

ranging between 0 and 1. The output of this last layer represents the

Fig. 1. Pipeline for generating ligand properties. We first voxelize the proteins (A), optionally providing several design parameters (B), according to eight different

properties (C) then pass this input to a trained DCNN model (D), which will then predict the corresponding ligand properties (E)
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predicted representation. All convolutions in the model use a filter

size of 3 units, as commonly used in image processing tasks, except

for the one in the fifth layer with uses an extensive 16 units one, so

as to capture long-distance relationships in the input. Zero-padding

is used in all feature maps and the number of latent feature maps in

each layer has been chosen so that the model could be trained on a

single GPU with 8GB of VRAM. It is common in the literature to

use the back-propagation algorithm and some form of stochastic

gradient descent to train deep neural networks. For this study, we

chose Adam (Kingma and Ba, 2014) with default parameters for

momentum scheduling (b1 ¼ 0:99; b2 ¼ 0:999Þ as model optimizer.

The neural network was then trained during 300 epochs using

randomized batch size of 128 samples, introducing molecule rota-

tions and a shifting of 0.5 Å from the ligand center during training

so as to prevent overfitting and set k¼10 after visual inspection of

the trained models. Model learning and predictions were done in the

Keras (Chollet, 2015) deep learning library (keras.io) and the

Theano (Theano Development Team, 2016) tensor backend.

4 Results

4.1 Ligand design
The predictive model is capable of generating useful property fields

that reasonably fill pocket space, while avoiding protein clashes.

One can further control the proposed conditional model by provid-

ing different input parameters, in practice affecting the properties of

the generated fields. Figure 3 shows how these changes modify the

behavior of the algorithm by generating bigger grids as input values

increase. Additional examples of varying property counts are

depicted in Supplementary Figure S3. Although the model itself

learns how to place ligand hydrogen-bond acceptors next to protein

hydrogen-bond donors and viceversa, one common shortcoming we

observed is that for properties where variability can be high, the

model is not efficient at generating distinguishable clouds, typically

predicting grids around the hydrogen-bond partner. This phenom-

enon can be partially explained by the fact that donors and accept-

ors are located close in space, but can be positioned in a wide

variety of angles.

4.2 Evaluation procedure
To evaluate the quality of the predicted property fields, we analyzed

the volumetric overlaps between crystal ligand features and pre-

dicted features. To that end, three different and complimentary tests

were carried out, where we either measure or maximize the overlap

between the predicted fields and the actual ligand representations.

The overlap scores were used to evaluate: (i) sensibility of predic-

tions, comparing it to random ones and values generated by MIFs,

(ii) ability to discriminate between random and crystal poses, taking

into the account rotation and translation and (iii), ability to discrim-

inate crystal ligand conformers from generated ones. The goal of the

proposed tests is not to prove the method’s superiority compared to

existing approaches, but rather to show and motivate that the archi-

tecture can flexibly be used alongside similar representations in the

same or related tasks.

Test (i) was carried out using the scPDB database, while for (ii-

iv) the Astex diverse set was used instead. Overlap is measured using

a discretized version of the Jaccard Index:

J ¼ #jVp \ Vrj
#jVp [ Vrj

; (4)

where Vp and Vr correspond to arrays of voxels of a particular chan-

nel of the predicted and crystal representations, respectively, after

using a threshold of P¼0.75 to discretize both arrays. This metric

naturally balances both correctness and size of the prediction. In our

first test, Equation (4) was used to demonstrate that our method

produces sensible ligand representations, using random predictions

as baseline. Results for test (i) can be checked in Figure 4 and

Supplementary Figure S1 (varying thresholds values) and S2 (sepa-

rating folds). For each of the splits, we measure the Jaccard index

between the predicted and computed values of the crystal structures

and compare it with a random baseline. The conditional model,

using both parts of the loss and atom counts from the ligand is sig-

nificantly better at accurately predicting defined volumetric clouds

than the naive unconditional model. In particular it can be appreci-

ated that the latter exhibits higher variance than the former, suggest-

ing that the second term of the loss is in fact helping preserve a

match between the original and predicted distribution. Furthermore,

it can also be seen that the model accurately predicts the total

excluded volume channel, with Jaccard indexes ranging between 0.5

and 0.6 for most cases and around 0.2 for randomized baseline.

Results for the aromatic channel are also satisfactory, again with

indexes ranging 0.4 and 0.5 and for some splits even surpassing it

(randomized baseline of 0.1). Hydrogen-bond donor and acceptor

results, while certainly more modest than the others are still signifi-

cantly better than the randomized baseline. Finally, MIFs were gen-

erated using EasyMIFs (Ghersi and Sanchex, 2009) a freely

available software. Aromatic, carbonyl and hydroxyl probes were

used to generate interaction fields and compared to aromatic, H-

bond acceptor and H-bond donor ground truth voxels, respectively.

As seen in Figure 4 the MIFs give a poor estimation of the ligand

Fig. 2. Architecture of the proposed DCNN model for ligand property generation. The number inside each layer, pictured as blue boxes, represents channel count,

while the inner boxes represent the size of the input (3 or 16 units) and output (1 unit) of convolutional kernels (Color version of this figure is available at

Bioinformatics online.)
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fields. The Jaccard indices are comparable with the conditional

model baseline.

In our second test, we measure the model’s ability to recover the

crystal pose by rotating the crystallized ligand in the pocket around

its own geometrical center with a 30
�
D and measure the overlap

between each rotated state and the predicted fields. All rotated states

were generated starting from a random orientation of the ligand.

Ideally, the intention is to see that rotated states close to the crystal

pose are ranked significantly higher than those far apart when con-

sidering volumetric overlaps. Analysis were further expanded by

Fig. 4. Per complex results of predicted and actual physical chemistry values in the scPDB database using a Jaccard index, for the four channels of interest: aro-

matic, hydrogen-bond acceptor, hydrogen-bond donor and total excluded volume. The values are thresholded at 0.75 and the folds are pooled together. Per sam-

ple values in baseline groups are randomly shuffled within the sample and channel. Differences of all channels between groups conditional–conditional baseline,

conditional–unconditional and unconditional–unconditional baseline are highly significant (P-value �0). Column MIF shows overlaps of the molecular interaction

fields with the voxelization ground truth, at an energetic cut-off that maximizes the Jaccard index (Aromatic: �5.10 kJmol�1, H-acceptor: �6.12 kJmol�1, H-donor:

�6.33 kJmol�1)

Fig. 3. Example of generated properties (PDB entry 1FPU). Ligand occupancy is displayed in wireframe while H-bond acceptors, aromatics and H-bond donors

are in first, second and third row, respectively. The generated predictions shown in the column labeled 0.5 used half the atom counts of the cocrystallized ligand

as the input. Column 1.5 follows the same logic, while the third shows actual cocrystallized ligand. As the atom count grows, the generated fields expand and are

able to match more peripheral groups
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adding translations. In this last experiment the featurization window

was slided 63 Å in all three dimensions with a stride of 1 Å around

the binding site.

In order to provide a single pose scoring function that does not

depend on a threshold parameter, a second Jaccard-like index was

defined using raw probabilities:

Jraw ¼
X
v2V

Vp � Vr

Vp þ Vr � ðVp �VrÞ
; (5)

where Vp and Vr now represent the raw three dimensional subgrid

with probabilities and property values, respectively, � is an element-

wise multiplication and v 2 V is a voxel in a subarray. Jraw indexes

are then summed up: Js ¼
P

i wiJraw;i, previously weighting each one

by the prevalence of their corresponding property i:

wi ¼
#atoms with property i

#total atoms
: (6)

In translation tests, a clash penalty was introduced by multiply-

ing Js by a discount factor P function, representing the proportion of

the ligand in clash with the protein:

Jc ¼ Js

�
1� tanhð/PÞ

�
; (7)

where we set / ¼ 2 and

P ¼
#jVprot;occ \ Vlig;occj

#jVlig;occj
; (8)

with Vprot;occ and Vlig;occ representing protein and ligand occupancy

voxels values, respectively, thresholded at P¼0.75. Jc can be consid-

ered as a discounted score of Js, where the score is multiplied by a re-

ward factor. The factor is 1 in case of no clashes and converges to 0

with bigger portion of the ligand volume clashing with the protein’s.

We pick the best poses according to the detailed metric, taking

into account possible ligand redundancies by discarding those poses

with an RMSD below 2 Å with respect to any better scored pose. A

pose was considered correct if the RMSD from its corresponding

crystal was less than 2 Å. Results for test (ii) are presented in

Table 2. After evaluation, an enrichment of scored poses below

RMSD of 2 Å with respect to the crystallized ligand is observed: for

the 85 protein–ligand pairs, and the 1728 total generated poses eval-

uated for each considering only rotations, those ranked first by the

algorithm were under the 2 Å threshold in 70 pairs, while if we con-

sider the 5 top ranked poses, the number of correct poses increases

to 75. If translations are included, 64 and 81 are under the defined

threshold for top 1 and top 5, respectively. This enrichment suggests

that the proposed model and scoring function can effectively dis-

criminate crystal poses. However, some ligand topologies represent

Fig. 5. Example of one wrong pose prediction. (A) Best ranked result using

LigVoxel. (B) Native ligand pose. The excluded volume prediction is displayed

in black wireframe, while aromatic and hydrogen bond acceptor and donor

channels are displayed as clouds (Color version of this figure is available at

Bioinformatics online.)

Table 2. Results for pose and conformer enrichment analyses (tests

ii–iii)

Top 1 Top 5

Rotations 70 (82%) 75 (88%)

Rotations and translations 64 (75%) 80 (94%)

Conformer enrichment 74 (93%) 76 (95%)

Note: For test ii we first only took rotations into account and then translations.

Fig. 6. Web application user interface. (Top) Pocket and parameter selection

phase for Trypsin (PDB Id. 3PTB). (Bottom) Aromatic and H-bond donor iso-

surface predictons with cocrystallized ligand superimposed
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a harder challenge; Figure 5 shows one case (PDB Id. 1S3V, ligand

TQD) of unsuccessful pose recovery. In this example, the shape of

the molecule and its almost symmetrical distribution of aromatic

and h-bond groups along the ligand allows it to accommodate inside

the predicted excluded volume with the two orientations shown,

while fulfilling the aromatic and h-bond prediction restraints. The

placement of two consecutive aromatic rings near the bigger aromat-

ic patch prediction suggests why this pose was scored higher than

those closer to the crystal. Similar scenarios were found during our

testing, suggesting that molecules displaying functional groups sym-

metry are harder to recover - but it remains unclear if these alterna-

tive poses are simply less likely, but still viable.

For our third test, we design a conformer enrichment procedure.

To that end, 10 ligand conformers were generated using RDKit

(Landrum, 2012). Only poses with at least 2 Å difference between them

were kept. For each generated conformer including the crystal conform-

er the best scoring 30
�

D pose was selected. Ranks of these poses were

compared. Results for tests (iii) can also be found in Table 2, where 5

ligands had to be discarded from the analyses as RDKit failed to suc-

cessfully provide 10 conformers. The proposed model is able to recover

the crystal ligand out of the pool of generated conformers in 74 and 76

out of 80 cases for top 1 and 5 ranks, respectively. When considering

only 10 generated poses, however, we did not observe successful pose

prediction. Only in two cases the method was able to generate poses

with an RMSD <2. This low performance could be attributed to non-

exhaustive conformer generation, large D angle or translation.

5 Implementation and availability

An implementation of LigVoxel can be further explored by the sci-

entific community through a web-application, part of the playmole-

cule.org suite. An example sesssion is shown in Figure 6. Users can

submit their own protein binding site in.pdb format, choose either

the conditional or unconditional model for field predictions and re-

trieve results, that can either be visualized using NGL (Rose and

Hildebrand, 2015) or downloaded locally for further analysis.

6 Discussion

In this work, we have presented a novel approach for the generation

of ligand images filling protein pockets based on deep neural net-

works. Results shown here suggest that these predictions are respon-

sive to the number of atoms selected as input, they significantly

overlap with ligand features of previously unseen ligands, and they

can be used to select poses and conformers close to the native ligand

orientation and geometry. We believe that approaches similar to the

one proposed here will be important for structure based design of

protein binders. For instance, in de novo drug-design, these gener-

ated fields could be used as reference for incremental atom place-

ment. Furthermore, in computational docking, the proposed fields

can assist classical scoring functions by overlap or proximity opti-

mization. The extent to which these models can be applied in drug

discovery and design pipelines has yet to be demonstrated fully, but

we believe that the initial validation performed in this work is prom-

ising for future applications.
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