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Cosmochimie (IMPMC), BiBiP, 75005 Paris, France

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on October 4, 2018; revised on March 5, 2019; editorial decision on March 21, 2019; accepted on April 2, 2019

Abstract

Motivation: Multiple sequence alignment programs have proved to be very useful and have

already been evaluated in the literature yet not alignment programs based on structure or both

sequence and structure. In the present article we wish to evaluate the added value provided

through considering structures.

Results: We compared the multiple alignments resulting from 25 programs either based on

sequence, structure or both, to reference alignments deposited in five databases (BALIBASE 2 and

3, HOMSTRAD, OXBENCH and SISYPHUS). On the whole, the structure-based methods compute

more reliable alignments than the sequence-based ones, and even than the sequenceþstructure-

based programs whatever the databases. Two programs lead, MAMMOTH and MATRAS, never-

theless the performances of MUSTANG, MATT, 3DCOMB, TCOFFEEþTM_ALIGN and

TCOFFEEþSAP are better for some alignments. The advantage of structure-based methods

increases at low levels of sequence identity, or for residues in regular secondary structures or

buried ones. Concerning gap management, sequence-based programs set less gaps than

structure-based programs. Concerning the databases, the alignments of the manually built data-

bases are more challenging for the programs.

Availability and implementation: All data and results presented in this study are available at: http://

wwwabi.snv.jussieu.fr/people/mathilde/download/AliMulComp/.

Contact: mathilde.carpentier@mnhn.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple alignments of protein sequences are an essential tool for

exploring the evolution, diversity, conservation and function of pro-

teins (Feng and Doolittle, 1987; Lecompte et al., 2001; Levasseur

et al., 2008; Wong et al., 2008). Despite the impressive and increasing

number of available structures, most of these alignments are still com-

puted by softwares that rely only on sequence information. Protein

structures are mostly used as a second step in order to manually refine

the alignment (Lemey et al., 2009) or to guide a particularly difficult

alignment of very divergent proteins (Jean et al., 1997). Since it is usu-

ally admitted that structures are more conserved than sequences

(Illergård et al., 2009) it is somehow surprising that multiple protein

structure alignment methods, or methods combining sequence and

structure, are not more widespread.

The goal of protein sequence alignments is to align homologous

amino acids that derive from an ancestral sequence by substitutions.

In structural alignments, the aligned positions are similar from the

point of view of local and/or global conformations, and this structural

similarity does not always imply homology (Godzik, 1996). Indeed,

similar sub-domain fragments can be found in many different folds,

with unrelated functions or various origins (Alva et al., 2015;

Lamarine et al., 2001; Nepomnyachiy et al., 2017). The conceptual

model behind sequence alignment explicitly considers three events for

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3970

Bioinformatics, 35(20), 2019, 3970–3980

doi: 10.1093/bioinformatics/btz236

Advance Access Publication Date: 3 April 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/3970/5426703 by guest on 09 April 2024

http://orcid.org/0000-0001-8877-1368
http://wwwabi.snv.jussieu.fr/people/mathilde/download/AliMulComp/
http://wwwabi.snv.jussieu.fr/people/mathilde/download/AliMulComp/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz236#supplementary-data
Deleted Text: .
Deleted Text: ; Lecompte <italic>et<?A3B2 show $146#?>al.</italic>, 2001; <xref ref-type=
Deleted Text:  
Deleted Text: Alva <italic>et<?A3B2 show $146#?>al.</italic>, 2015; 
https://academic.oup.com/


evolution: insertion, deletion and mutation. The model behind struc-

ture alignment is not so clear, partly because the impact of those three

events on the folding step of protein structures is not well understood.

The design of such a model is one of the greatest challenges of our dec-

ade for structural biology (Liberles et al., 2012).

Homology is difficult to assess, especially when the proteins

show a low level of similarity or if the homology of the whole genes

is questionable. Due to all the considerations above, it is difficult to

claim that structure alignments provide a golden standard for evalu-

ating the quality of sequence alignment. However, as structures are

better conserved, alignments should be more reliable when informa-

tion from sequences and structures are combined. We compared in

this article the alignments computed from structure or both struc-

ture and sequence with those from sequence only.

Multiple sequence alignment methods have been compared in

many articles and with several types of benchmarks reviewed in

Iantorno et al. (2014). The most widely used benchmarks are com-

posed of a collection of reference alignments considered as the gold

standard. The reference alignments are constructed mainly by using

the sequence and structural information, but also according to other

information as the function (Thompson et al., 2011). Other types of

benchmarks rely on simulated sequences (Nuin et al., 2006), on dir-

ect comparison of all computed alignments, without any reference

alignment (Landan and Graur, 2007; Lassmann and Sonnhammer,

2005) or on the validity of phylogenetic trees computed from the

alignments (Dessimoz and Gil, 2010).

For structure-based alignment methods, less comparative studies

have been conducted and most of them compare pairwise structural

alignment programs (Feng and Sippl, 1996; Gerstein and Levitt,

1998; Godzik, 1996; Kim and Lee, 2007; Mayr et al., 2007; Sauder

et al., 2000; Slater et al., 2013). Multiple structural alignment pro-

grams are compared in the study of Berbalk et al. (2009). The

authors noticed that structure-based alignment programs were gen-

erally very difficult to use and that there is room for improvements

concerning use and applicability. They concluded that combining

different alignment approaches into a single program relying on an

automated scoring could improve the alignment quality but that

until such a method is implemented, it seems important for a user to

apply different tools and to manually compare their results.

We have conducted here a thorough comparative study of the per-

formances of sequence-based and structure-based programs in order to

address the following questions: are structure-based methods really su-

perior in order to retrieve homologous residues? Or is it the sequence

and structure ones? In which cases should we use structure-based meth-

ods, sequenceþstructure-based methods or sequence-based methods?

2 Materials and methods

2.1 Databases
In this study, we used reference multiple alignments built from

sequences, structures and function information, and considered them

as the gold standard. We did not use the three other types of bench-

marks mentioned above because: (i) the use of simulated sequences is

not possible in our case because there is no associated structure; (ii) it

is possible to compare all alignments without a reference but, as pro-

grams may be consistent with each other but all wrong, we decided to

avoid this approach in this article; (iii) the phylogeny-based approach

would be very interesting but it requires a database of validated trees

which is beyond the scope of the article.

We have selected 847 alignments, containing at least three protein

chains or domains, from five reference multiple alignment databases:

BALIBASE 2 (Thompson et al., 1999b), BALIBASE 3 (Thompson

et al., 2005), HOMSTRAD (Mizuguchi et al., 1998a), OXBENCH

(Raghava et al., 2003) and SISYPHUS (Andreeva et al., 2007). We

restricted the databases to proteins present in the protein data bank

that represent only the structured domains of protein sequences, thus

discarding intrinsically disordered proteins. This restriction is necessary

when using structure alignment methods. Some regions may be disor-

dered in resolved protein structure but their proportion is low (1% of

the residues in human protein-coding genes), whereas the proportion of

these regions predicted in proteins of unknown structure is 20% (van

der Lee et al., 2014). Some other alignments have been discarded: those

with two or more proteins with identical amino acid sequence, those

with missing residues in structures or with various inconsistencies. We

did not consider the alignments of other well-known databases listed in

Blackshields et al. (2006) for various reasons: PREFAB (Edgar, 2004)

because it is composed of pairwise alignments; IRMbase (Subramanian

et al., 2005) because there is no structure associated to the simulated

fragments and SABMARK (Van Walle et al., 2005) because of some

inconsistencies in the multiple alignments which are built from pairwise

structural alignments, pointed by the author and in Edgar (2010). We

also had difficulties accessing PALI (Balaji et al., 2001) and could not

download the database. For all the databases, we only consider the

core of the alignments but its definition depends on the database.

We have selected 29 families from BALIBASE 2 (BB2) and 38 from

BALIBASE 3 (BB3), manually curated by checking the alignments of

functional and other conserved residues. In each family, all proteins

share the same structural fold, so the core can be reliably defined,

excluding ambiguous or non-superimposable regions, unrelated sec-

ondary structure borders or some loop regions. BB2 and BB3 were

kept even if they are from the same source because the protein families

are different between BB2 and BB3. HOMSTRAD, from which we

selected 357 families, is exclusively based on proteins with known

structures, and each family is aligned with the programs MNYFIT

(Sutcliffe et al., 1987), STAMP (Russell and Barton, 1992) and

COMPARER (Sali and Blundell, 1990). These structure-based align-

ments are annotated with JOY (Mizuguchi et al., 1998b) and individu-

ally examined and modified if necessary. JOY produces core blocks

annotations defined as the regular secondary structure elements (SSEs).

We retrieved from OXBENCH 330 alignments with three or more pro-

teins in each alignment (subset ‘multi’), not split in domains (full-length

sequences). These multiple alignments are computed by STAMP

(Russell and Barton, 1992). All the aligned positions were taken as the

core blocks. The last database, SISYPHUS, is based on the families of

domains from the structural classification SCOP (Murzin et al., 1995)

with non-trivial structural relationships. Multiple alignments are manu-

ally constructed for structural regions that range from oligomeric bio-

logical units, or individual domains to fragments of different sizes and

are manually curated. SISYPHUS annotates the structurally equivalent

residues in the alignments and we consider them as the core blocks.

Many structure-based programs do not output all the residues of

input protein structures (some residues are removed or ignored) or

change the name of the sequences. We have developed two programs

for solving this issue: the first matches the protein names in the refer-

ence alignments and the protein names in the program-calculated

alignments and the second makes each sequence of a program-

calculated alignment identical to the sequence in the reference align-

ment. The residues removed by some structure-based programs are

inserted in the alignment and the rest of the column is filled with gaps.

2.2 Alignment quality evaluation
The alignments produced by each program are evaluated by com-

parison with the reference alignments through two scores, following
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Thomson et al. (1999a): (i) the fraction of pairs of residues in the

reference alignment correctly identified by a given method, known

as the sum-of-pairs (SP) score; (ii) the column score (CS) that

describes the fraction of reference columns identified. As usually

done in alignment method comparisons (Do et al., 2005; Golubchik

et al., 2007; Thompson et al., 1999a), Friedman tests (Friedman,

1937) were performed. This test is more conservative than the

Wilcoxon test that assumes a symmetrical difference, and this is not

always the case. All tests, plots and heatmaps have been done with

R (R Core Team, 2017). The average multiple root mean square

(RMS) have been computed with THESEUS (Theobald and Wuttke,

2006) that has been applied to all alignments, reference ones or

computed by the tested programs. We have counted the number of

gaps in all columns between the first and last core elements. We pre-

sent in the article only the proportion of columns containing one or

more gap opening. Accessible surface area (ASA) is calculated with

NACCESS for all the proteins, in order to split the amino acids in

two classes: either buried (relative ASA <25%) or exposed (Petersen

et al., 2009). Secondary structure assignments have been performed

with STRIDE (Frishman and Argos, 1995). The six classes given in

the output of STRIDE are back coded in three classes: helices,

strands and coils. All analyses have been led according to the follow-

ing characteristics: the residues have been assigned either as buried

or accessible, and either in helix, strand or other (loop).

2.3 Programs
We have three categories of multiple alignment programs: sequence-

based, sequenceþstructure-based and structure-based. To be

included in this study a program must: (i) be available for download,

(ii) output a file containing the sequence alignment, (iii) run without

error. Each multiple alignment had to be computed in <2 h, other-

wise the job was canceled. The execution time has been measured

for the alignments of the SISYPHUS database on a standard desk

computer with an i7 processor (Table 2). Some programs failed to

produce enough alignments to allow a significant analysis of their

performance and they were excluded if they produced an alignment

for <70% of the dataset. As we mainly aim at addressing the per-

formance of structure-based or sequenceþstructure-based alignment

methods, we tried to be as exhaustive as possible for them. We

searched or tested more than 40 programs but many were unavail-

able or did not conform to our criteria. We were also surprised by

the low number of sequenceþstructure-based alignment methods.

We did not include methods improving alignments afterwards, like

STACCATO (Shatsky et al., 2005). There is a great number of

sequence-based programs and we only tested the most popular ones

according to the last studies (Le et al., 2017; Thompson et al.,

2011). All the programs included in our study are listed with a short

description in Table 1. We have selected 9 sequence-based pro-

grams, 5 sequenceþstructure-based programs, (TCOFFEE/

3DCOFFEE is either run with SAP or TM-ALIGN) and 11 struc-

ture-based programs.

3 Results

3.1 Number of computed alignments
All programs have been run on the 847 alignments. All sequence-

based programs calculated all the 847 alignments but some pro-

grams of the two other categories failed for some alignments

(Table 2). Sequence-based programs, MATRAS and TCOFFEE_TM

successfully computed all alignments but not the other programs.

Sometimes failures were due to the time limit, but most of the time

they were due to errors returned by the programs. MAMMOTH

encountered the most failures; it has obviously a limit of 25 proteins

per alignment. In order to improve the robustness of our analysis,

we decided to restrict our analysis to the alignments computed by all

programs, resulting in 535 alignments: 24 from BB2, 24 from BB3,

287 from HOMSTRAD, 158 from OXBENCH and 42 from

SISYPHUS. These 535 alignments involve more than 2000 different

protein chains.

3.2 Databases
The distribution of mean pairwise sequence identity among the 535

core alignments is given in Figure 1. BB2, BB3 and SISYPHUS data-

bases are more focused on low identity, while HOMSTRAD and

OXBENCH present alignments of high level of identity. The propor-

tion of amino acids included in regular secondary structures in the

complete dataset is 60%; restricted to the core alignments, it increases

to 79%. We checked the redundancy of the databases. The number

and proportion of chains included in two databases are listed in

Supplementary Table S1. There is some overlap between BB2 and

BB3: 48 chains are present in both BB2 and BB3. However, the protein

families are all different between BB2 and BB3 so we decided to keep

them all. The overlaps are very weak for the other databases.

3.3 Global analysis of alignment scores
The boxplot distribution of SP and CS scores of each program run

on the 535 alignments are presented in Figure 2. The exact median

values are reported in Supplementary Table S2. Globally, the results

are impressively good: the SP score medians range from 0.86 to

0.97, meaning that in half of the alignments, more than 86% of the

residue pairs are correctly aligned by any method. Similarly, in half

of the alignments, more than 81% of the alignment columns are cor-

rect. Scores vary with the programs and structure-based programs

give better results on the whole, except for MULTIPROT and

MISTRAL. The sorting is the same for SP and CS scores except for

FORMATT, MULTIPROT and MISTRAL that have a better CS

score, and STAMP and KPAX that swap ranks. STAMP shows the

greatest variability in its results, and it is not the best despite the fact

that it has been used for building the alignments of two databases

(HOMSTRAD and OXBENCH). FORMATT, a modified version

of MATT that includes sequence information, is worse than MATT.

It highlights the difficulty of combining sequence and structure in-

formation, which is nevertheless possible: TCOFFEE_TM is the best

sequenceþstructure-based program, and achieves better than

TCOFFEE_SEQ. However, sequenceþstructure-based methods do

not perform better than structure only methods, despite the use of

both sequence and structure information.

For each pair of programs, the significance of their differences

has been evaluated by a Friedman rank test on their scores calcu-

lated for all 535 alignments (Section 2). In Figure 3, the programs

are ranked according to their median CS score, and six groups of

programs without significant differences within a group appear

(black squares). The differences are significant between the pro-

grams outside the groups in most cases. The first group contains

MAMMOTH and MATRAS that are the two best performing pro-

grams according to our study. The second group gathers MATT,

TCOFFEE_TM, 3DCOMB, MUSTANG and TCOFFEE_SAP and

their results are close to the two first programs. MUSTANG and

TCOFFEE_TM are not significantly different from MAMMOTH

and MATRAS despite their lower ranking. The three last groups

contain all sequence-based programs and also FORMATT,

MULTIPROT and MISTRAL. TCOFFEE_SEQ and PROBCONS
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Table 1. Programs used in this study to align families of proteins from the reference datasets

Type Name Description Rigid super-

imposition

Version References Year

SEQ CLUSTALO Seeded guide trees and HMM profile–profile NA 1.2.0 (Goujon et al., 2010; Sievers

et al., 2011)

2010

SEQ CLUSTALW Classical progressive aligner NA 2.1 (Larkin et al., 2007; Thompson

et al., 1994)

1994

SEQ DIALIGN Greedy and progressive approaches for seg-

ment-based multiple alignment

NA TX, 1.0.2 (Al Ait et al., 2013; Morgenstern,

1999;

Morgenstern et al., 1998)

1998

SEQ KALIGN2 Wu–Manber string-matching algorithm,

improving both accuracy and speed

NA 2.04 (Lassmann et al., 2009;

Lassmann and

Sonnhammer, 2005)

2005

SEQ MAFFT_linsi Fast progressive aligner with iteration and re-

finement using consistency score

NA 7.215 (Katoh et al., 2002; Katoh and

Standley, 2013)

2002

SEQ MUSCLE Fast progressive aligner with iteration and

refinement

NA 3.8.31 (Edgar, 2004, 2004) 2004

SEQ PRANK Phylogeny-aware progressive aligner; correct-

ing treatment of insertions

NA v.100701 (Löytynoja and Goldman, 2005) 2005

SEQ PROBCONS Probabilistic variant of the consistency

algorithm

NA 1.12 (Do et al., 2005) 2005

SEQ TCOFFEE_SEQ Consistency-based progressive aligner NA 11.00.8cbe486 (Notredame et al., 2000) 2000

SEQ/STRUCT PROMALS3D Derives constraints through structure-based

alignments; combines them with sequence

constraints when constructing consistency-

based multiple sequence alignments

No NA (Pei et al., 2008; Pei and Grishin,

2007)

2008

SEQ/STRUCT TCOFFEE_SAP TCOFFEE þ pairwise structure alignments by

SAP

Yes 11.00.8cbe486 (O’Sullivan et al., 2004; Orengo

and Taylor, 1996)

2004

SEQ/STRUCT TCOFFEE_TM TCOFFEE þ pairwise structure alignments by

TM-ALIGN

Yes 11.00.8cbe486 (O’Sullivan et al., 2004; Zhang

and Skolnick, 2005)

2004

SEQ/STRUCT SALIGN DP with a score that is a sum of an affine gap

penalty and of terms depending on various

sequence and structure features

Yes Modeler

version: 9.18

(Madhusudhan et al., 2009) 2007

SEQ/STRUCT FORMATT MATT with sequence information No 1.02 (Daniels et al., 2012) 2005

STRUCT 3DCOMB Identifies structurally similar pairwise frag-

ments and assemblies according to pivot

structures

Yes 1.06 (Wang et al., 2011) 2011

Score: TM-score (Zhang and Skolnick, 2004)

STRUCT GESAMT Clustering of small structurally similar pair-

wise fragments

Yes 7.0 (Krissinel, 2012; Winn et al.,

2011)

2012

Score: Q-score (Krissinel and Henrick, 2004)

STRUCT KPAX DP þ alignment optimization Yes 5.0.5 (Ritchie et al., 2012) 2005

Score: Gaussian structural similarity score

STRUCT MAMMOTH AFPs alignment by DP. Progressive multiple

alignment with a guide tree

No NA (Lupyan et al., 2005) 2005

Score: probability of residue random match of

two different folds (Ortiz et al., 2002)

STRUCT MATRAS Progressive multiple alignment (guide tree)

by DP

No 1.2 (Kawabata, 2003; Kawabata and

Nishikawa, 2000)

2000

Score: PAM like matrices computed on SSE

conservation or Ca internal distances

STRUCT MATT AFPs chaining by DP Yes 1.0 (Menke et al., 2008) 2008

Score: based on RMS for AFP and on a geo-

metrical transformations to allowing flexi-

bility for chaining

STRUCT MISTRAL Superposition by minimizing interaction en-

ergy and residue one-to-one correspondence

afterwards

Yes 3.6 (Micheletti and Orland, 2009) 2009

Score: interaction energy and RMS

STRUCT MTMALIGN Progressive multiple alignment (guide tree) by

DP

Yes 20171124 (Dong et al., 2018) 2017

Score: TM-score

STRUCT MULTIPROT With each structure as a pivot, detection of all

AFPs, assembling to build the longest con-

sistent alignment

Yes 1.93 (Shatsky et al., 2004) 2004

Score: alignment length, consistency and RMS

(continued)
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are the two best sequence-based programs. STAMP, FORMATT,

MULTIPROT and MISTRAL performances are not significantly dif-

ferent from the performances of programs with a lower ranking.

We also performed a hierarchical clustering on the basis of the

scores of the various programs and the various alignments. A heat-

map of this clustering is presented in Figure 4 for CS scores and in

Supplementary Figure S1 for SP scores. The results are extremely

similar regardless of the score (CS or TC). Considering program

clustering (left tree Fig. 4), all sequenceþstructure-based programs

and structure-based programs except STAMP are in the same sub-

tree. All sequence-based ones are also pooled together. We have

three groups of programs in the upper sub-tree (see the pink dashed

line). TCOFFEE_SAP is alone on its branch; its score profile is dif-

ferent from the others: it sometimes fails when others succeed (see

the red scores at the right extremity of its profile). The second group

is composed of MUSTANG, MAMMOTH, MAT, FORMATT and

MATRAS, whose performances are almost undistinguishable

according to the Friedman tests. In the third group, 3DCOMB,

MTMALIGN, KPAX and GESAMT have very similar profiles; they

are also pooled with MULTIPPROT and MISTRAL that are more

designed to find conserved structural blocks than to align whole pro-

teins. This splitting of the structure-based programs into two clus-

ters is consistent with the performance of rigid superimposition at

some step in the methods, except for MATT but it explicitly com-

pensates for the rigidity by introducing flexibly in its score. The pro-

files of sequence-based programs are very similar to each other.

We analyzed the most difficult alignments. Nine alignments show

CS scores below 0.5 for all the programs (Supplementary Table S3

and Figure S7). The sequence identities of the core reference align-

ments are low (21% on average). The structural challenges of these

alignments are: large insertions or deletions for some proteins of the

families (five alignments), structural repetitions (one alignment) or

large alignments with strong structural variations (three alignments)

examined the difficult alignments for structure-based programs.

There are 78 alignments where structure-based programs do not have

the highest CS score. For 66 of them, the difference between the max-

imum CS score of all programs and structure-based programs is<0.1.

The remaining 12 alignments are listed in Supplementary Table S4

and Figure S8. The sequence identity is globally higher (31% on aver-

age) and the RMS calculated from the reference alignment is high

Table 1. Continued

Type Name Description Rigid super-

imposition

Version References Year

STRUCT MUSTANG AFP and progressive multiple alignment with

a tree.

No 3.2.3 (Konagurthu et al., 2006) 2005

Score: Ca internal distance [DALI like, (Holm

and Sander, 1993)]

STRUCT STAMP Iterative superposition and alignment of Ca by

DP with a guide tree

Yes 4.4 (Russell and Barton, 1992) 1992

Score: Ca distances and conformational

similarity

Note: Categories of programs: SEQ is a sequence-based alignment method; STRUCT is a structure-based alignment method; SEQ/STRUCT is a sequenceþ-

structure-based program. DP, dynamic programming; AFP, aligned fragment pairs.

Table 2. Number of computed alignments from structure-based or

sequenceþstructure-based methods

Alignments Average time

MATRAS 847 100.0% <10 s

TCOFFEE_TM 847 100.0% <1 min

KPAX 846 99.9% <10 s

PROMALS3D 846 99.9% <10 min

TCOFFEE_SAP 845 99.8% <10 s

MTMALIGN 845 99.8% <10 s

FORMATT 844 99.6% <1 min

GESAMT 841 99.3% <1 s

MUSTANG 840 99.2% <10 min

MISTRAL 828 97.8% <10 min

STAMP 826 97.5% <1 s

MATT 824 97.3% <10 min

3DCOMB 822 97.0% <10 s

SALIGN 796 94.0% <10 min

MULTIPROT 766 90.4% <1 min

MAMMOTH 622 73.4% <10 s

#Alignments 847

Note: The average computation time has been measured for the 42

SISYPHUS families that all programs successfully aligned. All sequence-based

methods compute the alignments in less than a second on average except

PRANK (time< 1 min). KALIGN2, CLUSTALO, CLUSTALW and MUSCLE

are the fastest (<0.1 s).

Fig. 1. Distribution of core block sequence identity percentages among the

five databases. X-axis: identity percentage, y-axis: number of reference

alignments
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(>4Å) for all but two families that include structural repetition

(Leucine rich repeats and many beta strands).

3.4 The effect of sequence identity
We have investigated the effect of sequence conservation on the

quality of the alignments computed by the different programs. The

results are presented in Figure 5 for CS scores and in Supplementary

Figure S2 for SP scores. As expected, the differences between

structure-based and sequence-based methods are stronger for align-

ments of very divergent proteins. For alignments above 50% of se-

quence identity, sequence-based programs have similar or even

better performances than structure-based programs. We also

checked the effect of the number of proteins to align. The effect is

very weak in the case of SP scores for all programs except

MULTIPROT (Supplementary Figure S3) but it is noticeable on the

CS scores (Supplementary Figure S4).

3.5 The effect of structural variations
We have measured the structural divergence by computing the RMS

from a superimposition built according to the reference alignments.

The performances of the programs as a function of these RMS are

presented in Figure 6 for the CS scores and in Supplementary Figure

S5 for SP scores. We have split our dataset in alignments below 30%

of sequence identity (left, 199 alignments) and above (right, 335

alignments). There is no alignment below 30% with an average

RMS below 1 Å. For the alignments below 30% of sequence iden-

tity, the scores of all programs globally decrease while RMS

increases. This is understandable for structure and sequenceþstruc-

ture-based programs, but it is less obvious for sequence-based pro-

grams. The average sequence identity of these alignments is almost

constant whatever the RMS (between 21 and 25%). The decrease of

CS scores for sequence-based programs may be associated with the

increase of the number of gaps—eight indels on average for align-

ments below 1 Å of RMS to 22 indels for all alignments above 3 Å—

and to the increase of the number of proteins to align—from 3.5

proteins on average to 5.7. For the alignments above 30% of se-

quence identity, the CS scores decrease for alignments below 3 Å;

this decrease is associated with a decrease of sequence identity (68%

of sequence identity for alignments in the interval [0 Å, 1 Å], 52%

for ]1 Å, 2 Å] and 40% for ]2 Å, 3 Å]). The variations are non-sig-

nificant afterward (43% for ]4 Å, 5 Å] and 41% above 5 Å) which is

coherent with the stability of the sequence-based CS scores. When

the RMS is high (>6Å) and the sequence identity not too low

(>30% sequence identity), several sequence-based programs per-

form better than the structure-based programs, and the best pro-

gram is a sequenceþstructure-based program. The structural

variability may be due to unstructured regions of the proteins which

may be seen in some structures of the difficult cases presented in

Supplementary Figures S7 and S8.

We have also computed the RMS on the basis of the alignments

resulting from the programs. The results are presented in

Supplementary Figure S6. The multiple RMS among proteins of the

families are smaller for structure-based methods than for sequence-

based methods as expected because structure-based methods align

proteins while optimizing the structural similarities. The RMS com-

puted according to the reference alignments (black line) are in be-

tween the two.

3.6 SSE and burying effect
We also investigated whether structure-based methods are strongly

dependent on secondary structures and solvent exposure. We com-

puted the SP and CS scores independently for core residues

Fig. 2. SP (left) and CS (right) scores: 535 alignments computed by all methods. Programs are sorted according to their median scores. The colors of the boxes

are: red for sequence-based programs, blue for structure-based programs, green for sequenceþstructure-based programs

Fig. 3. P-value heatmap of the Friedman tests. Entries show the P-values com-

puted using a Friedman rank test. Values above the diagonal were calculated

with CS scores and values under the diagonal were calculated with SP scores.

The programs are ordered according to their median CS scores. The colors of

the program names are the same as in Figure 2. The yellow or orange cells de-

note a non-significant P-value according to the 0.05 alpha risk, with Bonferroni

correction for multiple tests. The green or blue cells mean a significant P-value
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respectively in helices, strands or loops; the same procedure was

applied for exposed or buried residues. The results are presented in

Figure 7 (CS scores only). CS scores fall sharply for loops and a little

for helices for structure-based and structureþsequence-based meth-

ods compared with sequence-based methods. The structure-based

methods are sensitive to regular secondary structures. The scores de-

crease for exposed residues for all type of methods. The structural

variability of exposed regions explains the difficulties of structure-

based and sequenceþstructure-based programs. For the sequence-

based programs, the decrease is probably due to the decrease of se-

quence identity (46% versus 33%).

3.7 Database effect
We wondered whether the success rate of the programs was depend-

ent on the database. The composition of the various databases is

different in terms of sequence identity and core definition. We tried

to eliminate these biases by selecting alignments between 10 and

40% of sequence identity since all databases are present in this

range. Besides only core positions in conserved regular secondary

structures were selected. In Figure 8, it is clear that the CS scores

fluctuate depending on the reference alignment origin. The median

scores are globally higher and less variable for HOMSTRAD and

OXBENCH that contain more alignments and whose generation

procedure is automatic. For BB2, BB3 and SISYPHUS, the discrep-

ancy of the scores is larger. One may consider that a bias in favor of

the structure-based methods is present in HOMSTRAD and

OXBENCH. Yet, the ranking of the programs is similar: the same

structure-based or structureþsequence-based programs are the best,

even though their order varies slightly. The most affected program is

STAMP, whose performances are poorer with the last three data-

bases. It is used in the building procedure of HOMSTRAD and

OXBENCH nevertheless its performances for those two databases

are not the best. The best program in this 10–40% sequence identity

subset is MATT, followed by MATRAS and FORMATT.

Therefore, these programs have good results with divergent

proteins.

3.8 Gaps
The proportion of gap opening is clearly different in sequence-based

and structure-based programs (Fig. 9). The structure-based programs

except MAMMOTH tend to over-estimate the number of indels and

the sequence-based ones tend to under-estimate the number of gaps.

MAMMOTH has a linear penalty gap function that seems to be quite

efficient. PROMALSD3D has also a linear gap penalty function and

tends to put fewer gaps than in the reference alignments. PRANK

which has been designed for placing correctly indels is the closest to the

reference. As most of the structure-based methods work with small

Fig. 4. CS scores heatmap and hierarchical classification of the programs and of the alignments (complete method, Euclidian distance). The program colors are

the same as in Figure 2. The numbers before each program correspond to those in Figure 3

Fig. 5. CS scores as a function of percentage identity of the core reference

alignments. Color code as in Figure 2
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structural blocks, they do not have a gap penalty function, which may

explain this possible over-estimation of gaps. We believe that some im-

provement in the gap treatment for structure-based and sequenceþ
structure-based methods should improve their performance.

4 Discussion

In this article, we have compared the ability of sequence-based, struc-

ture-based and sequenceþstructure-based alignment programs to re-

trieve supposed homologous positions defined in reference alignments

from five well-known databases. The structure-based programs have

globally better performances than the sequence-based ones, but also

better than most of the structureþsequence-based programs. A first

group of two structure-based programs—MAMMOTH and

MATRAS—scores significantly better than the others. A second group

is close: MATT, MUSTANG and 3DCOMB (structure-based),

TCOFFEE_TM and TCOFFEE_SAP (sequenceþstructure). All these

seven programs build the alignments from pairwise aligned fragments

of few residues. The program performances are different according to

the hierarchical clustering of their results: they do not all cluster to-

gether, meaning that their success or failure varies with the alignments.

A consensus method may achieve better results if it can identify the

cases where each method succeeds, as it has been also suggested in the

Berbalk et al. (2009). In TCOFFEE_TM and TCOFFEE_SAP, adding

structure information clearly improves the alignment achieved by

TCOFFEE_SEQ, but it is not the case for MATT and FORMATT.

The consistency-based programs (TCOFFEE, PROBCONS) are the

best ranked as far as the sequence-based programs are concerned in

Pais et al. (2014; Thompson et al., 2011) except for MAFFT. The per-

formance differences between sequence and structure-based programs

are stronger for low identity alignments as it has been highlighted by

Kim and Lee (2007). The sequence-based program performances fall

sharply for low sequence identity alignments but their performances

are similar to structure-based programs above 50% of sequence iden-

tity. When the structural variations are large, structure-based program

Fig. 7. Median CS scores for each program. Left: residues either buried or

exposed. Right: core columns where the residues are either in helix or strand

or loop. Color code as in Figure 2

Fig. 8. Median CS scores for each program and each database, restricted to

alignments in the range 10–40% sequence identity. Besides only are consid-

ered core positions in regular secondary structures perfectly conserved in all

the proteins of the family. Color code is the same as in Figure 2

Fig. 6. CS median score as a function of the RMS computed from the reference alignments. Left: alignments below 30% of sequence identity. Right: alignments

above 30% of sequence identity. Color code as in Figure 2
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results may be worse than sequence-based programs. Other difficult

cases for structure-based programs are the loops, the proteins with

structural repetitions as Leucine rich repeats and proteins with large

insertions or deletions. We can conclude that while aligning proteins

for the identification of homologous positions and if all its structures

are known, it is better to align the proteins only according to their

structures. Today we can consider that the proportion of protein fami-

lies with available structure amounts to 8700 over a total of 17 425

families or domains in PFAM database (El-Gebali et al., 2019). In the

cases where not all structures are known, it should be better to use a

sequenceþstructure-based method such as TCOFFEE_TM, but this

particular case has not been addressed in this study.

As the five reference alignment databases are built from protein

structural information we wondered whether it would advantage

structure-based methods. For the two automatically generated data-

bases, the alignments are computed by structure-based programs and it

should favor homologous or even non-homologous but structurally

similar positions that are more easily retrieved with structure than with

sequence only. The case is different with manually curated alignments

because no structure-based method has been used to build them and all

kinds of information have also been used: sequence, function and struc-

ture. The scores of all programs and their dispersions are similar if the

two automatic databases, HOMSTRAD and OXBENCH are used,

and they are globally lower and more variable using the three other

databases. Moreover, whatever the database used, the first ranked pro-

gram is always a structure-based program. Although, structure-based

and sequenceþstructure-based programs have better scores than

sequence-based programs. It would be interesting to compare program

alignments altogether without a reference in order to check their con-

sistency, or to compute phylogenetic trees from the program align-

ments and derive a score from the accuracy of the trees. Finally, some

improvements concerning usability and applicability of structure-based

programs would be worthwhile and structure-based programs could

improve the gap placement in the alignments.

5 Conclusions

For identifying homology in proteins, we can conclude that it is better

to use structure information than sequence information only, yet the

difficulty of combining sequence and structure information is obvi-

ous: the sequenceþstructure-based methods are not better than the

structure-based methods. Several programs are globally equivalent in

performance but their behavior varies for each alignment, and a con-

sensus method might achieve better results. A real model of sequence

and structure protein evolution would greatly improve the methods

but such a model is quite difficult to design mainly because of the

folding process that may drastically change the structure even if the

sequence difference is not that strong. There is also still room for im-

provement in term of software ergonomics and gap treatments. This

study showed that, if several structures of a family are known, the

most reliable alignment is the structural one. However, usually far

more sequences than structures of a family are available so the use of

sequenceþstructure-based methods with all sequences and known

structures would gather all available information and may produce

the best alignment. Computing several kinds of alignments using tools

like STRAP (Gille and Frömmel, 2001) that allow combining align-

ments would be the most advisable approach.
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