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Abstract

Motivation: The identification of enhancer–promoter interactions (EPIs), especially condition-specific ones, is im-
portant for the study of gene transcriptional regulation. Existing experimental approaches for EPI identification are
still expensive, and available computational methods either do not consider or have low performance in predicting
condition-specific EPIs.

Results: We developed a novel computational method called EPIP to reliably predict EPIs, especially condition-
specific ones. EPIP is capable of predicting interactions in samples with limited data as well as in samples with abun-
dant data. Tested on more than eight cell lines, EPIP reliably identifies EPIs, with an average area under the receiver
operating characteristic curve of 0.95 and an average area under the precision–recall curve of 0.73. Tested on
condition-specific EPIPs, EPIP correctly identified 99.26% of them. Compared with two recently developed methods,
EPIP outperforms them with a better accuracy.

Availability and implementation: The EPIP tool is freely available at http://www.cs.ucf.edu/~xiaoman/EPIP/.

Contact: xiaoman@mail.ucf.edu or haihu@cs.ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Enhancers play important regulatory roles. They control the expres-
sion patterns of their target genes by directly interacting with the
promoter regions of those genes (Mora et al., 2016). Even though
enhancers may be tens of kilobases (kb) away from their target
genes, they get in direct contact with the promoters of their target
genes via chromatin looping (Cai et al., 2010; Dekker et al., 2002;
De Laat and Duboule, 2013; Zheng et al., 2015). Because of the
long range of possible distances [1 kb to several megabases (Mb)] be-
tween enhancers and their targeted promoters, it is challenging to
predict enhancer–promoter interactions (EPIs) (De Laat and
Duboule, 2013). To date, the majority of EPIs under specific experi-
mental conditions have not been discovered yet (Corradin et al.,
2014).

Experimental approaches for identifying EPIs are mainly based
on chromosome conformation capture (3C) and its variants such as
chromatin interaction analysis with paired-end tag sequencing
(ChIA-PET) and high throughput genome-wide 3C (Hi-C) (Dekker
et al., 2002; Fullwood et al., 2009; Rao et al., 2014). These experi-
mental techniques determine the relative frequency of direct physical
contacts between genomic regions and have successfully identified
EPIs and other long-range interactions (He et al., 2014). However,

the ChIA-PET method still has a low signal-to-noise ratio and most
available Hi-C data have a low resolution (Fullwood et al., 2009;
Rao et al., 2014). In addition, since certain EPIs are condition-
specific, experimental EPI data in one sample cannot always be dir-
ectly applied to infer EPIs in other samples. Here, a ‘sample’ refers
to a cell type, a cell line or a tissue sample under a specific experi-
mental condition. An EPI is called condition-specific, if the inter-
action only occurs in a specific sample.

As most experimental procedures are expensive, computational
methods have been indispensable alternatives for identifying EPIs.
These methods employ available genomic and/or epigenomic data to
predict EPIs in an inexpensive way. Early methods considered the
closest promoter as the only target of an enhancer. However, a study
demonstrated that only 40% of enhancers regulate their nearest pro-
moters and one enhancer may regulate multiple genes (Andersson
et al., 2014). Later, several computational approaches were devel-
oped based on the correlation of epigenomic signals in enhancers
and those in promoters (Andersson et al., 2014; Corradin et al.,
2014; Ernst et al., 2011; Thurman et al., 2012). One challenge of
using these methods is to find a proper threshold of correlations to
reduce false EPI predictions (Roy et al., 2015; Whalen et al., 2016).
Recently, supervised learning-based methods have been developed,
such as IM-PET (He et al., 2014), PETModule (Zhao et al., 2016),
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Ripple (Roy et al., 2015) and TargetFinder (Whalen et al., 2016).
These methods commonly use genomic and epigenomic data such as
those from DNase I hypersensitive sites sequencing (DNase-seq)
and histone modification-based chromatin immunoprecipitation
followed by massive parallel sequencing (ChIP-seq) to extract fea-
tures for EPI predictions. IM-PET, Ripple and PETModule utilize
random forests as their classifier, while TargetFinder is based on
boosted trees. These methods either do not consider or have low per-
formance on condition-specific EPI predictions (Roy et al., 2015).

Here, we proposed a computational method for predicting
condition-specific EPIs called EPIP. EPIP stands for ‘Enhancer–
Promoter Interaction Prediction’. It is a supervised learning-based
approach that utilizes functional genomic and epigenomic data to
build a robust model to predict shared and condition-specific EPIs.
EPIP can work with missing data, different types of datasets and
even a dataset with a partial list of features. Tested on experimental
data from more than eight samples, EPIP reliably predicted
condition-specific EPIs and shared EPIs in different samples with the
average area under the receiver operating characteristic curve
(AUROC) about 0.95, and the average area under the precision–re-
call curve (AUPR) about 0.73. In addition, we compared EPIP with
two state-of-the-art computational methods for predicting EPIs and
showed that EPIP outperformed both.

2 Materials and methods

2.1 Enhancers and promoters
We obtained all 32 693 enhancers annotated by FANTOM from
http://slidebase.binf.ku.dk/human_enhancers/results (Andersson et al.,
2014). We chose this set of enhancers because this was arguably the
largest set of enhancers that were defined with the same criteria and
supported by experiments. We next overlapped the FANTOM
enhancers with the computationally predicted ChromHMM enhancers
(Ernst et al., 2011) for samples that had the ChromHMM data avail-
able (GM12878, HeLa, HMEC, HUVEC, IMR90 and NHEK). These
ChromHMM enhancers were defined with 15 hidden states (https://
genome.ucsc.edu/cgi-bin/hgTrackUi? g¼wgEncodeBroadHmm&db¼
hg19). We considered both strong and weak enhancers (states 4–7) as
valid ChromHMM enhancers (Ernst et al., 2011). The FANTOM
enhancers overlapping with at least one ChromHMM enhancer in a
sample were considered as the enhancers for that sample in the fol-
lowing analyses. Since KBM7 does not have any annotated
ChromHMM enhancer, all FANTOM enhancers were used for

KBM7. An enhancer was considered ‘active’ in a sample if it over-
lapped with the H3K27ac ChIP-seq peaks in this sample. The
H3K27ac peaks were downloaded from ENCODE (Dunham et al.,
2012). With no H3K27ac data available for KBM7, all obtained
enhancers were considered as ‘active’ enhancers. In this way, we
obtained 7023–32 693 enhancers and 4888–32 693 active enhancers
in a sample (Supplementary Table S1).

We obtained all annotated transcription start sites (TSSs) from
GENCODE V19 (Harrow et al., 2012) and considered the regions
between 1 kb upstream and 100 base pairs downstream of the TSSs
as ‘promoters’. This resulted in 57 783 promoters. For samples with
RNA-Seq data (Dunham et al., 2012) (GM12878, HeLa, HUVEC,
IMR90, K562 and NHEK), we defined promoters as ‘active’ if the
corresponding genes had at least 0.30 reads per kb of transcript per
million mapped reads with the irreproducible discovery rate of 0.1,
similarly as previously (Whalen et al., 2016). For samples without
RNA-Seq data (HMEC and KBM7), all promoters were considered
as active promoters (Supplementary Table S2).

2.2 Training data
To train EPIP, we defined positive and negative enhancer–promoter
pairs (EP-pairs) (i.e. interacting and non-interacting EP-pairs) using
the normalized Hi-C contact matrices, which were generated with
the Knight and Ruiz normalization vectors by Rao et al. (2014). Rao
et al. inferred these matrices for the following seven samples:
GM12878, HMEC, HUVEC, IMR90, K562, KBM7 and NHEK
(GSE63525). They also extracted significant intra-chromosomal
chromatin interactions called ‘looplists’ in the above seven samples
and the HeLa sample. The number of EP-pairs from the looplists
defined at the highest resolution for these samples was too small to
train the EPIP model well. We thus defined the positive and negative
EP-pairs from their normalized Hi-C contact matrices, as previously
(Li et al., 2016; Zhao et al., 2016) (Supplementary Table S3).

In brief, if an ‘active’ enhancer and an ‘active’ promoter
overlapped with a pair of regions that were supported by at least
30 normalized Hi-C reads, we considered this EP-pair as a positive
EP-pair. Similarly, an EP-pair was considered as negative if it
did not overlap with any pair of regions that were supported by 5 or
more normalized Hi-C reads (Fig. 1A). The cutoffs, 30 and 5, were
chosen based on our test results with different cutoffs
(Supplementary Table S3). In this way, we defined positive and
negative EP-pairs for the above seven samples with contract
matrices.

Fig. 1. (A) The flowchart of training data creation. Here, all the read numbers are normalized. An EP-pair with the enhancer overlapping with one of the two interacting

regions and the promoter overlapping with the other of the two interacting regions will be considered as an interacting EP-pair candidate. (B) The five test datasets on which

we tested EPIP
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To train EPIP, we used both balanced and unbalanced models.
We randomly chose 30% of positive EP-pairs and the same number
of negative EP-pairs in each of the above seven samples. We then
combined these positives and negatives from different samples to
train a balanced prediction model. We also combined 30% of posi-
tive EP-pairs and 10 times randomly chosen negative EP-pairs in
each sample to train an unbalanced prediction model. We then com-
bined the two models into the final EPIP model, which predicts an
EP-pair as a ‘negative’ pair only when both models predict this pair
as a negative pair and predicts an EP-pair as a positive pair other-
wise. This strategy was based on the observation that the balanced
model had a high sensitivity and the unbalanced model had a high
specificity when tested on the training data by cross-validation. For
simplicity’s reason, in the remaining of the paper, we called this final
EPIP model as ‘EPIP’.

2.3 Testing data
We tested EPIP on a variety of data (Fig. 1B). We tested it on the
remaining 70% of positive EP-pairs, together with the same number
of randomly selected negative pairs that were not used for training
(balanced test data). We also tested it on the remaining 70% of posi-
tive EP-pairs together with 10 times randomly selected negative
pairs that were not used for training (unbalanced test data).
We tested EPIP on all EP-pairs within 2 Mb that were not used for
training as well. Moreover, we tested EPIP on the positive EP-pairs
defined with normalized Hi-C contact matrices under the cutoffs 10,
20, 30, 50 and 100. Finally, we tested EPIP on EP-pairs collected in
other studies (Jin et al., 2013; Li et al., 2012; Rao et al., 2014),
which were obtained from the strictly defined interacting regions by
the original studies and represented more strictly defined EP-pairs.

2.4 Features of EP-pairs considered
EPIP considers three common features of EP-pairs in every sample.
These features are the distance between the enhancer and the pro-
moter in an EP-pair, the conserved synteny score that measures the
co-conservation of an EP-pair in five other vertebrate genomes
(chicken galGal3, chimpanzee panTro4, frog xenTro3, mouse
mm10 and zebrafish zv9) and the correlation of epigenomic signals
in the enhancer region and that in the promoter region of an EP-pair
across ENCODE Tiers 1 and 2 samples (Zhao et al., 2016). For sim-
plicity’s sake, in the following, these features are called ‘distance’,
‘css’ and ‘corr’, respectively.

In addition, depending on the types of data available in a sample,
EPIP considers features from 14 additional types of data. These in-
clude DNase-seq data, ChIP-seq data for nine types of histone

modifications (H3K4me1, H3K4me2, H3K4me3, H3K27ac,
H3K27me3, H3K36me3, H3K79me2, H3K9ac and H4K20me1)
and four types of chromatin factors (CTCF, POL2, RAD21 and
SMC3). These data are shown to provide important indicators for
predicting EPIs (Roy et al., 2015). For each of the 14 types of data,
EPIP generates two features that correspond to its signals in enhan-
cer regions and its signals in promoter regions (Supplementary Table
S4). The value of a feature for a region corresponds to the ‘peak
strength’ value of this feature in its signal peak that overlapped with
this region. If a region overlaps with multiple peaks of a feature sig-
nal, we considered the average signal value in these overlapping
peaks as the feature value for this region. For instance, when
H3K4me1 ChIP-seq data is available for an enhancer in a sample,
the H3K4me1 feature value for this enhancer is the average peak
strength of all H3K4me1 ChIP-seq peaks overlapping with this en-
hancer. The feature signal peaks and their signal strength are down-
loaded from ENCODE (Dunham et al., 2012). Due to the difference
of available types of data in different samples, we could consider 31,
25, 27, 31, 31, 3 and 27 features in GM12878, HMEC, HUVEC,
IMR90, K562, KBM7 and NHEK, respectively, including the three
common features (Supplementary Table S4).

2.5 Partitioning feature space to handle missing data
EPIP groups features into 11 partitions or overlapping feature sets
(Fig. 2A, Supplementary Table S5). Partitions with overlapping fea-
tures are used, because in this way, (i) EPIP can be trained and tested
on various samples, no matter whether the samples have data for a
large or small number of features; (ii) such partitions enable more
samples to be used to train each partition and thus likely produce
more accurate predictors; and (iii) the trained EPIP model can be
used to make predictions in more samples. For instance, samples
with a large number of features will benefit from a large number of
partitions, while EPIP can still make predictions for samples with a
small number of features.

In brief, EPIP considers the three common features: distance, css
and corr, as a partition, which shows the static genomic information
of EPIs. Moreover, EPIP considers the above three common features
together with features from each of the following feature groups as a
different partition: H3K4me1; DNase-seq; H3K4me1 and
H3K27ac; DNase-seq and H3K27ac; H3K4me1 with H3K27ac and
H3K4me3; DNase-seq with H3K27ac and H3K4me3; H3K4me1-3
together with H3K27ac and DNase-seq (Supplementary Table S5).
Note that for every histone modification mark, EPIP considers its
signal values in enhancers and in promoters. Therefore, the above
partitions have two features for every histone modification mark

Fig. 2. (A) The training process of EPIP. There are three types of partitions and in total 11 partitions used. Samples with the features required by a partition are used to train

the corresponding IL for this partition. Each IL trains a maximum 200 weak learners (W) for a sample. The weak learners trained from all available samples then vote to make

the predictions for the corresponding IL. The prediction of all ILs determines the final prediction with another voting process. (B) An example of the third type of partitions

from three samples. The 25 features in HMEC are included in the 27 features in HUVEC, which are included in the 31 features in GM12878
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(such as H3K4me1_P and H3K4me1_E for the mark H3K4me1 in
promoters and enhancers, respectively). Finally, EPIP considers the
largest sets of features that are not considered above and occur in at
least one training sample as additional partitions (Fig. 2B).

2.6 An ensemble approach to predict condition-specific

EPIs under a variety of conditions
We developed an ensemble method called EPIP to distinguish posi-
tive from negative EP-pairs (Fig. 2A). The method uses the training
data to train the model iteratively, based on the idea of AdaBoost
(Polikar et al., 2000). The details are in the following paragraphs.

With the above partitions of features, EPIP trains an incremental
learner (IL) for every partition. An IL consists of a number of weak
learners trained on the training data. The weak learners in EPIP are
decision tree classifiers. We set a maximum allowed depth of 10 for
the decision trees to avoid overfitting, after testing on several depth
options. For a given partition and a corresponding sample, EPIP
trains 200 weak learners, because 200 is the smallest number that
gives EPIP the highest AUROC and AUPR scores (Supplementary
Fig. S1). With weak learners trained on data from all samples with
the required features by the corresponding partition, the correspond-
ing IL combines predictions from all its weak learners through a ma-
jority voting. EPIP then combines the predictions by the trained ILs
from all partitions by a majority voting (Fig. 2A).

EPIP trains weak learners iteratively. Given a partition and a
sample with the required features by this partition, the first weak
learner is trained with equal weight to all data points (i.e. all EP-
pairs) in the training data in this sample. The second weak learner is
then trained with the same input data points but with increased
weights to the misclassified data points and decreased weight to the
correctly classified data points by the first weak learner. The modi-
fied weights to the data points are calculated according to the
AdaBoost algorithm, based on the prediction errors and the average
weights of the misclassified data points by the previous weak learn-
ers (Freund and Schapire, 1997). Similarly, the third weak learner is
trained with the same input data points but with increased weights
to the misclassified data points and decreased weight to the correctly
classified data points by the first two weak learners. This process is
repeated again and again until the 200th weak learner is trained.

With a new sample that has at least a subset of the aforemen-
tioned 14 types of data, EPIP is able to learn from this sample with-
out retraining the whole model. EPIP identifies the partitions
applicable to the new sample. For these partitions, similarly as
above, the corresponding ILs learn the new training sample by an
additional set of 200 weak learners iteratively trained with the new
training data. EPIP then combines the predictions from the updated
ILs and the originally trained ILs by the majority voting.

2.7 Comparison with TargetFinder and Ripple
TargetFinder predicted EPIs in six samples (GM12878, HeLa,
HUVEC, IMR90, K562 and NHEK) (Whalen et al., 2016). It pro-
vided positive and negative EP-pairs used, together with its predic-
tion by four classifiers (https://github.com/shwhalen/targetfinder).
One of the classifiers, gradient boosting (gbm), showed a better pre-
cision and recall than the other three classifiers. We thus compared
EPIP with TargetFinder by running EPIP and TargetFinder (gbm) on
both the TargetFinder data and EPIP data.

Ripple uses a combination of random forests and group LASSO
in a multi-task learning framework (Roy et al., 2015). It uses differ-
ent types of data such as DNase-seq, ChIP-seq and RNA-Seq data to
extract features. Ripple is trained on multiple samples and is capable
of predicting condition-specific interactions in a new sample. Its
training and test data were based on the 5C (GSE39510) and Hi-C
(GSE63525) datasets. We compared EPIP with Ripple by running
them on EPIP data and the above TargetFinder data in three shared
samples (GM12878, HeLa and K562). We did not compare them on
the Ripple data, as (i) the Ripple data is balanced, which does not
represent the reality well, where we often have much more negatives
than positive EP-pairs; (ii) the resolution of the Ripple data is low,
where a promoter within 2.5 kb of a pair of interacting regions may

be considered as the targets of one of the regions; and (iii) the data
barely overlap with any FANTOM enhancer.

We used the 10-fold cross-validation method to train and test EPIP,
TargetFinder and Ripple, similarly as that in the TargetFinder study
and in the Ripple study. We used the generate_training.py in
TargetFinder to generate TargetFinder features for EP-pairs. Then we
used the procedure mentioned in its readme file to apply the 10-fold
cross-validation on the training data using GradientBoostingClassifier
(GBM). In terms of Ripple, we used the genFeatures tool in Ripple to
generate features for EP-pairs. Then we used its runAllfeatures_cross-
cellline.m Matlab code to apply 10-fold cross-validation on the training
data.

3 Results

3.1 EPIP reliably predicts EPIs
We tested EPIP on the balanced test data, unbalanced test data, all
EP-pairs within 2.5 kb to 2 Mb, EP-pairs defined with different nor-
malized Hi-C contact number cutoffs and EP-pairs from other stud-
ies. EPIP reliably predicted untrained EPIs in all datasets, with a
high AUROC, AUPR and/or F1 score (Table 1 and Supplementary
Tables S6–S8). The AUROC, AUPR and the F1 score were calcu-
lated using the scikit-learn libraries (Pedregosa et al., 2011).

We studied the performance of EPIP on the balanced test data,
the unbalanced test data and all EP-pairs within 2.5 kb to 2 Mb
(Section 2). No EP-pair in these test data was used for training. With
five sets of randomly chosen training data and the corresponding
test data, on average, EPIP had an AUROC of 0.96, 0.96 and 0.95;
an AUPR of 0.96, 0.92 and 0.73 and an F1 score of 0.99, 0.95 and
0.51 for the balanced, unbalanced and all EP-pairs within 2.5 kb to
2 Mb test data, respectively (Table 1 and Supplementary Table S6).
Note that the F1 score on the third test data was not bad, given the
fact that the number of negatives was around 13 times the number
of positives here. In this test dataset, the recall in all samples was
higher than 0.92, although KBM7 had no epigenomic data. The
average precision was 0.34 in these samples, with the largest preci-
sion in GM12878, where the Hi-C sequencing depth was the high-
est. The much higher precision and F1 score in GM12878 suggest
that the estimated precision and F1 scores may be underestimated in
other samples, as the lower sequencing depth in other samples that
may prevent from labeling many true positive pairs as positives
while these positives were indeed predicted as positives by EPIP. We
also tested EPIP on condition-specific EP-pairs within 2.5 kb to
2 Mb. EPIP predicted 12 455 (99.26%) of the 12 548 condition-
specific EP-pairs in the seven samples that were not used for
training.

Since the above test datasets were based on the cutoffs 30 and 5,
which were not rigorously determined, we tested EPIP on more
strictly defined EP-pairs. We tested EPIP on EP-pairs defined with
the looplists at 5 kb resolution Hi-C data by Rao et al. (2014), the
Hi-C data for IMR90 published by Jin et al. (2013) and the ChIA-
PET data for K562 and MCF7 (Li et al., 2012). The EP-pairs were
similarly obtained by overlapping ‘active’ enhancers and ‘active’
promoters with the strictly defined interacting regions in these stud-
ies. On average, EPIP had a precision of 0.90, 0.89 and 0.93, re-
spectively; a recall of 0.83, 0.81 and 0.89, respectively; and an F1
score of 0.86, 0.85 and 0.91, respectively (Fig. 3 and Supplementary
Table S7). Note that although EPIP was not trained on MCF7, EPIP
correctly predicted 89.70% of EPIs in MCF7.

We also tested EPIP on all EP-pairs within 2.5 kb to 2 Mb with
positives defined by different cutoffs (Supplementary Table S8). We
found that when the cutoff was increasing, overall, the AUROC was
increasing while the AUPR and the F1 scores were decreasing. This
was due to the fact that the number of negatives was the same for
different cutoffs, while the number of positive EP-pairs was
decreased with the larger cutoffs. Under all cutoffs, the recall (sensi-
tivity) was larger than 0.92 and was increasing with the increment
of the cutoff, suggesting that the trained EPIP model was robust and
reliable to predict true positive EP-pairs. This was because although
EPIP was trained with data under the cutoff 30, it predicted the vast
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majority of ‘positive’ EP-pairs under different cutoffs and became
more accurate when tested on more ‘strictly defined’ positive EP-
pairs. The average specificity was 0.80 and unchanged under differ-
ent cutoffs, since the negative EP-pairs were the same. The average
precision was decreasing from 0.76 at the cutoff 10 to 0.09 at the
cutoff 100. The dramatically decreasing precision suggested that
the larger cutoffs such as 50 and 100 were likely too stringent and
the cutoff 30 may be more proper to define positives, given the fact
that EPIP had good precision and recall on more strictly defined EP-
pairs from the above three previous studies (Fig. 3).

In summary, EPIP reliably predicted EPIs especially condition-
specific ones. Its high precision, recall and F1 scores were demon-
strated with the published datasets from previous studies. The more
realistic measurement of its AUROC and AUPR may come from the
test data with all EP-pairs defined with the cutoffs 30 and 5, sup-
ported by our analyses with the published datasets and different cut-
offs. In this case, EPIP on average had an AUROC of 0.95 and an
AUPR of 0.73.

3.2 EPIP reliably predicts condition-specific EPIs in

new samples
We studied the performance of EPIP on predicting EP-pairs especial-
ly condition-specific ones in new samples. We trained one EPIP
model on EP-pairs in every group of six samples and then tested the
model on the remaining sample, for each of the seven samples with a
normalized Hi-C contact matrix. Following the same way we
obtained the EPIP model, we defined the training positive and nega-
tive EP-pairs with the cutoffs 30 and 5, and obtained the EPIP model
with the combination of the balanced and unbalanced models
trained on the corresponding six samples.

Trained similarly as above on positive pairs and two sets of nega-
tive pairs from six samples, on average, EPIP had an AUROC of 0.96,
an AUPR of 0.89, on the seventh sample, when tested on all EP-pairs
within 2.5 kb to 2 Mb based on the cutoffs 30 and 5 (Table 2 and
Supplementary Table S8). In terms of condition-specific EP-pairs,

which only occurred in the seventh sample, on average, EPIP pre-
dicted 5498 (97.66%) of 5630 condition-specific EP-pairs in seven
samples except for GM12878. EPIP predicted only 31.77% of
condition-specific EP-pairs in GM12878 (Table 2).

We hypothesized that the low performance in GM12878 was
likely due to the fact that the Hi-C sequencing depth was much
higher in GM12878 than that in other samples. In other words, the
quality of the EP-pairs in other samples was different from that in
GM12878. To test this hypothesis, we applied the same EPIP model
trained on other six samples based on the cutoffs 30 and 5 to test
condition-specific EP-pairs defined with the cutoff 100 in
GM12878. We found that EPIP correctly predicted 2396 (78.69%)
of 3045 condition-specific EP-pairs in GM12878 (Supplementary
Table S9). Therefore, EPIP indeed can reliably predict condition-
specific EP-pairs in new samples, with an accuracy of 91.00% (7894
out of 8675 condition-specific EPIs) in all seven samples.

3.3 EPIP performs better than the state-of-the-art

methods TargetFinder and Ripple
We compared EPIP with two recently published methods,
TargetFinder and Ripple. We compared them on the TargetFinder
data and the EPIP all EP-pair test data within 2 kb to 2 Mb. EPIP
showed better performance than TargetFinder and Ripple (Table 3).

First, we compared EPIP with TargetFinder and Ripple on the
data from TargetFinder (Table 3 and Supplementary Table S10).
For the six samples in TargetFinder data (GM12878, HeLa,
HUVEC, IMR90, K562 and NHEK), on average, EPIP had an
AUROC, AUPR, F1, precision, recall and specificity of 0.95, 0.84,
0.64, 0.98, 0.48 and 1.00, respectively. TargetFinder had an
AUROC, AUPR, F1, precision, recall and specificity of 0.92, 0.59,
0.50, 0.72, 0.39 and 0.99, respectively (Table 3). Ripple had an
AUROC, AUPR, F1, precision, recall and specificity of 0.75, 0.19,
0.02, 0.75, 0.01 and 1.00, respectively (Table 3). The poor perform-
ance of Ripple may be due to the fact that Ripple could not deal

Table 1. The performance of EPIP on all pairs within 2.5 kb and 2 Mb, balanced and unbalanced test data

Cell line AUROC AUPR F1 Precision Sensitivity/recall

GM12878 0.9007 (0.994, 0.9941) 0.8502 (0.9939, 0.9541) 0.9337 (0.9942, 0.9862) 0.8772 (0.9979, 0.979) 0.9979 (0.9906, 0.9936)

HMEC 0.9872 (0.9962, 0.9981) 0.9038 (0.9963, 0.9929) 0.4287 (0.9893, 0.9415) 0.2733 (0.9873, 0.8955) 0.9938 (0.9913, 0.9925)

HUVEC 0.9842 (0.9943, 0.9934) 0.8904 (0.9952, 0.9807) 0.3081 (0.9844, 0.9369) 0.1824 (0.987, 0.8978) 0.9915 (0.9818, 0.9796)

IMR90 0.9963 (0.9985, 0.9981) 0.9894 (0.9989, 0.995) 0.6365 (0.9933, 0.9577) 0.4672 (0.9921, 0.9247) 0.9985 (0.9946, 0.9932)

K562 0.9947 (0.9985, 0.9986) 0.9874 (0.9988, 0.9939) 0.5589 (0.9884, 0.9486) 0.3887 (0.9909, 0.9141) 0.9938 (0.9859, 0.9859)

KBM7 0.9856 (0.9856, 0.9861) 0.9285 (0.9876, 0.9509) 0.5317 (0.9864, 0.9328) 0.3629 (0.9876, 0.8905) 0.994 (0.9852, 0.9793)

NHEK 0.9942 (0.9979, 0.9981) 0.9394 (0.9982, 0.9939) 0.4485 (0.9892, 0.9406) 0.2897 (0.9899, 0.8969) 0.9926 (0.9885, 0.9887)

Note: The scores for all pairs within 2.5 kb to 2 Mb are shown as the first value. The scores for balanced and unbalanced data are shown in parentheses.

Fig. 3. The overall performance of EPIP on external datasets
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with unbalanced data well, although the real data are always unbal-
anced in practice.

Next, we compared EPIP with TargetFinder and Ripple on all
EP-pairs test data within 2.5 kb to 2 Mb (Table 3 and
Supplementary Table S11). For the five samples shared with the
TargetFinder study (GM12878, HUVEC, IMR90, K562, NHEK),
on average, EPIP had an AUROC, AUPR, F1, precision, recall and
specificity of 1.00, 0.98, 0.99, 0.99, 1.00 and 1.00, respectively.
Based on the predictions from its best model, GBM, on average,
TargetFinder had an AUROC, AUPR, F1, precision, recall and spe-
cificity of 0.96, 0.87, 0.86, 0.94, 0.79 and 0.98, respectively. To
find out how Ripple performed on the same dataset, we considered
the 23 808 positive and 52 313 negative EP-pairs in two common
samples (GM12878 and K562) with the promoters and enhancers
used in Ripple predictions. Ripple showed an AUROC, AUPR, F1,
precision, recall and specificity of 0.66, 0.39, 0.36, 0.61, 0.25 and
0.93, respectively, while EPIP showed a much better AUROC,
AUPR, F1, precision, recall and specificity of 1.00, 1.00, 1.00, 0.99,
1.00 and 1.00, respectively, on the same dataset.

Next, we compared EPIP with TargetFinder and Ripple on
condition-specific EPIs in TargetFinder data. EPIP predicted
51.36% of the 8471 condition-specific EP-pairs in the six samples,
while TargetFinder predicted 38.85% of the 8471 condition-specific
EP-pairs (Supplementary Table S10). Ripple predicted only 0.53%
of the 5787 condition-specific EP-pairs in the three samples shared
by the Ripple study and the TargetFinder study (GM12878, HeLa
and K562), while EPIP predicted 54.42% of the same 5787 EP-pairs
(Supplementary Table S10). The accuracy of EPIP on condition-
specific EP-pairs here was much lower compared with that on EPIP
test data, which may be because the TargetFinder data were not in
good quality. For instance, enhancers and promoters used by
TargetFinder were from computational predictions (Ernst and
Kellis, 2012; Hoffman et al., 2012), which were prone to errors.
Moreover, almost 50% of their enhancers and promoters overlap
with their promoters and enhancers, respectively. In addition, the
negative EP-pairs in TargetFinder data were problematic.
TargetFinder labeled an EP-pair ‘negative’, if it did not overlap with
Rao et al. looplists of any resolution. Due to the limited sequencing
resolution and the limitation of the algorithms to analyze raw Hi-C
reads to generate looplists, EP-pairs not identified as looplists are
not necessarily negative pairs (Forcato et al., 2017).

Finally, we compared EPIP with TargetFinder and Ripple on
condition-specific EPIs on EPIP test data. EPIP predicted 99.99% of
the condition-specific EP-pairs in five common samples shared with
the TargetFinder study. TargetFinder predicted only 83.91% of

these condition-specific EP-pairs (Supplementary Table S11). In the
two common samples shared with the Ripple study, EPIP predicted
99.99% of the condition-specific EP-pairs, while Ripple only could
predict 27.07% of them (Supplementary Table S11).

4 Discussion

Identifying EPIs is important for the study of gene transcriptional
regulation. Although several computational methods are available
to predict EPIs, they often cannot predict condition-specific EPIs
and their performance is still not satisfactory. We thus developed a
computational method, EPIP, to learn the patterns of EPIs and to
predict condition-specific EPIs. We demonstrated that, on average,
EPIP correctly predicts 99.26% of condition-specific EPIs in differ-
ent samples. We also showed that EPIP has a much better perform-
ance than two state-of-the-art computational methods.

EPIP provides an important framework to integrate useful data
for EPI predictions. EPIP has a partitioning method that enables it to
use samples with partially available features and samples with abun-
dant types of data. Therefore, it can be trained on various types of
samples and thus makes the training model more accurate and more
representative. In addition, the learning approach in EPIP provides
the opportunity to efficiently train the model when new data be-
come available.

EPIP is trained with different samples. This means that data
from different samples are fed to the training model in a specific
order. To investigate whether the order of the samples in training
has an impact on the performance of EPIP, we considered HUVEC
as the testing sample and trained the EPIP model on the remaining
six samples in all possible 120 orders. We observed that the order of
the samples used in training EPIP does not significantly impact the
final performance, as the standard deviation of the AUROC and the
F1 score was 0.001 and 0.002, respectively, for all 120 different
orders of training in these experiments.

We used FANTOM enhancers to define EP-pairs in this study.
The number of FANTOM enhancers is small compared with the
known and predicted enhancers in various studies (Ernst and Kellis,
2012). However, FANTOM enhancers arguably represent the larg-
est set of enhancers we have so far that defined with the same crite-
ria and supported by experiments. We further overlapped
FANTOM enhancers with ChromHMM enhancers and H3K27ac
ChIP-seq peaks to define active enhancers, which is likely to gener-
ate more reliable enhancers and more reliable training data.
However, the choice of the FANTOM enhancers may have

Table 2. The performance of cell-specific EPIP models on all pairs within 2.5 kb to 2 Mb

Cell line AUROC AUPR F1 Precision Sensitivity/recall Number of cell-specific EPIs % of predicted cell-specific EPIs

GM12878 0.9873 0.9835 0.9385 0.9946 0.8885 58765 0.9975

HMEC 0.9951 0.9905 0.7664 0.6256 0.9889 42 0.8333

HUVEC 0.9920 0.9816 0.6955 0.5387 0.9810 73 0.8767

IMR90 0.9979 0.9960 0.9286 0.8714 0.9938 2781 0.9960

K562 0.9955 0.9921 0.9093 0.8421 0.9881 1178 0.9677

KBM7 0.9892 0.9826 0.8431 0.7377 0.9836 2004 0.9880

NHEK 0.9942 0.9791 0.7675 0.6275 0.9879 102 0.8235

Note: The number and percentage of cell-specific EP-pairs predicted are also shown in the last two columns.

Table 3. The performance comparison between EPIP with TargetFinder and Ripple for the two types of data considered

# Pos # Neg F1 Precision Sensitivity/recall

TargetFinder data EPIP versus TargetFinder 1394 197 0.9018 (0.6433) 0.9182 (0.997) 0.8859 (0.4749)

EPIP versus Ripple 67 18 0.8824 (0.275) 0.8696 (0.8462) 0.8955 (0.1642)

EPIP data EPIP versus TargetFinder 912 197 0.9431 (0.2507) 0.8924 (0.985) 1 (0.1436)

EPIP versus Ripple 3230 79867 0.917 (0.2271) 0.8474 (0.7238) 0.9991 (0.1347)

Note: F1, precision and sensitivity/recall columns show the EPIP score first, and TargetFinder or Ripple score in parentheses.
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prevented us from testing EPIP more generally, since we only tested
EPIP on EP-pairs based on FANTOM enhancers. When there is a
larger and more reliable set of experimentally determined enhancers
available in the future, it is necessary to test EPIP on the EP-pairs
based on the new set of enhancers to make sure that it performs
similarly.

We tried to train EPIP on EP-pairs from Rao et al. looplists,
which generated suboptimal models due to the much smaller size of
training data (Supplementary Tables S12 and S13). Instead, we used
the cutoffs 30 and 5 to define positive and negative EP-pairs. We
selected this combination of cutoffs based on our testing with differ-
ent cutoffs and our previous studies (Li et al., 2016; Zhao et al.,
2016). Note that these EP-pairs defined by this combination of cut-
offs are imperfect. First, available methods to analyze Hi-C contact
matrices are still suboptimal (Forcato et al., 2017), which prevents
from defining accurate interacting regions. Second, the interacting
regions we used are either too strict (such as Rao et al. looplists) or
containing false positives and/or negatives (such as those from the
cutoff 30), which affects the quality of the obtained EP-pairs. Third,
as mentioned above, the FANTOM enhancers only represent a por-
tion of existing enhancers while the ChromHMM enhancers are not
so reliable. We chose to use these enhancers together with the
H3K27ac peaks to define active enhancers, which may miss true
positive EP-pairs. Finally, a fixed cutoff of 30 does not consider the
exponential decay of the number of supporting Hi-C reads with the
increasing distance between enhancers and promoters, which may
miss true positive EP-pairs as well.

Despite these limitations of the enhancers and EP-pairs, we be-
lieve that the majority of the positives and negatives in our training
and test datasets are true positives and true negatives, respectively.
This is because EPIP performed well on more strictly defined EP-
pairs based on interacting regions defined by other studies instead of
the cutoffs (Supplementary Table S7). Moreover, EPIP always had a
high recall/sensitivity to predict the ‘true’ positive EP-pairs when dif-
ferent cutoffs were used to define positive EP-pairs. Finally, EPIP
performed well when tested on the remaining 70% of untrained EP-
pairs, suggesting that the positive EP-pairs indeed are different from
the negatives (Supplementary Table S6).

Although this combination of cutoffs 30 and 5 was good, it may
be likely that we can do better with sample-specific cutoffs to define
positives. We did increase the cutoff to 50, 100 and 150 in
GM12878 to define positives. Our rationale was that the sequencing
depth in GM12878 was higher, which may result in certain negative
pairs with a large number of supporting Hi-C reads. However, it
turned out that the trained model based on these EP-pairs (positives
defined with the cutoff 100 in GM12878 and 30 in other samples,
negatives defined with the cutoff 5 in all samples) did not perform
better than the above-trained model based on the cutoffs of 30 and
5 (Supplementary Tables S12 and S13).

We also trained a model with more strictly defined positives
(positives and negatives defined with the cutoffs 100 and 5, respect-
ively, in all cell lines). On the three strictly defined test datasets, this
model had higher F1 scores than the model based on the combin-
ation of 30 and 5, while had worse AUPRC (Supplementary Table
S13). The poor AUPRC of this model may explain why it performed
much worse than the model trained with the combination of 30 and
5 in cross-validation (Supplementary Table S12). It may also indi-
cate that this set of more strictly defined positives do not represent
all positives well.

Although EPIP has better performance compared with the state-
of-the-art methods, there is still room for improvement. For in-
stance, the training data used in this study is not perfect. With more
accurate and more representative training data in the future, the ac-
curacy of the trained EPIP model should be further improved.
Moreover, different experimental methods are available to identify
EPIs, such as Hi-C, ChIA-PET and 5C. We used Hi-C for extracting
training data. It is worth studying how the performance of EPIP
improves if we train EPIP with EPIs from other sources together
with Hi-C. In addition, we used chromatin loops extracted by Rao
et al. to define significant interactions. Developing a method that is
able to extract interactions from raw Hi-C data may help to improve

the performance of EPIP. Finally, like all most all existing methods,
EPIP considers one EP-pair at a time to predict interacting EP-pairs
while considering multiple EP-pairs may help the discovery of true
positive EP-pairs, as shown in a previous study (Zhao et al., 2016).
In the future, we will work on these directions together with others
to further improve the accuracy of the EPI prediction.
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