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Abstract

Motivation: Predicting secondary structure and solvent accessibility of proteins are among the es-

sential steps that preclude more elaborate 3D structure prediction tasks. Incorporating class label

information contained in templates with known structures has the potential to improve the accur-

acy of prediction methods. Building a structural profile matrix is one such technique that provides

a distribution for class labels at each amino acid position of the target.

Results: In this paper, a new structural profiling technique is proposed that is based on deriving

PFAM families and is combined with an existing approach. Cross-validation experiments on two

benchmark datasets and at various similarity intervals demonstrate that the proposed profiling

strategy performs significantly better than Homolpro, a state-of-the-art method for incorporating

template information, as assessed by statistical hypothesis tests.

Availability and implementation: The DSPRED method can be accessed by visiting the PSP server

at http://psp.agu.edu.tr. Source code and binaries are freely available at https://github.com/yusufza

feraydin/dspred.

Contact: zafer.aydin@agu.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are essential molecules for the biological processes in cells

of the living beings. Knowing the structure of a protein is important

as it helps to understand its functional activity. Furthermore, it is

useful for drug design studies that model ligand–protein interac-

tions. Because experimental determination of protein structure is

labor intensive and may take weeks researchers have developed an

interest in alternative solutions such as computational prediction of

three-dimensional (3D) structure.

One of the preliminary steps of 3D structure prediction is to esti-

mate one or two dimensional structural attributes such as secondary

structure, solvent accessibility, torsion angles and contact maps,

which are subsequently employed as inputs to more elaborate energy

minimization algorithms (Yang and Zhang, 2016). Several methods

have been proposed to predict these properties most of which are

based on training machine learning models. The input features of

these prediction methods typically include sequence profiles in the

form of position-specific scoring matrices (PSSMs) and structural

profile matrices both of which are derived by aligning the target pro-

tein to proteins (or to profile models that represent proteins) in a

database of interest. Though there has been a lot of interest in devel-

oping sophisticated prediction models less effort has been made by

the researchers on developing better feature parameters. However, it

is well-known in machine learning literature that extracting more in-

formative and discriminative features contributes positively on the

prediction accuracy.

Developing new feature extraction methods for predicting pro-

tein structure may consider two main directions: deriving better
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sequence profiles or structural profiles. Methods developed for the

first objective typically align the target protein with amino acid

sequences in a large sequence database to estimate position-specific

sequence profiles that represent the statistical propensity of observ-

ing each of the 20 amino acids at individual positions of the target.

In this category, structure information of the proteins are not

employed explicitly. On the other hand, methods in the second cat-

egory focus on finding template proteins with known structures and

summarize the label frequency information of the templates in the

form of structural profile matrices, which can be more effective for

predicting structure of proteins. A structural profile is a collection of

discrete probability distributions each showing the propensity of a

target amino acid to be in one of the structure states (e.g. in second-

ary structure prediction the state space can be fH, E, Lg and in solv-

ent accessibility fe, bg). Employing a structural profile matrix is

effective also because of the following. Although the protein se-

quence databases contain hundreds of millions of proteins and the

Protein Data Bank (PDB) contains hundreds of thousands of solved

structures, it is estimated that the number of distinct structures a

protein can fold into is on the order of thousands. Depending on the

similarity between target and templates class label information can

be potentially more useful than the information contained in a se-

quence profile.

To date, structural profile matrices have been employed in vari-

ous methods to improve the accuracy of machine learning models

developed for predicting structural properties of proteins. Pollastri

et al. used structural profile matrices in the input feature vector of

bi-directional recurrent neural networks and obtained improve-

ments in secondary structure and solvent accessibility prediction

(Pollastri et al., 2007). Mooney and Pollastri employed predicted

structural features to align the target with the templates and to de-

rive a structural profile, which is fed as input to recurrent neural net-

works with sequence-based profile features (Mooney and Pollastri,

2009). Cheng et al. followed a data mining approach that searches

for fragment structures in PDB to improve prediction accuracy of

GOR V method (Cheng et al., 2007). A similar approach is pro-

posed by Lin et al., which uses match rates of short fragments with

known structure aligned to target in combination with PSIPRED

(Lin et al., 2005). Walsh et al. incorporated template information to

improve the accuracy of two-dimensional distance map prediction

(Walsh et al., 2009). Zhang et al. developed torsion angle and solv-

ent accessibility profiles for protein fold recognition (Zhang et al.,

2008). Magnan and Baldi employed Homolpro as a post-processing

module after bi-directional recurrent neural networks model (1D-

BRNN) to incorporate structural label information from templates

into secondary structure and solvent accessibility prediction

(Magnan and Baldi, 2014). Li et al. introduced a secondary structure

prediction method called SPSSMPred, which employs features from

a sequence-based PSSM as well as a structural profile matrix (Li

et al., 2012). Recently, Zhou et al. introduced a template library

called SIPSS, which is periodically updated as new structures are

deposited into PDB (Zhou et al., 2017). The methodology used in

this work is similar to the paper by Li et al. In another recent paper,

Aydin et al. developed structural profile matrices by aligning the tar-

get with PDB proteins using HHblits (Remmert et al., 2012) and

obtained improvements in torsion angle class prediction (Aydin

et al., 2015).

Most of the related work in the literature do not apply weights

on templates when constructing structural profile matrices. It has

been shown in Aydin et al. that such type of weighting can improve

the accuracy of prediction considerably (Aydin et al., 2015).

However, this technique has not been applied to secondary structure

and solvent accessibility prediction yet. Furthermore, there is no

work that employs sequence-based motifs such as PFAM motifs

(Finn et al., 2016), which might be able to capture sequence-based

patterns related to structural and functional context of proteins.

This paper introduces a new technique for computing a struc-

tural profile matrix. Starting from the target, it performs a PFAM

domain family search by PfamScan and extracts templates from

PDB that belong to the same PFAM family as the target. In the next

step, the templates are aligned with the target using T-Coffee and

blastp programs. Finally, weighted frequency of occurrence counts

are computed to derive the structural profile matrix. The proposed

method is combined with the structural profiling approach devel-

oped earlier (Aydin et al., 2015) for torsion angle class prediction

and is incorporated into DSPRED, which is a two-stage hybrid clas-

sifier developed for predicting one-dimensional structure of proteins

including secondary structure, solvent accessibility and torsion angle

class information.

2 Materials and methods

2.1 Problem definition
One-dimensional protein structure prediction aims to assign a struc-

tural label to each amino acid of a given protein. For example, in

secondary structure class prediction, the goal is to assign one of the

labels H, E or L to each amino acid. Detailed definition of prediction

tasks can be found in Supplementary Section S1.

2.2 Datasets
This section describes the datasets used to compute statistics about

structural profile matrices and to evaluate the accuracy of DSPRED

in secondary structure and solvent accessibility prediction.

2.2.1 NRNPDB992

NRNPDB992 dataset contains 992 proteins from the non-

redundant (NR) database of NCBI with unknown structures. It is

constructed by first selecting a set of 1000 proteins randomly from

the NR database and then eliminating those proteins that have

known structures in PDB. NRNPDB992 is used to obtain the per-

centage of targets that are matched with at least one template so

that a structural profile matrix can be computed and the percentage

of target amino acids to which at least one template residue is

aligned.

2.2.2 CB513

CB513 is one of the established and difficult benchmarks used to as-

sess the prediction accuracy of one-dimensional structure prediction

methods (Cuff and Barton, 1999). It contains 513 chains and 84 119

amino acids. In this paper, CB513 is used to evaluate the secondary

structure prediction accuracy of DSPRED method and various struc-

tural profiling techniques. This dataset can be downloaded from

Jpred’s distribution material website http://www.compbio.dundee.

ac.uk/jpred/legacy/data/.

2.2.3 EVAset

EVAset is another benchmark that contains proteins from PDB and

is designed for evaluating the accuracy of prediction methods in

structure prediction tasks (Koh et al., 2003). The original dataset

contains 3074 proteins. After removing proteins shorter than 30

amino acids there remained a set of 2876 targets with a total of

584 595 amino acids. In this paper, EVAset is used to evaluate the
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accuracy of DSPRED method in secondary structure and solvent ac-

cessibility prediction tasks.

2.2.4 PDB99

This is the database of HMM-profiles used in the second step of

HHblits. To derive this database, first, a non-redundant set of PDB

proteins were downloaded using the software from the PISCES ser-

ver (http://dunbrack.fccc.edu/PISCES.php) (Wang and Dunbrack,

2003) by setting the threshold to 99%, which eliminates all protein

pairs that have percentage of identity score above this threshold.

This step produced a set of 23 936 proteins. In the next step, HMM-

profiles are built by following the steps in Section 3.5 ‘Building cus-

tomized databases’ of the HHsuite user guide (https://github.com/

soedinglab/hh-suite/wiki).

2.3 Assigning structure labels
The secondary structure label information for the CB513 dataset

was originally downloaded from the Jpred’s distribution material

website along with the amino acid sequences. The secondary struc-

ture and solvent accessibility labels of proteins in EVAset are

obtained by first downloading the pdb files of the targets using the

get_pdb.py script of Rosetta (https://www.rosettacommons.org/soft

ware) and then by running the DSSP program, which processes the

3D coordinate information in pdb files. The output of DSSP includes

an 8-state label sequence for secondary structure representation and

a sequence of solvent accessibility scores, which include an

accessible surface area for each amino acid (i.e. the absolute accessi-

bility). In this work, the 8-state secondary structure label sequence is

converted to 3-state using the following transformation:

fH;G; Ig ! H; fE;Bg ! E; f’ ’; S;Tg ! L. The absolute solvent ac-

cessibility scores are converted to relative accessibility by dividing

the accessible surface area of each amino acid by its maximum ac-

cessibility score. Detailed explanation on this transformation can be

found in https://en.wikipedia.org/wiki/Relative_accessible_surface_

area. The relative accessibility values are then compared to one or

more thresholds and transformed to discrete labels depending on

which interval they fall into. In this paper, a single threshold is used,

which is set to 25%. If the relative accessibility of an amino acid is

greater than 25% then it is assigned to the ‘e’ (i.e. exposed) class.

Otherwise its label becomes ‘b’ (i.e. buried).

2.4 Feature extraction
This section explains how the input features of the prediction

method are computed.

2.4.1 PSI-BLAST PSSM features

Proteins in CB513 and EVAset benchmarks are aligned with pro-

teins in the NCBI’s NR database using PSI-BLAST (see protein

BLAST at https://blast.ncbi.nlm.nih.gov/Blast.cgi) with the follow-

ing parameter settings: e-value¼10, number of iterations¼3 and

inclusion e-value¼0.001. A PSSM of size N � 20 is computed for

each protein using the out_ascii_pssm option of PSI-BLAST, where

N is the number of amino acids in the target. The PSSM values are

scaled to interval [0, 1] as in Aydin et al. (Aydin et al., 2011) by

applying a sigmoidal transformation individually to each parameter

and are used as input features of the DSPRED method. Details on

PSSM computation using PSI-BLAST can be found in the paper by

Altschul et al. (Altschul et al., 1997).

2.4.2 HHMAKE PSSM features

To derive HHMAKE PSSM features, proteins in CB513 and EVAset are

aligned with the NR20 database (a reduced version of NCBI’s NR data-

base) using the first step of HHblits (https://toolkit.tuebingen.mpg.de/#/

tools/hhblits) by setting the number of iterations to 2 and all other param-

eters to their default settings. This step produces a multiple alignment be-

tween the target and hit proteins. In the next step, an HMM-profile

model is constructed using the hhmake utility of HHblits, which contains

match, insertion and deletion states as well as a background amino acid

score table. Each match state and the background table contain a set of

20 scores, one for each amino acid. Since the raw output of hhmake

includes scores in �1000 � logðvalueÞ format, the scores in match states

and the background scores are first divided by 1000 and then PSSM val-

ues are computed by subtracting each match score from the correspond-

ing background score. Finally, similar to PSI-BLAST features, the PSSM

values are normalized to interval [0, 1] by a sigmoidal transformation

and used as input features of DSPRED (Aydin et al., 2011).

2.4.3 Generating structural profile matrices using HHblits: SP1

A structural profile matrix represents the propensity of each amino

acid of the target to be in one of the structural class states in the

form of discrete probability distributions. The dimension of this ma-

trix is N�K where N is the number of amino acids in target, K¼3

for secondary structure prediction and K¼2 for solvent accessibility

prediction. Since each row is a discrete probability distribution, the

sum of the scores in each row should be 1. Detailed definition of a

structural profile matrix can be found in Supplementary Section S2.

The first type of structural profile matrix, denoted as SP1, is

computed using the HHblits method (https://toolkit.tuebingen.mpg.

de/#/tools/hhblits). For this purpose, the target is initially aligned

with proteins in the NR20 sequence database using the hhblits and

hhmake utilities of HHblits as explained in Section 2.4.2. This step

produces an HMM-profile model for the target, which is then

aligned with the HMM-profiles in the PDB99 database by setting

the number of iterations to 1 and all the other parameters to their

default settings. In the last step, a position-specific structural profile

matrix is computed using the weighted frequency information of the

structure labels assigned from PDB99 to amino acids of the target

(Aydin et al., 2015). This is formulated as follows:

Sði; jÞ ¼
Cði; jÞP
j Cði; jÞ if jAðiÞj > 0

0 otherwise

;

8><
>: (1)

where S is the normalized count matrix representing the structural pro-

file matrix, i is the index for amino acids of the target such that

1� i�N with N representing the number of amino acids in target, j is

the index for structure labels such that 1� j�K with K¼3 for second-

ary structure prediction and K¼2 for solvent accessibility prediction,

C(i, j) is the unnormalized count matrix, A(i) is the set of template resi-

dues aligned to the ith residue of the target, and jAðiÞj is the number of

residues in A(i). The above equation splits the set of target resides into

two groups: those that are aligned to at least one template residue (i.e.

jAðiÞj > 0) and those that are not aligned to any template residue (i.e.

jAðiÞj ¼ 0). The second set of residues can occur because HHblits com-

putes local alignments, which may also include gapped regions. The

unnormalized count matrix is computed as

Cði; jÞ ¼
X
Rði;kÞ

hðtði; kÞ; jÞ; (2)

where C is the count matrix, R(i, k) is the amino acid residue of the

kth database protein aligned to the ith position of the target, t(i, k)
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is the true class label of R(i, k) and h is the occurrence count func-

tion expressed as

hðtði; kÞ; jÞ ¼ sweI
acðiÞ if tði; kÞ ¼ j

0 otherwise
;

�
(3)

where s is the raw score of the alignment, we is the e-value weight

defined in Aydin et al. (Aydin et al., 2015), I is the sequence identity

score of the alignment between the target and the kth template, a is

the integer power factor (Table 1) and c(i) is the confidence score

assigned by HHblits to the ith residue of the target. In this equation,

the integer a amplifies the contribution of structurally close tem-

plates preventing them to be swamped with many structurally dis-

tant templates or false positives. In the present study, the values

given in Table 1 are employed for the a parameter: where PC is the

threshold for the maximum allowed percentage of sequence identity

score of the target-template alignments used to construct the struc-

tural profile matrix. Different from Aydin et al. (Aydin et al., 2015)

Equation (3) includes the confidence score c(i), which is a position-

specific weight term that participates in the computation of

weighted frequency of occurrence counts.

2.4.4 Generating structural profile matrices using PfamScan: SP2

PFAM is a database containing protein families each represented by

multiple sequence alignments and hidden Markov models (https://

pfam.xfam.org) (Finn et al., 2016). It offers a search tool called

PfamScan, which can be used to find the domain family of a given

protein. Starting from the amino acid sequence of the query,

PfamScan computes alignments against a library of HMM-profiles

using HMMER3 (http://hmmer.org) and reports the family (or fami-

lies) with the best alignment score(s).

In this paper, to derive the second structural profile matrix (i.e.

SP2), first, the domain family of the target is found by running

PfamScan in default settings. Then, other proteins belonging to the

same family are detected by searching the pdb map file of the PFAM

database for the PFAM domain ID. In the next step, templates

belonging to the same PFAM family are aligned pairwise with the

target using blastp program of NCBI’s BLAST software (https://

blast.ncbi.nlm.nih.gov/Blast.cgi) and the percentage of sequence

identity scores are recorded. To improve the alignment quality of

blastp, the target and the templates are aligned by the T-Coffee mul-

tiple alignment software (http://tcoffee.crg.cat) and the structural

profile matrix is computed based on the residue matches produced

by T-Coffee and using Equations (1), (2) and (4), which is given

below

hðtði; kÞ; jÞ ¼ Ia if tði; kÞ ¼ j
0 otherwise

:

�
(4)

Note that Equation (4) is a simplified version of Equation (3)

and includes merely the power of the sequence identity score from

the blastp alignment.

2.4.5 Eliminating templates at different similarity thresholds

To measure the contribution of the template similarity on the predic-

tion accuracy, templates that score above the percentage of sequence

identity threshold denoted as PC are excluded from each structural

profile matrix. For this purpose, the following nine thresholds are

considered: 20, 30, 40, 50, 60, 70, 80, 90 and 100. Then for each

threshold, structural profile matrices are computed for all targets in

CB513 and EVAset by eliminating those templates that have per-

centage of sequence identity score greater than this maximum score

threshold. Since all proteins in CB513 and EVAset are PDB proteins,

templates that share the same PDB ID as the target (including those

that have the same PDB ID and same chain ID as well as those that

have the same PDB ID but different chain ID) are always excluded

and not used for estimating the structural profile matrices.

2.5 DSPRED prediction method
In this paper, the secondary structure and solvent accessibility informa-

tion is predicted using the DSPRED method, which is a two-stage hy-

brid classifier developed for estimating one-dimensional structural

attributes of proteins (Aydin et al., 2011). The first stage contains dy-

namic Bayesian network (DBN) classifiers and the second stage

employs a support vector machine (SVM) classifier. Different DBN

models are trained for PSI-BLAST PSSM and HHMAKE PSSM fea-

tures, respectively and each DBN computes a probability distribution

of class labels given input PSSM features. These are denoted as

Distribution 1 and Distribution 2, respectively for PSI-BLAST PSSM

and HHMAKE PSSM, which have the same form as a structural profile

matrix. Then these two distributions and the structural profile matrices

are averaged to obtain Distribution 3 as explained in Section 2.5.1.

Details of DSPRED can be found in Supplementary Section S3.

2.5.1 Weighted average of DBN outputs and structural profiles

As explained in Section 2.5 and in Supplementary Section S3,

Distribution 3 (one of the feature subsets of the SVM model) is com-

puted as the weighted average of DBN outputs and the structural

profile matrices. This is achieved by

D3ði; jÞ ¼ w1D1ði; jÞ þw2D2ði; jÞ þw3S1ði; jÞ þw4S2ði; jÞ; (5)

where D1, D2 and D3 are Distributions 1–3, respectively, S1 and S2

denote structural profile matrices SP1 and SP2 explained in Sections

2.4.3 and 2.4.4, respectively, j is the index for class label, i is the

index for amino acid position, w1, w2, w3 and w4 represent the

weights of Distribution 1, Distribution 2, SP1 and SP2, respectively.

The dimensions of D1, D2, D3, S1, and S2 are N by K where N is the

number of amino acids in target, K¼3 for secondary structure pre-

diction and K¼2 for solvent accessibility prediction. These weight

terms satisfy w1 þ w2 þ w3 þ w4 ¼ 1 and each weight is applied

uniformly to all amino acid positions of the corresponding distribu-

tion. However, if there is no aligned residue to a target amino acid

in SP1 and/or SP2 then the corresponding weight term(s) is (are) set

to zero at that amino acid only. For instance, if there is no aligned

residue to a target amino acid in HHblits alignments (i.e. for SP1)

but alignments are available in blastp (i.e. for SP2) then w3 is set to

zero for that amino acid only. Similarly, if there is no aligned residue

to a target amino acid both in HHblits and blastp alignments then

w3 and w4 are set to zero for that amino acid only. This allows

Distributions 1 and 2 to serve as background models in positions

where there is no template residue aligned to those positions due to

local nature of the alignments computed by HHblits and blastp. The

following scenarios are implemented to select weights w1, w2, w3

and w4:

No SP implements the case that only uses DBN outputs and

excludes structural profile matrices from consideration. In this

scheme, w1 ¼ 0.5, w2 ¼ 0.5, w3 ¼ 0.0 and w4 ¼ 0.0, which is uni-

formly applied to all amino acid positions.

SP1 only implements the scenario that combines outputs of DBN

models as well as the first structural profile matrix (SP1) excluding

SP2. This scheme sets w1 ¼ 1/3, w2 ¼ 1/3, w3 ¼ 1/3 and w4 ¼ 0.0.

SP11SP2 combines the outputs of DBNs and the two structural pro-

file matrices by selecting w1¼ 1/4, w2¼ 1/4, w3¼ 1/4 and w4¼ 1/4.
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2.6 Incorporating Homolpro into DSPRED
Homolpro is a software that is developed for transferring labels

from PDB templates to predicted class label sequence of a target

(Magnan and Baldi, 2014). It performs a blastp alignment against

the pdb-full database of 139859 redundant proteins and constructs

a structural profile matrix using Laplacian counts (i.e. frequency

counts of 1) for each template residue matched to target. In the next

step, if an amino acid on the target is aligned with a template resi-

due, the predicted class label of that amino acid is updated by copy-

ing the label that has the highest score at the corresponding column

of the structural profile matrix. Homolpro requires the templates to

satisfy the following constraints: (i) a minimum of 10 amino acids

should be aligned with the target for secondary structure and 30

amino acids for solvent accessibility prediction, (ii) the percentage of

sequence identity score should be at least 45% for secondary struc-

ture and 70% for solvent accessibility prediction, (iii) the BLAST e-

value should be less than 10–9 and (iv) positive substitution score

should be at least 55% for secondary structure and 75% for solvent

accessibility prediction.

In this paper, the Homolpro software version 1.1 is used as a

post-processing block (http://download.igb.uci.edu) after the

DSPRED method. For this purpose, first, the predicted label se-

quence is computed using DSPRED by setting w3 and w4 to zero,

which is sent as input to Homolpro to update the labels predicted by

the SVM classifier. To realize the experimental settings of the pre-

sent work, Homolpro is customized by: (i) setting the minimum

alignment score to 0, (ii) introducing a maximum alignment score

(which corresponds to the PC threshold in this work that takes val-

ues from 20 to 100%) and (iii) replacing the pdb-full database with

PDB99 (proteins and the label sequences of PDB99 only).

Introducing a maximum alignment score threshold allows to elimin-

ate templates that score above the threshold and to analyze the con-

tribution of template information at different similarity levels.

2.7 Accuracy measures
The following accuracy measures are used: overall prediction accur-

acy, segment overlap measure, class-specific recall, precision, and

Matthew’s correlation coefficient measures. The overall accuracy is

computed as the percentage of correctly predicted residues divided

by the total number of amino acids. Segment overlap measure aims

to compute the ratio of overlap between the true and predicted label

segments. Detailed explanation of these metrics can be found in the

paper by Aydin et al. (Aydin et al., 2011).

3 Results and discussion

3.1 Distribution of the sequence identity score in

HHblits alignments
We analyzed the distribution of the sequence identity score between

a target and proteins in the PDB99 dataset at the end of an HHblits

alignment (see Supplementary Section S4). Based on this analysis,

the majority of the templates found by HHblits have sequence iden-

tity scores in range 20–40%.

3.2 Template matching statistics of SP1 and SP2
A natural point of interest is the potential of a structural profile ma-

trix derivation method to find templates to a given target. To ex-

plore this, we computed the following statistics for SP1 and SP2

matrices: the percentage of targets that receive at least one hit from

PDB and the percentage of amino acid positions that are aligned to a

residue of a PDB template (see Supplementary Section S5 for

details). Based on this analysis, it is possible to find templates using

HHblits and/or PfamScan even for difficult cases that only have dis-

tant templates available.

3.3 The effect of employing a structural profile matrix
This section compares the prediction accuracy of DSPRED for the

case that does not use any structure profile matrices (i.e. No SP) to

the condition that uses the first structural profile matrix (i.e. SP1

only with w1 ¼ w2 ¼ w3 ¼ 1/3 and w4 ¼ 0) with PC threshold equal

to 20 (employing the most distant templates only) and PC threshold

equal to 100 (employing all templates available). Table 2 includes

the overall accuracy, segment overlap measure of DSPRED as well

as standard deviation of overall accuracy on CB513 and EVAset for

secondary structure prediction. A 7-fold cross-validation experiment

is performed on CB513 and a 10-fold cross-validation on EVAset.

Standard deviation is computed using the accuracy obtained for

each fold of the cross-validation. According to this table, employing

SP1 profiles improves the overall accuracy of DSPRED by 1.14% on

CB513 and 0.95% on EVAset when distant templates are used only.

The improvements for the SOV measure are 1.05% on CB513 and

1.38% on EVAset. The 1.14% improvement in overall accuracy of

secondary structure prediction on CB513 is statistically significant

as assessed by a two-tailed Z-test for comparing proportions

(https://onlinecourses.science.psu.edu/stat414/node/268/) with a Z-

score of 6.0691 and a p-value of approximately 0 at a confidence

level of 95%. Similarly, the 0.95% improvement in overall accuracy

of secondary structure prediction on EVAset is statistically signifi-

cant according to a two-tailed Z-test with a Z-score of 13.7922 and

a p-value of approximately 0 at a confidence level of 95%. This

demonstrates that employing structural profiles that are constructed

even using only distant templates improves the accuracy of the pre-

diction model significantly. The improvements are much higher for

higher values of the PC threshold (i.e. when more similar templates

are employed in computing the structural profiles). When PC thresh-

old is set to 100 allowing all templates available, the accuracy of

DSPRED improves by 10.03% on CB513 and 7.15% on EVAset for

secondary structure prediction. The improvements for the SOV

measure are 11.67% on CB513 and 7.48% on EVAset. Detailed ac-

curacy metrics for these experiments can be found in Supplementary

Tables S4–S5 and Supplementary Table S6 includes results for solv-

ent accessibility prediction on EVAset.

Table 1. The a parameter with respect to the maximum allowed

percentage of sequence identity score for a target-template pair

PC 20 30 40 50 60 70 80 90 100

a 1 2 3 4 5 6 7 8 9

Table 2. The secondary structure prediction accuracies of DSPRED

Dataset Task Method Q3 SOV std

CB513 SS3 No SP 81.64 77.30 0.821

CB513 SS3 SP1 only, PC¼20 82.78 78.35 0.897

CB513 SS3 SP1 only, PC¼100 91.67 88.97 0.805

EVAset SS3 No SP 82.89 78.08 0.314

EVAset SS3 SP1 only, PC¼20 83.84 79.30 0.323

EVAset SS3 SP1 only, PC¼100 89.64 85.57 0.450

Note: When no structural profile matrix is used and when SP1 is used with

a PC threshold of 20 employing the most distant templates only and a thresh-

old of 100 employing all the templates available.
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3.4 Incorporating templates at different similarity levels
To analyze the effect of template similarity on the prediction accur-

acy, the PC threshold is increased from 20 to 100% with increments

of 10 allowing only the templates having percentage of sequence

identity scores lower than the threshold in constructing the

structural profile matrix. Table 3 includes accuracy metrics from

7-fold cross-validation experiments performed on CB513 for protein

secondary structure prediction, Table 4 contains accuracy metrics

from 10-fold cross-validation experiments performed on EVAset for

secondary structure prediction and Table 5 demonstrates accuracy

metrics from 10-fold cross-validation experiments performed on

EVAset for solvent accessibility prediction. In Homolpro, SP1 only,

and SP1þSP2 columns, numbers inside parentheses are segment

overlap measures and those outside include the overall accuracies.

HT1 column includes two-tailed Z-test results between the overall

accuracy metrics of SP1 only and Homolpro columns at a confi-

dence level of 95% (i.e. a significance level of 0.05), in which the

numbers inside parentheses include p-values and those that are out-

side are the Z-scores. Similarly, HT2 column contains two-tailed

Z-test results between the overall accuracy values of SP1þSP2 and

Homolpro columns at the same confidence level as HT1.

According to the hypothesis test results, DSPRED with SP1 only

performs significantly better than Homolpro on CB513 benchmark

at PC thresholds of 20–70 (including templates with low to moder-

ate similarity), comparable to Homolpro at PC values of 80 and 100

and slightly lower than Homolpro when PC is set to 90. SP1þSP2

case performs significantly better than Homolpro on CB513 at all

PC thresholds except for PC equal to 90 at which the methods per-

form comparably (Table 3). In secondary structure and solvent ac-

cessibility prediction experiments on EVAset, both SP1 only and

SP1þSP2 approaches perform significantly better than Homolpro at

all PC thresholds (Tables 4 and 5). The improvements in overall ac-

curacy of secondary structure prediction are approximately 1–2.4%

on CB513 and 0.9–2.0% on EVAset at PC values of 20–60%. In

segment overlap measure, these improvements are 1–2.8% on

CB513 at PC values of 20–60% and 0.8–2.2% on EVAset for PC

values of 20–80%. For PC greater than or equal to 70% but less

than 100% the overall accuracy measures of SP1þSP2 becomes

close to Homolpro (differing by 0.3–0.6% on CB513 and 0.3–0.7%

on EVAset) since transferring labels (as in Homolpro) behaves ef-

fectively similar to building profile matrices, which are constructed

by weighting the templates with respect to similarity scores. A simi-

lar behavior is observed for segment overlap measure at PC values

greater than or equal to 70 and less than 100% (SP methods differ

from Homolpro by 0.1–0.5% only on CB513 and 0.4–1.8% on

EVAset). When PC threshold is set to 100% the SP1þSP2 performs

better than Homolpro by 1% both in overall accuracy and segment

overlap measure on CB513, by 1.74% in overall accuracy on

EVAset and by 0.29% in segment overlap measure on EVAset. This

could be due to the fact that CB513 proteins are older than EVAset

and a higher proportion of its targets may have a 90–100% align-

ment score with templates in building SP1. However, due to local

nature of the HHblits alignments SP1 only may not cover all the res-

idues of the target. The unaligned regions of SP1 may be compen-

sated with the alignments obtained by blastp using proteins with the

same PFAM family, which is incorporated into the model through

SP2. Comparing the solvent accessibility prediction accuracy of SP1

only and SP1þSP2 with Homolpro, the proposed structural profil-

ing techniques perform better by 0.5–3.1% on EVAset in overall ac-

curacy for PC values from 20 to 50% and by 1.3–3.4% for PC

values from 60 to 100%. In segment overlap measure, the improve-

ments are 1.2–5.1% for PC values from 20 to 50% and 4.9–6.4%

for PC values from 60 to 100%. If SP1 only and SP1þSP2

approaches are compared, it can be observed that SP1 only performs

slightly better than SP1þSP2 both in CB513 and EVAset for PC

threshold less than 60% (i.e. for low to medium similarity levels). At

high PC thresholds and especially at PC equal to 100%, SP1þSP2

can perform better than SP1 only in overall accuracy while the seg-

ment overlap measure can be higher or lower depending on how

well the templates found by PfamScan complements the regions

missed by HHblits.

3.5 Detailed accuracy results
Supplementary Sections S6–S8 include detailed accuracy results

obtained for secondary structure and solvent accessibility prediction

Table 3. Accuracy measures of Homolpro and DSPRED in second-

ary structure prediction for increasing PC thresholds

PC Homolpro SP1 only SP1þSP2 HT1 HT2

20 81.65 (77.30) 82.78 (78.35) 82.59 (78.20) 5.9 (0.0) 5.0 (0.0)

30 81.80 (77.51) 84.21 (80.33) 84.06 (79.74) 13.2 (0.0) 12.3 (0.0)

40 83.29 (79.24) 85.63 (81.42) 85.47 (81.12) 13.2 (0.0) 12.3 (0.0)

50 85.04 (81.22) 86.81 (83.06) 86.65 (82.24) 10.4 (0.0) 9.4 (0.0)

60 86.60 (83.01) 87.70 (84.20) 87.66 (83.69) 6.7 (0.0) 6.5 (0.0)

70 87.43 (83.94) 87.91 (84.25) 88.01 (84.07) 3.0 (0.003) 3.6 (0.0)

80 87.87 (84.62) 87.82 (84.37) 88.31 (84.40)�0.3 (0.757) 2.8 (0.005)

90 88.29 (84.88) 87.58 (84.36) 88.55 (84.62)�4.5 (0.0) 1.7 (0.095)

100 91.87 (89.05) 91.67 (88.87) 92.84 (90.22)�1.5 (0.136) 7.5 (0.0)

Note: A 7-fold cross-validation is performed on CB513.

Table 4. Accuracy measures of Homolpro and DSPRED in second-

ary structure prediction for increasing PC thresholds

PC Homolpro SP1 only SP1þSP2 HT1 HT2

20 82.89 (78.24) 83.84 (79.30) 83.75 (79.07) 13.8 (0.0) 12.5 (0.0)

30 82.94 (78.29) 84.70 (80.00) 84.51 (79.82) 25.8 (0.0) 23.0 (0.0)

40 83.58 (78.71) 85.57 (80.91) 85.25 (80.87) 29.8 (0.0) 24.9 (0.0)

50 84.46 (79.48) 86.15 (81.55) 85.71 (81.49) 25.8 (0.0) 19.0 (0.0)

60 85.14 (80.17) 86.68 (82.13) 86.20 (81.98) 23.9 (0.0) 16.4 (0.0)

70 85.66 (80.72) 86.90 (82.48) 86.33 (82.06) 19.5 (0.0) 10.4 (0.0)

80 85.94 (81.04) 86.80 (82.38) 86.33 (81.92) 13.6 (0.0) 6.1 (0.0)

90 86.20 (81.28) 86.69 (82.23) 86.47 (81.72) 7.7 (0.0) 4.2 (0.0)

100 88.88 (84.29) 89.64 (85.57) 90.62 (84.58) 13.3 (0.0) 31.0 (0.0)

Note: A 10-fold cross-validation is performed on EVAset.

Table 5. Accuracy measures of Homolpro and DSPRED in solvent

accessibility prediction for increasing PC thresholds

PC Homolpro SP1 only SP1þSP2 HT1 HT2

20 79.90 (57.72) 80.57 (59.21) 80.46 (58.96) 9.1 (0.0) 7.6 (0.0)

30 79.90 (57.72) 81.45 (60.57) 81.25 (60.46) 21.2 (0.0) 18.4 (0.0)

40 79.90 (57.72) 82.25 (61.98) 82.02 (61.93) 32.4 (0.0) 29.2 (0.0)

50 79.92 (57.76) 83.02 (62.89) 82.56 (62.83) 43.1 (0.0) 36.6 (0.0)

60 80.13 (58.06) 83.55 (63.73) 83.07 (63.58) 48.0 (0.0) 41.0 (0.0)

70 80.63 (58.92) 83.81 (64.20) 83.24 (63.78) 45.0 (0.0) 36.7 (0.0)

80 80.95 (59.05) 83.82 (64.40) 83.34 (63.94) 40.7 (0.0) 33.7 (0.0)

90 81.23 (59.28) 83.71 (64.92) 83.59 (64.41) 35.3 (0.0) 33.5 (0.0)

100 86.82 (68.12) 87.92 (75.53) 88.93 (74.52) 17.9 (0.0) 34.9 (0.0)

Note: A 10-fold cross-validation is performed on EVAset.
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for the scenarios considered in this work. Based on these, the follow-

ing observations can be made. In secondary structure prediction, the

highest improvement is obtained for beta-strands followed by loops

and helices when structural profiles are employed. For solvent acces-

sibility prediction, the accuracies of the exposed state improved

more than those of the buried state. The amount of improvement is

higher as PC threshold is increased from 20 to 60% as compared to

the PC region 70–90%, in which the accuracy values saturate. This

is then followed by a large jump in PC equals 100% where even

closer templates can be potentially available. Note that such close

templates may still match to a sub-region of the target due to local

nature of the alignments.

4 Conclusion

This work demonstrates that developing more advanced structural

profiling methods improves the accuracy of one-dimensional protein

structure prediction considerably. Several directions can be consid-

ered as future work. First the bit score and e-value score of blastp

alignments can be incorporated into the proposed structural profile

matrix as multiplicative factors in template weighting equation.

Second, a machine learning classifier can be trained that distin-

guishes whether a target residue has similar structural label with a

template residue and scaling the templates using the similarity score

predicted by the classifier. Third, a structural profile matrix data-

base can be constructed and a new structural profile matrix can be

derived, which can easily be incorporated into DSPRED. Fourth,

target template alignments can be computed using the Smith-

Waterman algorithm by incorporating secondary structure, solvent

accessibility and torsion angle class predictions into the score update

function. Fifth, more advanced alignment techniques that utilize

threading can be employed to find better templates and construct

more accurate structural profile matrices. Sixth, utilizing templates

in secondary structure and solvent accessibility prediction at differ-

ent similarity levels can be analyzed in terms of its contribution to

3D structure prediction accuracy. Finally, deep learning models that

are developed recently for one-dimensional structure prediction such

as convolutional and recurrent networks can be incorporated into

the models and combined with structural profile information to fur-

ther improve the prediction accuracy.
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