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Abstract

Motivation: Whole-genome sequencing (WGS) data are affected by various sequencing biases

such as GC bias and mappability bias. These biases degrade performance on detection of genetic

variations such as copy number alterations. The existing methods use a relation between the GC

proportion and depth of coverage (DOC) of markers by means of regression models. Nonetheless,

severity of the GC bias varies from sample to sample. We developed a new method for correction

of GC bias on the basis of multiresolution analysis. We used a translation-invariant wavelet

transform to decompose biased raw signals into high- and low-frequency coefficients. Then, we

modeled the relation between GC proportion and DOC of the genomic regions and constructed

new control DOC signals that reflect the GC bias. The control DOC signals are used for normalizing

genomic sequences by correcting the GC bias.

Results: When we applied our method to simulated sequencing data with various degrees of GC

bias, our method showed more robust performance on correcting the GC bias than the other meth-

ods did. We also applied our method to real-world cancer sequencing datasets and successfully

identified cancer-related focal alterations even when cancer genomes were not normalized to

normal control samples. In conclusion, our method can be employed for WGS data with different

degrees of GC bias.

Availability and implementation: The code is available at http://gcancer.org/wabico.

Contact: hyunjulee@gist.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The whole-genome sequencing (WGS) technology is widely used for

identifying innate or acquired genetic variations. Nevertheless, the

quality of WGS data can be affected by various sequencing biases

such as GC bias and mappability bias. These biases affect perform-

ance on detection of genetic variations such as copy number (CN)

alterations. In case of a cancer study, paired normal control sequenc-

ing data can serve for correcting these biases (Teo et al., 2012).

Nonetheless, both tumor and normal control sequencing data

should be generated under the same conditions. Another popular

method is to adjust the observed depth of coverage (DOC) of a spe-

cific genomic window on the basis of the GC proportion of the win-

dow (Magi et al., 2012), as shown in the following formula:

DOCi;corrected ¼ DOCi;raw �
DOCaverage

DOCi;GC
; (1)

where DOCi;raw is the DOC of specific window i, DOCaverage is the

average DOC of all genomic windows and DOCi;GC is the value of

DOC reflecting the level of GC bias of window i. The simplest esti-

mation for DOCi;GC is to calculate the average DOC of the genomic
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windows with the same GC proportion as that of window i. The re-

lation between GC proportion and DOCs DOCi;GC can be modeled

by means of regression models such as LOESS regression (Scheinin

et al., 2014) or polynomial regression (Boeva et al., 2011). Some

studies (Benjamini and Speed, 2012; Xi et al., 2016) model the GC

bias via the number of reads mapped to the genomic position at a

nucleotide level rather than the genomic window level. On the other

hand, there are no widely accepted methods for modeling GC bias

in the DOC signal because the severity of GC bias varies sample to

sample, and factors that cause GC bias are not yet fully identified.

In this study, we developed a new GC bias correction method

based on multiresolution bias correction named Wabico (WAvelet

transform-based BIas COrrection). We used a translation-invariant

(TI) wavelet transform (Coifman and Donoho, 1995) to decompose

GC-biased original DOC signals. Then, we modeled the relation be-

tween GC proportions and DOC of the genomic regions and con-

structed artificial control DOC, DOCGC, which reflects GC bias.

When we investigated the performance of our proposed method on

GC bias correction in simulated sequencing data and real cancer

WGS data, Wabico showed better performance in samples with se-

vere bias than the other methods did.

2 Materials and methods

Figure 1 shows the procedure of the Wabico method. For a WGS

Binary Alignment Map (BAM) file, the mapped reads within genom-

ic windows are counted. These windows consist of the same number

of uniquely mappable positions (Fig. 1a). We decompose the DOC

signal of the genomic windows using the TI wavelet transform

(Fig. 1b). It produces scaling coefficients and wavelet coefficients.

The scaling coefficients represent the average of DOC values be-

tween two neighboring regions, and the relation between scaling

coefficients and their GC proportion is modeled by LOESS regres-

sion (Fig. 1c). The wavelet coefficients denote the difference in DOC

values between two neighboring genomic regions, and the relation

between the wavelet coefficients and their GC proportions is mod-

eled by two-dimensional (2D) kernel smoothing (Fig. 1d). After fit-

ted coefficients are obtained, DOCGC values are generated that

represent the GC bias embedded in input WGS data (Fig. 1e). These

DOCGC values are used for correcting GC bias at each decompos-

ition level. By checking the criterion based on the amount of direc-

tion of changes consistent with the initial direction of GC changes,

we determine whether the decomposition stops or not (Fig. 1f). If

further decomposition is necessary to take into account broader gen-

omic regions of the DOC values, the current scaling coefficients will

be decomposed into a higher level of scaling coefficients and wavelet

coefficients. The steps from (b) to (f) are repeated until the stopping

criterion is satisfied. Each step will be explained in more detail.

Finally, DOCGC values generated at the highest level that meet the

stopping criteria are suggested to correct the GC bias of the raw

DOC values.

2.1 CN quantification
The input of Wabico is DOC values obtained from WGS data. DOC

is the number of mapped sequencing reads within a given genomic

region. In early studies, the size of the genomic region for measuring

DOC was fixed (Teo et al., 2012). After that, BIC-Seq2 (Xi et al.,

2016) started to use variable-size genomic windows by taking into

account the mappability of the sequencing reads. As in BIC-Seq2,

we employed variable-size windows containing equal numbers of

uniquely mappable positions.

2.2 Decomposition of DOC values via the TI wavelet

transform
Raw DOC values are decomposed into wavelet and scaling coeffi-

cients using the TI wavelet transform (Coifman and Donoho, 1995)

with the Harr wavelet. We chose the TI wavelet transform because

it shows better signal recovery performance as compared to the

usual discrete wavelet transform (Coifman and Donoho, 1995).

At every decomposition level, it utilizes both the given signal and the

circularly shifted signal to the right. Figure 2(a–c) shows an example

of DOC signal decomposition up to level 2, where the input DOC

signal consists of 32 windows. Figure 2(a–c) illustrates the changes

of a TI-Table, which is a data structure used in the TI wavelet trans-

form. Given a raw DOC signal [(1) in Fig. 2], it is decomposed into

scaling coefficients and wavelet coefficients [(2) and (3) in Fig. 2].

The size of the two resulting coefficients is 16, i.e. a half of the input

signal. For maintaining the translation invariance property, a shifted

version of the input DOC signal is also decomposed into scaling

coefficients and wavelet coefficients [(4) and (5) in Fig. 2]. The scal-

ing coefficients of current level 1 [(2) and (4) in Fig. 2] can be

decomposed further into a higher level of scaling coefficients and

wavelet coefficients. Figure 2(c) shows the results of decomposition

from the TI-Table presented in Figure 2(b). Scaling coefficients (6)

and wavelet coefficients (7) come from scaling coefficient (2).

Scaling coefficients (8) and wavelet coefficients (9) come from the

shifted version of scaling coefficient (2). The sizes of coefficients (6),

(7), (8) and (9) are all 8 and a half of the size of coefficient (2) at the

previous level 1. Similarly, coefficients (10), (11), (12) and (13) of

level 2 come from scaling coefficient (4). In summary, the scaling

coefficients of the current level can be decomposed into scaling coef-

ficients and wavelet coefficients of the next level. The detailed pro-

cedure is described in the article about the TI wavelet transform

(Coifman and Donoho, 1995).

2.3 Modeling the relation between scaling coefficients

and their GC proportion
After scaling and wavelet coefficients for all given chromosomes are

calculated, the relations between these coefficients and their GC

proportion are modeled. First, GC proportions for these coefficients

are calculated. The scaling coefficient of level 1 covers twice the gen-

omic areas covered by the input signal of level 0. In addition, the

scaling coefficient of level j covers twice the genomic areas covered

by the scaling coefficient of level j � 1. Every scaling coefficient has

its own corresponding GC proportion. The GC proportion of the

scaling coefficient for level j is GCj;i ¼ GCj�1;2i�1 þGCj�1;2i, where

Fig. 1. An overview of GC bias correction steps
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i is the index of the coefficient of level j. The GC proportion for the

shifted scaling coefficient is GCj;i ¼ GC0j�1;2i�1 þGC0j�1;2i, where

GC0j�1 is the shifted version of GCj�1. Supplementary Figure S1

shows an example of GC proportion calculation.

Given all pairs of GC proportion and a scaling coefficient from

given chromosomes for level j, LOESS regression (Cleveland, 1979)

is used for fitting relation coefscaling;j ¼ loessðGCjÞ. The fitted

coefscaling;j is employed for constructing DOCGC. The R package

limma (Ritchie et al., 2015) provides fast LOESS regression.

Figure 3(a) depicts a distribution of raw scaling coefficients and their

GC proportions at decomposition level 6 of the simulated data gen-

erated by Pysim-sv (Xia et al., 2017) with GC biases at z¼30. The

details of the simulated sequence generation will be explained in

Section 3. The red curve represents the LOESS-fitted scaling

coefficients.

2.4 Modeling the relation between wavelet coefficients

and their GC proportion
Wavelet coefficients denote the DOC differences between two

neighboring genomic regions in the reference sequence. Because of

the difference in GC proportions between the two neighboring gen-

omic regions, a DOC difference between the genomic regions may

occur. To construct DOCGC, the DOC difference should be mod-

eled by means of the GC proportion of the two adjacent regions.

The GC proportions of the wavelet coefficients for level j are

GCleft;j;i ¼ GCj�1;2i�1 and GCright;j;i ¼ GCj�1;2i, where i is the index

of the coefficient of level j. The GC proportions of the wavelet coef-

ficients for the shifted scaling coefficient of previous level j�1 are

GCleft;j;i ¼ GC0j�1;2i�1 and GCright;j;i ¼ GC0j�1;2i, where GC0j�1 is the

shifted version of GCj�1. Supplementary Figure S1 shows an ex-

ample of GC proportion calculation.

For all the given wavelet coefficients at level j, the relation

coefwavelet;j ¼ smootherðGCright;j;GCleft;jÞ is modeled, where coefwavelet;j

is a wavelet coefficient for two adjacent GC proportions GCright;j and

GCleft;j at level j. We used an approximate Nadaraya Watson kernel

smoother provided by the smooth.2d function of the R field package

(Douglas et al., 2015).

Figure 3(b) shows the smoothed results representing the relation

between GC proportions of consecutive genomic regions and wave-

let coefficients at decomposition level 6 of the simulated data gener-

ated by Pysim-sv (Xia et al., 2017) with GC biases at z¼30. The x-

axis represents the GC proportion of the left-hand genomic region,

the y-axis represents the GC proportion of the right-hand genomic

region and the color represents the value of wavelet coefficients. In

this figure, when GC proportion of the left-hand region is 0.4 and

the GC proportion of the right-hand region is greater than 0.4, the

value of the wavelet coefficient between the two neighboring regions

is positive (red pixel), and the DOC increases. On the other hand, if

GC proportion of the left-hand region is 0.4 and the GC proportion

of the right-hand region is less than 0.4, the value of the wavelet co-

efficient between the two neighboring regions is negative (blue

pixel), and the DOC decreases. Supplementary Figure S2 illustrates

another example of a relation between coefficients and their GC

proportion.

2.5 Construction of DOCGC

After obtaining fitted scaling coefficients from LOESS regression

and smoothed wavelet coefficients from kernel smoothing, we con-

struct the DOCGC that represents the GC bias embedded in the raw

input DOC signal. We prepare an empty TI-Table data structure.

Each element of the TI-Table matches genomic regions that have

GC proportion information as we mentioned in the previous sec-

tions. We can set the value of every element in the TI-Table to the

fitted coefficients calculated at the previous steps because these val-

ues have their own GC proportion information. After we fill in all

the values of the TI-Table, the DOCGC is constructed by means of

the TI wavelet inverse transform.

Fig. 2. An example of TI-Tables during raw DOC signal decomposition and

construction of an artificial control DOC signal. (a) A TI-Table of the input

DOC signal consisting of 32 windows. It is a 1�32 numerical matrix. (b) The

TI-Table after signal decomposition from the input DOC signal (a). This is a

2�32 matrix. (c) The TI-Table after signal decomposition of scaling coeffi-

cients from (b). TI-Table size is 3�32. (d) The modeling step for these coeffi-

cients. (e) The TI-Table consisting of fitted coefficients from the previous

modeling step. (f) The TI-Table after averaging out of the scaling coefficient

and the wavelet coefficient of level 2 in TI-Table (e). (g) The TI-Table contain-

ing an artificial control DOC signal after averaging out of the coefficients of

TI-Table (f)

Fig. 3. The relation between coefficients and their GC proportions for the

simulated GC-biased sequencing reads. (a) The relation between GC propor-

tion and a scaling coefficient. The heatmap represents the distribution of raw

scaling coefficients. The x-axis means the GC proportion of the coefficients,

and the y-axis denotes the value of the coefficients. Most of scaling coeffi-

cients are concentrated in blue areas. The scaling coefficients are rarely dis-

tributed in the green areas. The red curve is the LOESS-fitted scaling

coefficient depending on the specific GC proportion. (b) The relation between

two neighboring GC proportions and a wavelet coefficient. The heatmap indi-

cates the relation between the value of wavelet coefficients (pixel color) and

the GC proportion of two neighboring genomic regions (x-axis and y-axis)

from 2D kernel smoothing. Red areas represent the increasing DOC values of

the right-hand genomic region compared to the left-hand region in the two

adjacent genomic regions. The blue areas mean the opposite case
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For example, Figure 2(e–g) shows an example of construction of

DOCGC. Scaling coefficients (14) of level 2 are up-sampled. Scaling

coefficients (15) are up-sampled and then shifted to the left. These

two signals are averaged for maintaining the translation invariance

property. Similarly, wavelet coefficient (16) is up-sampled. Wavelet

coefficient (17) is up-sampled and then shifted to the left. These two

signals are also averaged for the same reason. Scaling coefficient

(18) for level 1 is generated by summing these two averaged signals.

Scaling coefficient (23) is calculated from coefficients (19), (20),

(21) and (22) in the same way as in the construction of coefficient

(18). Besides, artificial control DOC signal (26), DOCGC, is gener-

ated from coefficients (18), (23), (24) and (25) in the same way. The

details of this TI wavelet inverse transform are described by

Coifman and Donoho (1995).

After that, GC bias-corrected CNs are calculated via the follow-

ing formula:

CNi;Wabico ¼
DOCi;raw

DOCi;GC
; (2)

where DOCi;raw is the raw DOC of specific window i, DOCi;GC is

DOCGC of windows i. DOCGC serves to control GC bias and to

normalize the DOC signal. If CNi is close to 1.0, then the CN of

genomic window i is close to ploidy of chromosomes in the cell.

2.6 The boundary problem
The input signal length in the TI wavelet transform should be 2J.

Because the genomic lengths of chromosomes are not usually 2J, the

signal should be modified accordingly. Given DOC signals or CN

ratio signals, we create a new input signal of length 2J by extending

the original signal symmetrically and periodically. The boundary

problem was handled in a study by Hur and Lee (2011).

2.7 Determination of the decomposition level
The amount of GC bias varies from sample to sample. Although

some samples can be corrected using DOCGC constructed from the

low decomposition levels, if samples are severely affected by GC

bias, the DOCGC constructed at higher decomposition levels may be

more effective. To adaptively correct GC bias, DOCGC signals con-

structed from the low decomposition level to the high decompos-

ition level are sequentially applied to the raw DOC signals to

calculate CNWabico values. In addition, we developed a criterion for

determining a proper decomposition level.

When levels change from i to iþ1, for each GC window, the

CNWabico value at level i is compared with that at level iþ1, and the

direction of change of CNWabico is determined: an increase in

CNWabico or a decrease in CNWabico. Directions of changes in

CNWabico from level 1 to level 2 across all GC windows are referred

to as the initial direction of changes, and they are employed to check

the consistency of direction of the changes for further level decom-

position. The proper decomposition level for the WGS data is deter-

mined by the ratio of consistency values between the direction of

changes at a given level and the initial direction of changes.

Figure 4 shows an example of the sequential GC corrections and

determination of a proper decomposition level for the simulated

sequencing data. Initially, CNWabico values corrected by means of

DOCGC from decomposition level 1 are calculated [gray line in

Fig. 4(a)]. Next, the GC bias in the raw DOC signal is corrected

using DOCGC from decomposition level 2 [black line in Fig. 4(a)].

The curve of CNWabico at level 2 is closer to the value 1.0 on the y-

axis than that of CNWabico at level 1. The y-axis value 1.0 represents

an even distribution of CN values regardless of GC proportion in

the genomic windows. Here, the direction of changes in CNWabico is

increasing in genomic windows whose GC proportion is less than

0.4 [white color in the bar of Fig. 4(a)], while that of CNWabico is

decreasing in genomic windows whose GC proportion is greater

than 0.4 [black color in the bar of Fig. 4(a)]. These directions of

changes from level 1 to level 2 for all GC windows are the initial

directions of changes. Figure 4(b) presents CNWabico values cor-

rected with DOCGC from level 2 (gray curve) to level 3 (black

curve). The black color in the bottom bar of Figure 4(b) denotes the

GC proportions in which directions of changes are consistent with

the initial direction of changes from level 1 to level 2, showing that

90% of the GC proportions are consistent. We continue to decom-

pose until the consistent proportion is less than 50%. Figure 4(d)

indicates that the consistent proportion is less than 50% when the

decomposition level is greater than 6. Thus, DOCGC from the level

6 decomposition is finally selected for correcting GC bias in the raw

DOC signal [Fig. 4(c)]. Details about the decomposition stopping

criteria are provided in Supplementary Figure S3, Figure S4 and

Section 1.4.

2.8 GC bias correction by other methods
We compared the performance of Wabico with that of the following

approaches to GC bias correction. The uncorrected CN ratio signal

is calculated using the following formula:

CNi;raw ¼
DOCi;raw

medianðDOCk;rawÞ
; (3)

where medianðDOCk;rawÞ is the median of all raw DOCs from the

given chromosomes.

Fig. 4. An example of multiresolution GC bias correction. (a) CNWabico values

from level 1 (gray) to level 2 (black). (b) CNWabico values from level 2 (gray) to

level 3 (black). (c) CNWabico values from level 5 (gray) to level 6 (black). (d)

CNWabico values from level 6 (gray) to level 7 (black). Upper bars in all the pan-

els show the direction of changes from level i to level iþ1. The black color

and white color in these upper bars indicate increasing and decreasing direc-

tions, respectively. Bottom bars in panels (b), (c) and (d) denote the ratio of

change directions consistent with the initial direction of changes. Black areas

represent the proportion consistent with the initial direction of changes.

CNWabico values on the y-axis are the average of CNWabico at 102 400 uniquely

mappable positions
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In the naive GC correction method, the corrected CN ratio signal

is calculated from the GC proportion of the fixed window with a

size of 100 bp. It is computed via the following formula:

CNi;naive ¼
DOCi;raw

meanðDOCGCðkÞ¼GCðiÞ;rawÞ
; (4)

where meanðDOCGCðkÞ¼GCðiÞ;rawÞ is the average of DOCraw bins

whose GC value is equal to the GC of the ith bin.

The corrected CN ratio signal from the BIC-Seq2-based expected

read count is calculated by means of the following formula:

CNi;BIC�Seq2 ¼
DOCi;raw

DOCi;expected
; (5)

where DOCi;expected is the expected numbers of reads in bin i gener-

ated from the BIC-Seq2 normalization step.

3 Results

We applied Wabico to the simulated sequencing reads containing

GC bias. We also applied Wabico to the real glioblastoma multi-

forme (GBM), ovarian cancer (OVC) and lung adenocarcinoma

(LUAD) WGS datasets from TCGA. Authorization was obtained

from the database of Genotypes and Phenotypes (accession No.

phs000178.v8.p7). The real data were generated on the Illumina

HiSeq or GenomeAnalyzer platform. All the BAM files are aligned

to the hg19 human reference sequence.

For quantifying DOC values of the WGS data, we set a genomic

window consisting of 100 uniquely mappable genomic positions,

where a 50mer sequence at the position is uniquely aligned to that

position but not elsewhere (Xi et al., 2016). In this section, we

denoised the CN signals by a TI wavelet transform denoising pro-

cedure (Coifman and Donoho, 1995) before investigating GC effects

in the CN signals. To get denoised CN signals, we decomposed a

CN signal up to decomposition level 15 and set the wavelet denois-

ing parameter C to 2. See Jang et al. (2016) for details of the denois-

ing procedure.

3.1 GC bias correction in simulated data
We used Pysim-sv (Xia et al., 2017) for generating simulated short

sequencing reads. Chromosomes 8 and 22 from hg19 were selected

for the simulation. First, we created diploid sequences of chromo-

somes 8 and 22 and then generated 100 bp short reads with 30�
coverage. Because Pysim-sv has a function for simulating GC bias,

we generated various patterns of GC biases based on the formula

y ¼ �z� ðx� 0:6Þ2 þ 1 in Pysim-sv, where x represents the GC

proportion of the sequencing reads, y denotes a sampling rate and z

is a constant value: 2.5 in the original code. Severity of the GC bias

increases as z increases. Figure 5(a) presents the results on three z

values such as 5 (blue), 20 (purple) and 50 (red). Figure 5(b) shows

LOESS-fitted GC bias curves of CNraw from the sequencing reads

for these z values. Figure 5(c) depicts a CNraw signal representing

fluctuations of GC bias for three z values. As z increases, the fluctu-

ation of the signal increases.

Figure 6(a, b and c) shows the results of GC bias correction by

Wabico for simulated reads with z values of 5, 20 and 50, respect-

ively. Black lines in the plots represent CNWabico values. Readers can

see that even if GC biases increase severely, the fluctuations of

CNWabico values decrease effectively.

We compared other approaches with Wabico: CNBIC�Seq2,

CNnaive and CNraw. Because the standard deviations (SD) of CN val-

ues after GC correction decrease as GC is corrected better, we

compared SDs of CN ratios among these four approaches. In

Figure 7, blue, green, red and black lines are SDs of CNraw, CNnaive,

CNBIC�Seq2 and CNWabico at various z values. SDs of CNWabico val-

ues are smaller than those of CNraw, CNnaive and CNBIC�Seq2 across

various z values, suggesting that Wabico shows more stable correc-

tion performance as compared to the other methods. Supplementary

Figure S5 presents the comparison of CNWabico and CNBIC�Seq2

when z is 50. CNWabico yields smoother results than CNBIC�Seq2

does. Moreover, we compared the performance of the GC correction

methods using the simulated data with CN alterations. We created

other simulation data with various levels of GC bias and 10 CN var-

iations that are evenly spaced. CN alterations were identified after

GC bias correction by Wabico and BIC-seq2-based expected read

count. F1 scores of CNWabico were consistently higher than those of

CNBIC�Seq2 at any GC bias severity. Details are shown in

Supplementary Figure S6.

In addition, we applied Wabico and BIC-Seq2-based expected

read count to the WGS data of paired normal samples of the 37

patients with GBM. When SDs of CNWabico and CNBIC�Seq2 were

compared, SDs of CNWabico were smaller in 35 samples

(Supplementary Table S1).

Fig. 5. GC bias effects from simulated sequencing reads for various z values.

(a) Plots for the GC bias formula at z values of 5 (blue), 20 (purple) and 50

(red), where the x-axis and y-axis represent the x and y values in y ¼
�z � ðx � 0:6Þ2 þ 1 in Pysim-sv, respectively. (b) LOESS-fitted GC bias curves

of CNraw for the three z values. CNraw values on the y-axis are the average of

CNraw at 102 400 uniquely mappable positions. (c) CNraw at various z values.

The green area represents the centromere region of the chromosome in the

reference sequence

Fig. 6. CNs corrected by Wabico. The blue signal in panel (a), the purple signal

in (b) and the red signal in (c) are the same signals CNraw with the corre-

sponding colors in Figure 5 (c). The black signals in (a), (b) and (c) are

CNWabico for Wabico

3894 H.Jang and H.Lee

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/3890/5378704 by guest on 19 April 2024

Deleted Text: &hx2013;
Deleted Text: .
Deleted Text: ,
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: <ext-link xmlns:xlink=
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz174#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz174#supplementary-data
Deleted Text: &hx2013;
Deleted Text: <ext-link xmlns:xlink=
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz174#supplementary-data
Deleted Text: &hx2013;
Deleted Text: <ext-link xmlns:xlink=
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz174#supplementary-data


3.2 GC bias correction of real cancer datasets
Figure 8 shows the results of GC bias correction via multilevel de-

composition of chromosome 7 of the TCGA-15-1444-01A sample

from GBM. Left-hand plots of Figure 8 depict the denoised CN val-

ues, and right-hand plots are GC bias curves of the CN ratio in the

102 400 bp of uniquely mappable genomic positions. Genomic

regions within the dotted box indicate the CN alterations around

CDK6, which is known as a gene associated with cancer. Figure 8(a)

presents CNraw, and the alteration around CDK6 is not distin-

guished well from the neighboring signals. In addition, due to the se-

vere fluctuation of the signal across chromosome 7, it incorrectly

seems that there are severe CN changes across the chromosome.

Figure 8(b) shows the effect of GC correction when CNWabico values

are obtained by GC bias correction at decomposition level 1. The al-

teration around CDK6 is more distinguishable than that in

Figure 8(a). Although the amplitude of fluctuations decreased, the

GC bias still influences the signal. Figure 8(c and d) depicts the

results of GC bias correction at decomposition levels 5 and 10. As

the decomposition levels increase, the fluctuations decrease signifi-

cantly and the alterations around CDK6 are more distinguishable.

Figure 9 illustrates how well the GC bias effect embedded in

sample TCGA-15-1444-01A is recovered by the fitted coefficients of

TI wavelet transform decomposition. In Figure 9(a–c), the denoised

CNraw (red color) is compared with CNcontrol ¼ DOCi;GC

medianðDOCk;GCÞ at de-

composition levels 1, 5 and 10 (black color), respectively. As decom-

position levels increase, the fluctuation patterns of CNcontrol become

more similar to those of CNraw. Supplementary Figure S7 shows the

distribution of CNWabico. As decomposition levels increase, the

peaks in the distribution become more distinguishable.

In our previous study (Jang et al., 2016), we successfully identi-

fied focal alterations around known cancer genes in TCGA WGS

data after normalizing tumor samples to paired normal samples. In

the present study, we tested whether the alterations around these

genes can be identified without normal controls if we apply the pro-

posed GC correction method to tumor samples. A cancer gene was

considered to be identified if the two conditions in Supplementary

Material were satisfied. Tables 1, 2 and 3 list the known cancer

genes and the number of samples with alteration in these genes for

GBM, LUAD and OVC WGS datasets, respectively. Wabico

identified altered cancer genes in most of TCGA samples without

normal control data, except for some genes located in regions that

are not sufficiently distinguishable as focal aberrations, such as

EGFR in the TCGA-06-0686-01A GBM sample and CDK4 in the

TCGA-15-1444-01A GBM sample.

In addition, we compared GC bias correction by BIC-Seq2-based

expected read counts and by Wabico for identification of these

known cancer genes with focal aberrations. For this task, we applied

these two GC bias correction methods to tumor samples and then

segmented them by the BIC-Seq2 segmentation method. The com-

parison details and results are presented in Supplementary Tables

S2, S3 and S4, showing that Wabico outperformed BIC-Seq2-based

expected read counts on GBM, but the two methods identified the

same number of genes in LUAD and OVC.

3.3 Correlation with SNP array level 3 datasets
We compared CNWabico and CNBIC�Seq2 by calculating correlation

coefficients between each of them and the CN ratio from SNP array

Fig. 7. SD of simulated CN ratios at various z values from 5 to 50. Blue, green,

red and black lines represent the SDs of denoised CNraw, CNnaive, CNBIC�Seq2

and CNWabico signals, respectively

Fig. 8. CN signals on chromosome 7 (left) and GC bias curves (right) of sam-

ple TCGA-15-1444-01A. CNWabico values on the y-axis of the GC bias plots are

the average of CNWabico at 102 400 uniquely mappable positions. (a) CNraw

values and their GC bias curve. (b) CNWabico values and their GC bias curve

obtained with DOCGC constructed from level 1 decomposition. (c) CNWabico

values and their GC bias curve obtained by means of DOCGC constructed

from level 5 decomposition. (d) CNWabico from level 10 decomposition

Fig. 9. Similarities of the GC bias pattern between the CNraw signal and CNcontrol

signal on chromosome 7 of the TCGA-15-1444-01A sample. The red signals in

panels (a), (b) and (c) are CNraw signals in Figure 8(a). The black signals in (a), (b)

and (c) are CNcontrol signals generated at levels 1, 5 and 10, respectively
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level 3 data of the same TCGA samples, where denoised CNWabico

and CNBIC�Seq2 served for calculating correlation coefficients.

Table 4 reveals that the WGS samples corrected by means of

Wabico have higher correlation values with SNP array level 3 data

than those corrected by the BIC-Seq2 normalization method for

GBM, LUAD and OVC WGS datasets. Supplementary Tables S5, S6

and S7 give correlation values for the GBM, LUAD and OVC sam-

ples, respectively. We performed the paired t-test for the difference

in correlation coefficients for samples of each cancer type. For GBM

and LUAD, there were significant differences, but there was no sig-

nificant difference for OVC, as shown in the last column of Table 4.

Moreover, because the correlations were calculated by means of

most markers in the whole genome, they were mostly affected by

broad CN changes rather than by focal aberrations. Thus, this result

implies that broad CN aberrations can be identified more effectively

via the correction using Wabico than the correction using the BIC-

seq2-based expected read count.

In addition, for a further comparison, we applied a CN segmen-

tation method to WGS data that are GC-corrected by Wabico and

BIC-Seq2-based expected read counts, and then measured the preci-

sion, recall and F1-scores of CN segments by comparing them with

CN segments in SNP array level 3 data. F1-scores of CN segments

corrected by Wabico were higher than those corrected by the BIC-

Seq2-based expected read count in greater numbers of samples for

all three tumor datasets. Detailed results are given in Supplementary

Tables S8, S9 and S10.

4 Discussion

We developed a new GC bias correction method. We decomposed

original DOC into scaling and wavelet coefficients and fitted each

coefficient by LOESS regression and kernel smoothing, respectively.

After generating DOCGC, we reduced the GC bias by dividing ori-

ginal DOC by DOCGC.

We employed variable-size windows for quantifying the mapped

reads as BIC-Seq2 did. It has an advantage of reducing the effect of

mappability bias by taking into account only uniquely mappable

positions. In the wavelet decomposition, we calculated differences

and averages of two neighboring genomic regions although their ac-

tual genomic lengths could be different. When we set the windows

to contain 100 uniquely mappable positions, most of window sizes

were 100 bp in hg19. When we manually inspected already known

alterations, the effect of variable-size windows did not seem to be

substantial.

In Wabico, we used a multiresolution approach to control GC

bias. At a given decomposition level, DOCGC is calculated from GC

bias information from the lowest level to that level. Note that the de-

gree of uncertainty in the DOCGC signal can change according to

the decomposition level. As illustrated in Figure 8(c and d), deletion

events in Figure 8(c) are removed in Figure 8(d). As the level

increases, some false positive events can be removed although true

Table 2. CN-altered LUAD-related genes

Chr Start End Name Type Total Identified Ratio

5 1253262 1295184 TERT amp 2 2 1.00

5 58264865 59817947 PDE4D del 3 3 1.00

9 8314246 10612723 PTPRD del 2 2 1.00

9 21967751 21995300 CDKN2A del 2 2 1.00

12 69201956 69239214 MDM2 amp 2 2 1.00

19 30302805 30315215 CCNE1 amp 2 2 1.00

Note: ‘Start’, ‘End’, ‘Name’, ‘Type’, ‘Total’, ‘Identified’ and ‘Ratio’ are the

same as those described in Table 1.

Table 3. CN-altered OVC-related genes

Chr Start End Name Type Total Identified Ratio

1 40361098 40367928 MYCL amp 7 7 1.00

1 150547032 150552066 MCL1 amp 4 4 1.00

3 168801287 169381406 MECOM amp 7 7 1.00

4 1723227 1746898 TACC3 amp 5 5 1.00

4 73939093 74124515 ANKRD17 amp 2 2 1.00

5 1253262 1295184 TERT amp 4 4 1.00

6 19837617 19840915 ID4 amp 4 4 1.00

8 55370495 55373448 SOX17 amp 7 7 1.00

8 128747680 128753674 MYC amp 16 16 1.00

10 89622870 89731687 PTEN del 6 6 1.00

11 77811982 77850706 ALG8 amp 6 6 1.00

12 25357723 25403870 KRAS amp 4 4 1.00

13 48877887 49056122 RB1 del 4 4 1.00

14 21457929 21465189 METTL17 amp 3 3 1.00

17 29421945 29709134 NF1 del 3 3 1.00

19 30302805 30315215 CCNE1 amp 16 16 1.00

Note: ‘Start’, ‘End’, ‘Name’, ‘Type’, ‘Total’, ‘Identified’ and ‘Ratio’ are the

same as those described in Table 1.

Table 4. The number of WGS cancer samples having greater correl-

ation coefficients with the Wabico or BIC-Seq2 method

Cancer Total Wabico BIC-Seq2 P-values

GBM 37 30 7 0.010

LUAD 28 24 4 0.023

OVC 47 25 22 0.116

Note: ‘Cancer’ is a cancer type of TCGA WGS datasets. ‘Total’ is the num-

ber of cancer patients in the dataset. ‘Wabico’ is the number of patients with a

greater correlation coefficient between SNP level 3 segment and denoised CN

values corrected by Wabico than that between SNP array level 3 segment and

denoised CN values corrected by BIC-Seq2-based expected read counts. ‘BIC-

Seq2’ is the case opposite to ‘Wabico’. ‘P-values’ are obtained by a paired

t-test.

Table 1. CN-altered GBM-related genes

Chr Start End Name Type Total Identified Ratio

1 204485511 204542871 MDM4 amp 6 6 1.00

4 1795034 1810599 FGFR3 amp 4 4 1.00

4 55095264 55164414 PDGFRA amp 6 6 1.00

6 163835032 163999628 QKI del 3 3 1.00

7 55086714 55324313 EGFR amp 23 22 0.96

7 92234235 92465908 CDK6 amp 4 4 1.00

9 21967751 21995300 CDKN2A del 14 14 1.00

9 22002902 22009362 CDKN2B del 13 13 1.00

10 89622870 89731687 PTEN del 3 3 1.00

10 123237848 123357972 FGFR2 amp 2 2 1.00

12 4382938 4414516 CCND2 amp 2 2 1.00

12 58141510 58149796 CDK4 amp 11 10 0.91

12 69201956 69239214 MDM2 amp 7 7 1.00

17 73314157 73401790 GRB2 amp 2 2 1.00

Note: ‘Start’ and ‘End’ are starting and ending positions of a gene, respect-

ively. ‘Type’ is amplification or deletion of the gene. ‘Total’ is the number of

samples that were found to have an alteration around that gene in our previ-

ous study. ‘Identified’ is the number of samples that were detected without

normal samples in this study. ‘Ratio’ is ‘Identified’ divided by ‘Total’.
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events might be removed as well. Thus, the choice of proper decom-

position levels is important. Therefore, in this study, we set the min-

imal ratio of the direction of changes to the value consistent with the

initial direction of changes, 50%. As we increase decomposition lev-

els, consistency values with the initial direction of changes decrease

overall (Fig. 4). When the ratios of the consistency fall below 50%

at some levels, the plots of DOCGC for these levels seem to be dis-

torted and do not appear to properly reflect the GC bias embedded

in raw input DOC signals. Although this is not a mathematically

rigorous decomposition stopping criterion, it works practically well

for both simulated and real WGS datasets.

We applied Wabico to the three WGS different tumor types. In

the GBM and LUAD data, the WGS samples corrected by Wabico

showed significantly higher correlation with SNP array level 3 data

than those corrected by the BIC-Seq2 expected read count method

while the difference between two methods was marginal in the OVC

data. This different result depending on cancer type might be due to

other factors in addition to the severity of GC bias. For example, we

observed that in the given WGS datasets, the OVC samples are CN

altered in more genomic regions than the GBM and LUAD samples.

Thus, more research is required to investigate the effect of other fac-

tors such as cancer characteristics for detecting the CN alterations.

CNVkit (Talevich et al., 2016) is a tool for identification of CN

variations in whole-exome sequencing data and provides correction

of GC bias in whole-exome sequencing data. To correct GC bias, it

employs a rolling median. Those authors reported that on sample

data, the rolling median and the LOESS method produced similar

fits. Because our method involves the LOESS regression based on

multiresolution decomposition, we compared the performances be-

tween Wabico and the GC correction method used in the CNVkit

method. Wabico showed better performance for all the three tumor

types. Comparison details are described in Supplementary Tables

S11, S12 and S13 and Figure S8.

Wabico helps to visually inspect fluctuations of the DOC signal

that can be checked by GC bias (Figs 5c, 6, 8 and 9]. Furthermore,

the DOC values corrected by Wabico can serve as input to segmen-

tation algorithms such as BIC-Seq2 and circular binary segmentation

(Olshen et al., 2004) for identifying the exact breakpoint of a CN al-

teration or for determining integer CNs of genomic regions.
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