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Abstract

Motivation: Under two biologically different conditions, we are often interested in identifying differ-

entially expressed genes. It is usually the case that the assumption of equal variances on the two

groups is violated for many genes where a large number of them are required to be filtered or

ranked. In these cases, exact tests are unavailable and the Welch’s approximate test is most

reliable one. The Welch’s test involves two layers of approximations: approximating the distribution

of the statistic by a t-distribution, which in turn depends on approximate degrees of freedom. This

study attempts to improve upon Welch’s approximate test by avoiding one layer of approximation.

Results: We introduce a new distribution that generalizes the t-distribution and propose a Monte

Carlo based test that uses only one layer of approximation for statistical inferences. Experimental

results based on extensive simulation studies show that the Monte Carol based tests enhance the

statistical power and performs better than Welch’s t-approximation, especially when the equal

variance assumption is not met and the sample size of the sample with a larger variance is smaller.

We analyzed two gene-expression datasets, namely the childhood acute lymphoblastic leukemia

gene-expression dataset with 22 283 genes and Golden Spike dataset produced by a controlled

experiment with 13 966 genes. The new test identified additional genes of interest in both datasets.

Some of these genes have been proven to play important roles in medical literature.

Availability and implementation: R scripts and the R package mcBFtest is available in CRAN and to

reproduce all reported results are available at the GitHub repository, https://github.com/iullah1980/

MCTcodes.

Contact: you-gan.wang@qut.edu.au or hong@wzu.edu.cn

Supplementary information: Supplementary data is available at Bioinformatics online.

1 Introduction

Informative feature selection in a noisy high-dimensional covariate

space is a commonplace for data scientists and statisticians. One

way that this can be achieved is to impose sparsity and use penalized

optimization methods, in the same manner as Lasso (Tibshirani,

1996) to obtain a sparse vector of estimated regression coefficients.

Another approach is to apply an appropriate univariate two-sample

test independently to a large number of features in high-dimensional

data in order to select genes that are differentially expressed under

two biologically different conditions (Saeys et al., 2007). This is

done as a preliminary step to reduce the noise in an ultra-high-

dimensional dataset, and it results in a superset that contains the

most important features and can be included in a multivariate model

for group comparison (Troyanskaya et al., 2002) or cancer subtype

identification for chemotherapy (Yeoh et al. 2002. The latter strat-

egy is sometime used for feature discoveries followed by a necessary

correction for multiple testing (Beasley et al., 2004; Krzywinski and

Altman, 2014b).
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In this study, we focus on the second approach of filtering a set

of features. Suppose independent samples are collected from two

normally distributed populations to test if the two underlying means

are the same. This problem is prevalent and is so fundamental that it

is introduced in most undergraduate textbooks. While the use of

two-sample tests in one form or another continues to be used in a

wide variety of research studies, it is not uncommon to observe its

incorrect usage. However, the aim of the current study is to improve

upon the traditional procedures, while also making use of the com-

putational power bestowed upon us by modern technology.

The Student’s t-test is a more appropriate univariate two-sample

test and can be used for filtering purposes. However, it becomes less

reliable when there are a limited number of observations and the ob-

jective is to filter a large number of variables, with the result that

many of them might not meet the equal variance assumption of the

test (Krzywinski and Altman, 2014a). Therefore, the Welch’s t-test

is rather more common in practice for filtering purposes because it

accounts for unequal variances (for example, see Comin et al., 2014;

Cui et al., 2010; Yang et al., 2017). The Welch’s test relies on two

layers of approximations: approximating the distribution of the stat-

istic by the t-distribution, which in turn depends on the approximate

degrees of freedom. In this paper, we use Monte Carlo test (MCT)

which uses only one layer of approximation, with the expectation

that it will be more reliable than the Welch’s test.

The remainder of this paper is presented as follows. In Section 2,

we introduce the proposed test. The test is evaluated using simula-

tion studies in Section 3 and it is applied to childhood acute lympho-

blastic leukemia gene expression data in Section 4. We conclude

with a discussion in Section 5.

2 Materials and methods

We begin with the necessary notation, as well as various versions of

the test that are taught in elementary schools and are widely used in

practice. Suppose that data ðx1; x2; . . . ; xmÞ and ðy1; y2; . . . ; ynÞ are

generated from Nðl;r2
xÞ and Nðlþ d; r2

yÞ, respectively. Let �x ¼Pm
i¼1 xi=m and �y ¼

Pn
i¼1 yi=n be the sufficient statistics (when r2

x

and r2
y are known), and the observed difference �x � �y follows a nor-

mal distribution with mean d and variance r2
x=mþ r2

y=n i.e.

�x � �y � Nðd; r2
x=mþ r2

y=nÞ. To test the null hypothesis H0 : d ¼ 0,

a number of approaches can be used depending on the underlying

assumptions. We here build up on some well-known approaches.

When r2
x and r2

y are given, then under H0, a uniformly most

powerful (UMP) test exists, which is widely recognized as z-test in

the literature. To perform the test, define

Z ¼ �x � �y � dffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x

m þ
r2

y

n

q : (1)

The quantity Z is pivotal (see Casella and Berger, 2002) and it

follows a standard normal distribution under the null hypothesis

(d¼0). A larger observed value of the magnitude of Z supports the

evidence against the null hypothesis.

Suppose that, rather than the two variances, only their

ratio, q ¼ r2
y=r

2
x, is known, then one can obtain a ‘pooled’ estimator

of r2
x as

r̂2
x ¼
ðm� 1Þs2

x þ ðn� 1Þs2
y=q

ðmþ n� 2Þ ; (2)

where s2
x ¼

Pm
j¼1 ðxi � �xÞ2=ðm� 1Þ and s2

y ¼
Pn

j¼1 ðyi � �yÞ2=ðn� 1Þ
are the sufficient statistics.

Here the variance information from the y group is also used in

estimating r2
x because s2

y=q also has the expectation r2
x. In this case,

the estimator of r2
y is r̂2

y ¼ qr̂2
x. Replacing the two unknown param-

eters in (1) by their estimators r̂2
x and r̂2

y produces the following piv-

otal statistic:

Tp ¼
�x � �y � dffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2
x

m þ
r̂2

y

n

q : (3)

In fact, the distribution of Tp is known and is exactly a t-distribu-

tion with ðmþ n� 2Þ degrees of freedom. Note that a special case

exists when q¼1 (i.e. r2
x ¼ r2

y ), Tp is recognized as the Student’s

t-test. As is apparent, the Student’s t-test is valid and exact as long

as the true variance ratio q is known (even if the two variances are

not equal).

To proceed, let us first recall that a random variable following a

t-distribution with degree of freedom d can be expressed as

Zffiffiffiffi
D
p ;

where Z and D are two independent random variables, Z � Nð0;1Þ
and D is a scaled v2 distribution with a unit mean, v2ðdÞ=d. We now

introduce an extended t-distribution with the parameters k, d1 and

d2 given by

TG ¼
Zffiffiffiffi
D
p ;

in which D is replaced by a sum of two scaled v2 distributions,

k v2ðd1Þ=d1 þ ð1� kÞ v2ðd2Þ=d2. The exact density function can be

obtained by the combination proportion k and two parameters for

the degrees of freedom (d1, d2). We will denote its distribution as

tgðk; d1;d2Þ. In certain cases, when k¼0 or 1, or d1¼d2, this

extended tg becomes the traditional t-distribution.

In practice, however, the variance values and their ratios q are

commonly unknown. Therefore, we do not have a pivotal statistic

whose exact distribution is known. This leads us to the fact that no

UMP test exists in the literature. Different variance estimators of

�x � �y produces different test statistics. Consider the well-known

statistic

T ¼ �x � �y � dffiffiffiffiffiffiffiffiffiffiffiffi
s2
x

m þ
s2
y

n

q : (4)

The quantity T in (4) is asymptotically normally distributed with

a mean of 0 and a variance of 1 when d¼0. Thus, both m and n are

required to be sufficiently large so that r2
x and r2

y can be well

approximated by s2
x and s2

y , and T becomes equivalent to

Z � Nð0; 1Þ. However, unlike Z and Tp, the exact distribution of T

is generally unknown.

To this end, the approximate distribution for T is of great inter-

est, especially when the sample sizes m and n are small. A reasonable

approximation specifies a critical value for the test to meet the nom-

inal level (e.g. a ¼ 0:05). Ideally, the critical values should be chosen

so that the test is unbiased (i.e. false positive rate also known as size

of the test is as specified). The statistic in (4) does not meet this cri-

terion when normal approximation is used and is highly liberal un-

less the sample sizes are very large.

In cases where the sample sizes are small and the two variances

are close (q � 1), the Student’s t-test (the statistic Tp with student

t-distribution approximation) not only holds the nominal level, but

it is also powerful and therefore recommended. However, in cases

when the assumption of the equal variances cannot be met or, more
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broadly speaking, the ratio r2
x=r

2
y is unknown, the Student’s t-distri-

bution becomes an approximation to the true distribution of T.

Furthermore, the approximation relies on the best ‘matched’ degree

of freedom for the t-distribution.

The test problem is known as the Behrens–Fisher (BF) problem

when no assumption of equal population variances can be made. For the

BF problem, the T statistic provides value for a given dataset and its stat-

istical distribution is not easy to characterize. More formally, the P-value

cannot be calculated exactly under the null unless s ¼ ðr2
x=mÞ=ðr2

y=nÞ is

specified. This results in a number of approximate tests (for example, see

Best and Rayner, 1987; Fenstad, 1983; Welch, 1938). To our know-

ledge, the best approximation thus far is due to Welch (1938). Note that

it is not recommended to pre-test the q values (e.g. q¼1) and then

choose between the Student’s t-test and the Welch’s approximate t-test.

Rather, the Welch’s t-test can be applied directly.

In reality, if we do not know the true values of the underlying var-

iances (or q), there exists an entire family of distributions in which only

one is the true distribution of T. It is important to note that the Welch’s

test first chooses a t-distribution as an approximation to the distribution

of T whose degrees of freedom are then estimated from the available

data. When s takes values 0 and1, the approximation becomes exact

under the null and the statistic T follows an exact t-distribution with the

degree of freedom being m�1 and n�1, respectively.

As described in the next section, we avoid one layer of approxi-

mation while making use of the Monte Carlo simulations from the

exact distributions. This gives us an apparent advantage over

Welch’s t-approximation.

2.1 Monte Carlo solutions
The statistic in (4) can be re-expressed as

T ¼
�y��x�dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
x=mþr2

y=n
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x=mþs2

y=n

r2
x=mþr2

y=n

r ¼ Zffiffiffiffi
D
p :

Here Z � Nð0; 1Þ when d¼0 as described in the previous sec-

tion. Clearly D is a convex combination of v2
ðm�1Þ=ðm� 1Þ and

v2
ðn�1Þ=ðn� 1Þ (Welch, 1938),

D ¼
s2
x=mþ s2

y=n

r2
x=mþ r2

y=n

�
v2
ðm�1Þ
m�1

r2
x

m þ
v2
ðn�1Þ
n�1

r2
y

n

r2
x=mþ r2

y=n

�kj1 þ ð1� kÞj2

where j1 � v2
m�1=ðm� 1Þ; j2 � v2

ðn�1Þ=ðn� 1Þ and k ¼ ðr2
x=mÞ=

ðr2
x=mþ r2

y=nÞ ¼ n=ðnþ qmÞ. Therefore, the T statistic follows an

extended t-distribution tGðk; n1 � 1; n2 � 1Þ. If we know k, the dis-

tribution of D can be easily generated via simulations, as analytical

expressions are too cumbersome to be of much use in this case.

In the absence of computers, as was the case 70 years ago, Welch

(1938) approximated D by a gamma distribution (scaled v2 distribu-

tion) by matching the first two moments. This leads to the t-distribu-

tion approximation for T with a degree of freedom as

f ¼
r2

x

m þ
r2

y

n

� �2

r4
x

m2ðm�1Þ þ
r4

y

n2ðn�1Þ

;

which depends on the values of the variances (via q ¼ r2
y=r

2
x).

Of course, if we knew the variance values, or even just the ratio,

we would be able to use the z-test or the exact t-test given by (1) or

(3), respectively, and there would not be a need for the t-distribution

approximation. In practice, we would estimate f by substituting the

corresponding sample variances into unknown variances, and the

distribution of T would be approximated by the t-distribution with

the data-dependent degree of freedom,

f̂ ¼
s2
x

m þ
s2
y

n

� �2

s4
x

m2ðm�1Þ þ
s4
y

n2ðn�1Þ

: (5)

The t-test therefore relies on two layers of approximation: firstly,

the t-distribution itself and secondly, the ‘best’ degree of freedom

estimated by (5). Realizing f̂ above is subject to uncertainty,

Barnard (1984) listed exact P-values for the T statistic for a range of

possible variance ratio q values and then averaged them to obtain

the final P-value.

The t-approximation essentially uses a single v2 distribution for

D that has a mixture of two v2 distributions. An alternative ap-

proach, therefore, is to simply find the most appropriate mixing

parameter ~k so that ~D � ~kj1 þ ð1� ~kÞj2 is a good approximation

to D in some sense (e.g. matching the mean and the variance). One

possibility is to substitute the corresponding sample variances into

an unknown variance ratio as an estimate of the ratio, q̂ ¼ s2
y=s

2
x and

obtain

k̂ ¼ n

nþ q̂m
: (6)

Once the distribution of D is in place, the distribution of T can

be easily generated from Z=
ffiffiffiffi
D
p

. For example, in R, we can easily

generate 100 000 random numbers from Z=
ffiffiffiffi
~D

p
.

> MC <-100000

> lam <- (var(X[, 1])/n1)/(var(X[, 1])/

þ n1þvar(Y[, 1])/n2)
> MC.T <- rnorm(MC)/sqrt(lam*rchisq(MC, n1-1)

þ /(n1-1) þ n(1-lam)*rchisq(MC, n2-1)/(n2-1))

The corresponding P-value can then be obtained by counting

how many MC.T values exceed the observed T value. For a two-

sided test, the P-value is obtained using the following codes:

> p.value ¼ mean(abs(MC.T) >¼ abs(obs.T))

We denote this Monte Carlo procedure by MCT.

3 Numerical results

To see how the proposed approximation performs, we conducted

simulation studies. In these simulation studies, we compared the

new MCT with the Welch’s t-test (henceforth denoted by W) to de-

termine if any improvement exists.

We considered various sample size combinations that reflected

small to large sample sizes and different variance ratios. For sample

sizes m and n we considered 4, 5, 8, 10, 25 and variance ratios vary-

ing from 2�8 to 28. Note that the values of s are determined from

the values of r2
x; r2

y , m and n. Following Best and Rayner (1987),

the shift parameter d, which measure the deviation from the equality

of means, was obtained by d ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x=mþ r2
y=n

q
, where g is an ap-

propriate constant. For the false positive rate comparison, we

used g¼0, while for a power comparison we used g ¼ 1; 2; 3.

The empirical size results are provided in Supplementary Tables

S1–S6 and the empirical power results are given in Supplementary

Tables S7–S12.
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Based on the simulation results, it is apparent that the level per-

formance of the two procedures are almost the same and that they

hold the nominal level reasonably well. The power of the MCT is, in

general, better than that of the W, especially when the sample with a

smaller sample size has the larger variance (Fig. 1).

Next, we compared the densities of the Welch’s approximate

t-distribution and the Monte Carlo approximation to the true

distribution of T (Monte Carlo is based on true k). In particular, we

targeted the scenarios where the MCT and W differed, and the use

of MCT became clearly advantageous (i.e. when the m and n are

small, different and the sample with a smaller sample size has the

larger variance). For example, we took m¼6, n¼3, lx ¼ ly ¼ 1;

r2
x ¼ 1; r2

y ¼ 1:44. The densities are depicted in Figure 2. The Figure

shows that the Welch’s approximate t-distribution tailed off more

Fig. 1. Empirical size (false positive rate) and power of W and MCT as a function of g. A gray horizontal line in each panel indicates the nominal size a ¼ 0:05
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slowly than the Monte Carlo approximation, which was also closer

to the true distribution of T. This shows that the MCT is more

powerful than the W.

We further investigated the effect of changes in sample sizes on

the two approximations relative to the true distribution of T. We

considered m¼8, n2 ¼ 3; 5; 7; lx ¼ ly ¼ 1; r2
x ¼ 1 and r2

y ¼ 2:25.

Table 1 shows the quantiles of the distributions. As Table 1 suggests,

the quantiles of the Monte Carlo approximation were much closer

to the quantiles of the true density as compared to the Welch ap-

proximation, especially when n2 was small. As n2 was increased, the

Welch’s approximation became closer to the true density, but the

MC approximation still appeared to be better.

To see the robustness of the MCT against the assumption of nor-

mality, we simulated data from a t-distribution with 5 degrees of

freedom, tð5Þ. The empirical false positive rate and power tables are

diverted to supplementary materials (Supplementary Tables S13–

S16). Supplementary Table S13 shows the simulation results using

tð5Þ errors. It appears that the MCT is slightly better or at least as ro-

bust as the W against deviations from normality both in terms of

false positive rate and power. For example, the average empirical

false positive rates (over the 45 scenarios) were equal to 0.9% for

both methods at 1% nominal level. However, at 5 and 10%

nominal levels, the average false positive rates were, respectively,

4.5 and 9.4% for W while these were, respectively, 4.6 and 9.6%

for MCT. However, larger studies would be required to further val-

idate this claim, which we aim to carry out using very different dis-

tributions including more heavy tailed and skewed distributions.

4 Applications

4.1 Analysis of the Golden Spike dataset
To provide additional evidence of the superior performance of the

MCT over the W, we applied both tests to a real dataset known as

Golden Spike dataset (Choe et al., 2005). The dataset is produced by

a controlled experiment and the true differentially expressed genes

(DEGs) are known. As a result, it has been used for the benchmark-

ing of the microarray analysis methods (for example, see Hochreiter

et al., 2006; Roca et al., 2017, and references therein).

This dataset includes two experimental groups, namely control

and spike-in, with three technical replicates per group. As is

described in Hochreiter et al. (2006), the dataset has 13 966 probe

sets. The number of differentially spiked-in probe sets were 3876

(excluding Affymetrix internal control probes). Out of these 3876

spiked-in probe sets, 1328 were spiked-in at higher concentrations

in the spiked-in group at a fold-change level of interest that ranged

from 1.1- to 4.0-fold between the two groups, 2535 were spiked-in

at the same concentration in both groups, and the remaining probe

sets had weak matching to multiple clones (Hochreiter et al., 2006).

We did the background correction using the Affymetrix MAS5

algorithm implemented in the mas5 function of the affy package

(Gautier et al., 2004). A probe set that was not called present by the

MAS5 algorithm was considered as missing. We excluded the miss-

ing probe sets and the Affymetrix control probe sets from the re-

mainder of the analysis. The data were then normalized using SVCD

normalization, which is proven to be superior by Hochreiter et al.

(2006).

We applied the W and MCT tests to the processed data and the

P-values that were obtained were adjusted via the ‘fdr’ method

(Benjamini and Hochberg, 1995) implemented in the p.adjust()

function of the stats package. The adjusted P-values for the W and

MCT are presented in Figure 3. The MCT produced smaller P-val-

ues for the known positives (true differentially expressed probes)

than those that were produced by W, which proves that the MCT is

more powerful. In addition, the P-values of the MCT for the known

negatives were larger than the P-values of the W, hence reducing a

type-1 error. At a 1% significance level, the W detected 555 genes

(527 and 15 were from the differently expressed spiked-in group

and control group, respectively) while our MCT detected 744 genes

(691 and 21 were from the differently expressed spiked-in group

and control group, respectively). The corresponding false positive

rate for the W was 0.74%, which was quite different from the nom-

inal 1% level. Our MCT, on the other hand, produced a much more

accurate value of 1.04%. Next, we increased the nominal signifi-

cance level so that the W produced a false positive rate close to 1%,

and we determined that the corresponding true detection rate

increased from 41.5% (527/1271) to 51.8% (658/1271). Note that

the true detection rate for our MCT was 54.1% (688/1271), which

is higher than the adjusted detection rate of W (51.8%).

4.2 Childhood acute lymphoblastic leukemia gene

expression study
To show the benefits of the MCT, we chose a childhood acute

lymphoblastic leukemia (ALL) high-throughput gene-expression

Fig. 2. Plot of the true density of T overlaid with the t-distribution using the

Welch approximate degrees of freedom and the Monte Carlo approximation

based on k̂ ; m¼ 6, n¼ 3, lx ¼ ly ¼ 1; r2
x ¼ 1; r2

y ¼ 1:44. The tails are magni-

fied to see the differences between the different approximations more clearly

Table 1. The quantiles of true density of T based on k (MCk), the

t-distribution using the Welch approximate degrees of freedom

(W) and the Monte Carlo approximate distribution based on k̂
(MCk̂ ); m¼ 8, lx ¼ ly ¼ 1; r2

x ¼ 1; r2
y ¼ 2:25

Quantile

Method n 1% 5% 10% 90% 95% 99%

MCk �3.878 �2.270 �1.619 1.618 2.270 3.881

W 3 �4.639 �2.356 �1.634 1.635 2.356 4.637

MCk̂ �3.831 �2.221 �1.587 1.587 2.222 3.831

MCk �2.981 �1.903 �1.422 1.422 1.903 2.980

W 5 �3.072 �1.918 �1.426 1.426 1.918 3.073

MCk̂ �2.977 �1.897 �1.418 1.418 1.897 2.977

MCk �2.726 �1.802 �1.367 1.367 1.802 2.725

W 7 �2.768 �1.813 �1.372 1.373 1.813 2.768

MCk̂ �2.743 �1.808 �1.370 1.370 1.808 2.743

4000 I.Ullah et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/3996/5381541 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz189#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz189#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz189#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz189#supplementary-data


dataset that is studied in detail by Den Boer et al. (2009) and access-

ible through GEO Series accession number GSE13425. The data had

22 283 genes and 190 samples in total. The 190 samples are from

different subtypes of ALL. We considered only two ALL subtypes:

BCR-ABL, which has four samples and E2A-rearranged (EP), which

has eight samples. This is because under small and different sample

sizes, the difference between the MCT and W is more pronounced

and we expected the MCT to produce favorable results in situations

where a large number of tests are performed to identify variables

that can possibly be used to classify two the groups. Under a large

sample size, however, the performance of the two tests is similar.

We did the background correction using the Affymetrix MAS5

algorithm implemented in the limma package (Ritchie et al., 2015).

A probe set that was not called present for at least two samples in

each subtype by the MAS5 algorithm was considered as missing. We

excluded the missing probe sets and the Affymetrix control probe

sets from the rest of the analysis. This process drops the number of

genes from 22 283 to 6307. These 6307 genes were then normalized

using MedianCD normalization (SVCD did not converge in 200 iter-

ations) also proposed by Hochreiter et al. (2006), and this appeared

to have almost comparable performance to SVCD.

We applied the W and MCT tests to the processed genes. Based

on the P-values, the W test found 586 (1478) probes differentially

expressed at a 0.01 (0.05) level of significance between BCR-ABL

and E2A-rearranged (EP) ALL patients. The MCT test, on the other

hand, detected 72 (56) additional DEGs and it did not miss any of

the genes that were identified by the W. A summary of these tests

for 72 additional genes is provided in Table 2. As a visual cross-

check, we performed a principal component analysis (PCA)—a

standard dimension reduction technique in high-dimensional set-

ting—on all of the 6307 probe sets. Figure 4a shows the 12 samples

projected onto the first two principal components. The two subtypes

are separated into two groups by the second principal component.

We repeated PCA, this time taking into account only the 72 genes—

namely those that were made significant by the MCT test. Again,

the 12 samples are projected onto the first two principal components

in Figure 4b. The plot clearly demonstrates that the additional genes

identified by the MCT test have the ability to classify the two

subtypes.

Next, we adjusted the P-values using the ‘fdr’ method. Based on

the adjusted P-values, the W test found that none (154) of the probes

differentially expressed at a 0.01 (0.05) level of significance, while

the MCT found 13 (294) differentially expressed probes between

BCR-ABL and E2A-rearranged (EP) subtypes. A summary of these

tests for 13 additional genes is provided in Table 3. Some of these

genes are found to be associated with the disease progression. For

example, in Durand et al. (2004), STARD7 (also known as GTT1)

has found associated with JEG-3 choriocarcinoma cells, SH3GL1

increased expression has found associated with osteosarcoma cell

proliferation (Li and Zhang, 2017), and the ABL1 (also known as

ABL) transcript has found in the majority of chronic myelogenous

leukemia patients (Gale and Canaani, 1984).

5 Discussion

We have introduced the BF problem and highlighted that the key

issue lies in the unknown proportion of two v2 distributions in the

test statistic. Any estimator for this nuisance parameter (proportion)

will result in a deviation to the true null distribution (which deter-

mines the P-value). However, instead of using one v2 distribution to

approximate the denominator distribution of D, as in t-test, we are

able to keep the denominator as a sum of two v2 distributions and

estimate the proportion only. This has led to an improved test pro-

cedure. Modern computing has made it possible to evaluate the P-

values using Monte Carlo simulations. It is of great interest to estab-

lish some theoretical results to gain mathematical insight why the

new approximation improves or when it does not. The other inter-

esting question is how robust the new procedure is. Our preliminary

studies indicate that it is at least as robust as the Welch’s test (see

Supplementary Material). We aim to carry out extensive studies

using very different distributions including more heavy tailed and

skewed distributions.

There are a number of approaches to modeling the variances

across genes in microarray studies, where the means or the variances

(a)

(b)

(c)

Fig. 3. QQ-plots of the P-values obtained via W and MCT. In (a) and (b), the

P-values for known negative probes were obtained via W and MCT, respect-

ively, and they were plotted against a standard uniform variate on �log10

scale. In (c), the P-values for known positive probes were obtained via W and

are plotted against those obtained via MCT on �log10 scale
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may be further modeled across the genes (see Jeanmougin et al.,

2010). Techniques such as Bayesian approaches and the generalized

linear models would become useful especially for count data (for ex-

ample, see Lu et al., 2005; Robinson and Smyth, 2007). For ex-

ample, the variances for the two treatment groups can be assumed

to be proportional, and the common proportion parameter will be

estimated from the ‘pooled’ data. In this case the gain will depend

on the validity of constancy of the variance ratio across all the genes.

Comparisons of such different modeling approaches would require

Table 2. The list of 72 additional genes identified by MCT at 0.01

level of significance based on P-values for childhood acute

lymphoblastic leukemia gene expression study

BCR-ABL E2A-rearranged

(EP)

P-values

Probe set ID Mean (SD) Mean (SD) MCT Welch

NONOj200057_s_at 8.58 (0.21) 8.12 (0.2) 0.0085 0.0118

TMED2j200087_s_at 7.18 (0.24) 6.64 (0.29) 0.0083 0.0102

CALMj200655_s_at 7.83 (0.38) 6.95 (0.17) 0.0089 0.014

LAPTM4Aj200673_at 7.7 (0.41) 6.83 (0.39) 0.0086 0.0123

PGK1j200737_at 5.76 (0.34) 5.01 (0.31) 0.008 0.0116

ARL6IP5j200761_s_at 5.67 (0.63) 4.36 (0.6) 0.0098 0.0142

ZNF207j200828_s_at 7.93 (0.44) 7 (0.34) 0.0093 0.0141

IST1j200851_s_at 7.17 (0.41) 6.28 (0.46) 0.0092 0.012

PSAPj200866_s_at 6.58 (0.74) 4.82 (0.42) 0.0064 0.0114

ACTR3j200996_at 6.34 (0.42) 5.36 (0.3) 0.0063 0.011

PSMF1j201052_s_at 4.78 (0.42) 3.89 (0.47) 0.0096 0.0128

ATP6V1B2j201089_at 5.5 (0.59) 4.15 (0.29) 0.009 0.0142

HNRNPH2j201132_at 3.8 (0.44) 2.83 (0.51) 0.0095 0.0111

BHLHE40j201170_s_at 7.25 (0.99) 4.97 (0.57) 0.0072 0.0129

SEC11Aj201290_at 6.04 (0.37) 5.18 (0.27) 0.0061 0.0103

SLC9A3R1j201349_at 5.33 (0.72) 3.75 (0.55) 0.0084 0.0125

CUL3j201371_s_at 7.3 (0.43) 6.32 (0.57) 0.0087 0.0101

ITGA5j201389_at 6.04 (0.77) 4.28 (0.58) 0.0062 0.0107

TRAM1j201398_s_at 6.59 (0.32) 5.9 (0.36) 0.0096 0.0123

PLEKHB2j201411_s_at 5.02 (0.68) 3.18 (1.33) 0.01 0.0101

ETF1j201573_s_at 5.92 (0.44) 4.89 (0.22) 0.007 0.0127

IRAK1j201587_s_at 6.84 (0.59) 5.58 (0.49) 0.0084 0.013

USP14j201672_s_at 6.14 (0.41) 5.2 (0.21) 0.0082 0.0141

EFCAB14j201778_s_at 4.68 (0.33) 3.93 (0.44) 0.0097 0.0109

SEC63j201914_s_at 4.8 (0.42) 3.86 (0.4) 0.0076 0.0109

SLC25A36j201917_s_at 5.72 (0.51) 4.56 (0.26) 0.0078 0.0139

KIF5Bj201991_s_at 6.23 (0.26) 5.65 (0.22) 0.0068 0.0105

SPG7j202104_s_at 3.81 (0.37) 3 (0.41) 0.0089 0.0114

RAP1Aj202362_at 5.24 (0.63) 3.71 (0.39) 0.005 0.0101

BASP1j202391_at 4.45 (0.64) 5.86 (0.78) 0.0094 0.0114

SEC24Bj202798_at 5.4 (0.59) 4.15 (0.49) 0.0096 0.014

CYTH1j202879_s_at 4.86 (0.6) 3.57 (0.52) 0.0094 0.0133

RHOBTB3j202975_s_at 3.51 (0.39) 2.66 (0.32) 0.008 0.0125

RREB1j203704_s_at 5.44 (0.26) 4.88 (0.27) 0.0093 0.0119

PDE4Bj203708_at 6.49 (1.3) 3.7 (0.88) 0.0088 0.0145

CSF2RBj205159_at 3.71 (1.2) 6.43 (0.6) 0.0086 0.0145

AAK1j205434_s_at 5.27 (0.23) 4.78 (0.26) 0.0094 0.0116

CTDSP2j208735_s_at 5.36 (0.57) 4.1 (0.59) 0.0081 0.011

SAP18j208742_s_at 8.38 (0.3) 7.73 (0.25) 0.008 0.0122

REEP5j208872_s_at 5.51 (0.43) 4.56 (0.31) 0.0087 0.0136

KPNB1j208974_x_at 6 (0.32) 5.3 (0.29) 0.0084 0.0124

STX3j209238_at 4.99 (0.79) 3.21 (0.74) 0.0065 0.0104

SAT1j210592_s_at 8.45 (0.81) 6.73 (0.87) 0.0099 0.0128

UBR4j211950_at 5.79 (0.47) 4.79 (0.49) 0.01 0.013

KBTBD2j212447_at 5.58 (0.48) 4.52 (0.24) 0.0096 0.0158

RMND5Aj212482_at 5.41 (0.35) 4.68 (0.24) 0.0099 0.0153

DENND5Aj212561_at 6.54 (0.47) 5.47 (0.26) 0.0086 0.014

AUTS2j212599_at 5.18 (0.49) 6.25 (0.36) 0.0082 0.0128

DNMBPj212838_at 4.88 (0.6) 3.54 (0.38) 0.0081 0.0137

GNPTABj212959_s_at 5.11 (0.64) 3.71 (0.48) 0.0083 0.0132

CASP8j213373_s_at 5.4 (0.92) 3.44 (0.61) 0.0096 0.0149

POLR2Ej213887_s_at 5.22 (0.59) 3.91 (0.49) 0.0073 0.0116

LST1j214181_x_at 5.4 (1.55) 2.12 (1.18) 0.0095 0.0143

SUB1j214512_s_at 7.6 (0.45) 6.49 (0.27) 0.0058 0.0105

TBC1D9Bj215994_x_at 4.99 (0.18) 4.6 (0.18) 0.0086 0.0114

WDR83OSj217780_at 6.35 (0.26) 5.75 (0.33) 0.0085 0.0101

KCMF1j217938_s_at 7.17 (0.36) 6.4 (0.28) 0.0084 0.0133

NOSIPj217950_at 4.71 (0.23) 4.19 (0.2) 0.0069 0.0108

BCL2L13j217955_at 3.63 (0.57) 2.36 (0.59) 0.0074 0.0104

(continued)

Table 2. Continued

BCR-ABL E2A-rearranged

(EP)

P-values

Probe set ID Mean (SD) Mean (SD) MCT Welch

TSPAN13j217979_at 6.44 (0.67) 5.02 (0.45) 0.0097 0.0158

ZFAND3j218020_s_at 5.17 (0.32) 4.45 (0.3) 0.0067 0.01

ZDHHC6j218249_at 3.81 (0.07) 3.22 (0.48) 0.0096 0.01

NDE1j218414_s_at 5.26 (0.38) 4.38 (0.33) 0.0064 0.0102

PSMG2j218467_at 7.49 (0.27) 6.89 (0.31) 0.0087 0.0106

COQ10Bj219397_at 5.59 (0.39) 4.74 (0.44) 0.0089 0.0114

BNIP3Lj221478_at 5.37 (0.45) 4.38 (0.49) 0.0084 0.0109

YTHDF3j221749_at 4.97 (0.41) 4.08 (0.38) 0.008 0.0116

FGFR1j222164_at 4.7 (0.28) 4.1 (0.26) 0.0094 0.0135

ACTR10j222230_s_at 4.64 (0.5) 3.54 (0.4) 0.008 0.0123

PDCD6j222380_s_at 3.35 (0.6) 4.66 (0.51) 0.0089 0.0127

SAFB2j32099_at 5.42 (0.35) 4.65 (0.31) 0.007 0.011

KDM6Bj41387_r_at 5.42 (0.33) 4.69 (0.39) 0.0093 0.0113

(a)

(b)

Fig. 4. PCA plot of the childhood acute lymphoblastic leukemia (ALL) gene-ex-

pression dataset based on (a) all 6307 genes (b) only 72 additional genes

identified by the MCT test. The red dots represent subtype BCR-ABL and the

black dots represent subtype E2A-rearranged (EP)
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understanding of possible violations of additional assumptions and

implications of such violations. This means the underlying pros and

cons would be case specific. Further investigation in this direction is

of great interest as more insights can be gained for each application.
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