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Abstract

Motivation: Disease is often manifested via changes in transcript and protein abundance.

MicroRNAs (miRNAs) are instrumental in regulating protein abundance and may measurably influ-

ence transcript levels. miRNAs often target more than one mRNA (for humans, the average is

three), and mRNAs are often targeted by more than one miRNA (for the genes considered in this

study, the average is also three). Therefore, it is difficult to determine the miRNAs that may cause

the observed differential gene expression. We present a novel approach, maTE, which is based on

machine learning, that integrates information about miRNA target genes with gene expression

data. maTE depends on the availability of a sufficient amount of patient and control samples. The

samples are used to train classifiers to accurately classify the samples on a per miRNA basis.

Multiple high scoring miRNAs are used to build a final classifier to improve separation.

Results: The aim of the study is to find a set of miRNAs causing the regulation of their target genes

that best explains the difference between groups (e.g. cancer versus control). maTE provides a list

of significant groups of genes where each group is targeted by a specific miRNA. For the datasets

used in this study, maTE generally achieves an accuracy well above 80%. Also, the results show

that when the accuracy is much lower (e.g. �50%), the set of miRNAs provided is likely not causa-

tive of the difference in expression. This new approach of integrating miRNA regulation with

expression data yields powerful results and is independent of external labels and training data.

Thereby, this approach allows new avenues for exploring miRNA regulation and may enable the

development of miRNA-based biomarkers and drugs.

Availability and implementation: The KNIME workflow, implementing maTE, is available at

Bioinformatics online.

Contact: malik.yousef@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decade, it has become clear that microRNAs (miRNAs) are

involved in most human diseases (Tüfekci et al., 2014). They are post-

transcriptional regulators of protein expression, but they recently have

been shown to also be involved in transcription (Liu et al., 2018).

Mature miRNAs are short 18–24 nt long single-stranded RNA

sequences derived from larger hairpin structures (pre-miRNAs) via a

molecular genesis pathway (Erson-Bensan, 2014). These mature

miRNAs act as recognition sequences for their target mRNAs within

the RNA-induced silencing complex (RISC) complex. miRNAs can

have hundreds of target mRNAs, and each of these can be targeted by

many miRNAs, leading to a many-to-many regulative relationship.

Actual interactions are only possible when both the miRNA and its

mRNA target are present in the same space and time (Saçar and
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Allmer, 2013). Thus, miRNA–mRNA interactions are under spatio-

temporal control. The transcription of miRNAs seems to be predom-

inantly responsible for controlling possible miRNA-mRNA

interactions (Melo and Melo, 2014). A large fraction of human genes

are under miRNA control (Jones-Rhoades and Bartel, 2004), and

>90% of human KEGG pathways contain genes that either harbor

miRNAs or are targeted by miRNAs (Hamzeiy et al., 2015, 2017).

More than 2000 human miRNAs are available in the miRBase

(Griffiths-Jones et al., 2006), and combining these miRNAs with their

prevalence throughout pathways makes these post-transcriptional reg-

ulators key elements of gene regulation.

High-throughput approaches for identifying and sequencing

RNAs and proteins are available via next-generation sequencing and

mass spectrometry, respectively. For example, the gene expression

omnibus (GEO) provides access to microarray measurements

(Wheeler et al., 2007), and the sequence read archive hosts next-

generation sequencing data (Leinonen et al., 2011). There are also data

repositories for proteomics such as the PRoteomics IDEntifications

(PRIDE) database (Vizcaı́no et al., 2010). Unfortunately, high-

throughput measurements encompassing coordinated measurement

of protein abundance and miRNA abundance applicable for this

study were not available in PRIDE. Such a dataset would provide a

gold standard because one mode of action of miRNAs is translation-

al repression that cannot be queried on the transcriptional level.

Another miRNA mode of action, mRNA degradation, however, can

be accessed via transcriptomics. For many diseases, measurements

of gene expression are available for large patient cohorts, and a few

examples are presented in Table 1.

miRNAs are also transcripts and can be measured via dedicated

arrays, short-read sequencing or other more specialized methods such

as High-throughput sequencing of RNA isolated by crosslinking

immunoprecipitation (HITS-CLIP) (Saçar Demirci et al., 2019). Some

miRNAs are located in transcription units (TUs), and their expression

could be inferred from the expression of the enclosing TU. Separate

from the miRNA expression levels, their associated targets are import-

ant. Experimentally verified miRNA targets are available in databases

such as TarBase (Vergoulis et al., 2012) and miRTarBase (Chou et al.,

2018). The transcriptomics data can provide information about

miRNAs and their targets’ expression levels.

The need for the integration of miRNA and target expression data

has been identified previously by Gunaratne et al. (2010). They also

identified a need for computational tools facilitating such analyses for

novel and publicly available data. Today, although various experimen-

tal methods exist for the measurement of miRNA abundance, the need

for computational tools still exists because experimental methods are

still involved and expensive. A variety of computational tools for the

task exist, and they use different resources and approaches to accom-

plish a specific task. One important component for such research is in-

formation about miRNA targets. MiRGator (Cho et al., 2013) and

mirDIP (Tokar et al., 2018) are two tools that integrate targeting data

from multiple resources. Other approaches such as data integration

have been proposed for modeling the miRNA: mRNA regulation.

NAViGaTing is one such method that explores miRNAs involvement

in well-known signaling pathways and their associations with disease

(Shirdel et al., 2011). Chen and Yan (2015) developed regularized least

squares for the miRNA–disease association, using semi-supervised

learning, to uncover the relationship between diseases and miRNAs.

Steinfeld et al. (2013) introduced a computational approach (miTEA)

that infers miRNA activity from high-throughput data using a novel

statistical methodology called minimum-mHG. They applied their ap-

proach to matched mRNA and miRNA expression profiles for cancer

cell lines to achieve mutual enrichment in two ranked lists. MULSEA

(Cohn-Alperovich et al., 2016) is a similar approach to miTEA.

MULSEA features algorithm collecting factors that can be aggregated

into one ranked list that is strongly associated with an input-ranked

list. Zeng et al. (2016) summarized different computational approaches

for predicting potential disease-related miRNA based on networks.

They indicate that the main principle of those approaches is the

Table 1. Description of the 10 datasets used in our study

GEO

accession

Title #Samples/classes/#genes

GDS1962 Glioma-derived stem

cell factor effect on

angiogenesis in the

brain

#Samples¼180

non-tumor¼23 (neg)

astrocytomas¼26 (pos)

glioblastomas¼131 (pos)

#genes¼54 613

GDS2519 Early-stage Parkinson’s

disease: whole blood

#Samples¼105

healthy control¼22(neg)

neurodegenerative disease

control¼33(neg)

Parkinson disease¼50 (pos)

#genes¼22282

GDS3268 Colon epithelial

biopsies of ulcerative

colitis patients

#Samples¼202

normal¼73 (pos)

ulcerative colitis¼129 (neg)

#genes¼44 289

GDS3900 Fear conditioning effect

on the hybrid mouse

diversity panel:

hippocampus and

striatum

#Samples¼198

hippocampus¼100 (pos)

striatum¼98 (neg)

#genes¼25 696

GDS3929 Tobacco smoke effect

on maternal and fetal

cells

#Samples¼183

non-smoker¼128 (pos)

smoker¼55 (neg)

#genes¼18 253

GDS2547 Metastatic prostate

cancer (HG-U95C)

#Samples¼164

normal¼75 (pos)

tumor¼89 (neg)

#genes¼12 645

GDS5499 Pulmonary hyperten-

sions: PBMCs

#Samples¼140

control¼41 (neg)

idiopathic pulmonary arterial

hypertension¼30 (pos)

scleroderma-associated pulm.

arterial hypert.¼42(pos)

systemic sclerosis (SSc) without

pulm. hypert.¼19(pos)

SSc, interstitial lung disease &

pulm. hypert.¼8(pos)

#genes¼49 575

GDS3646 Celiac disease: primary

leukocytes

#Samples¼132

healthy control¼22(neg)

celiac disease¼=110 (pos)

#genes¼22 184

GDS3874 Diabetic children:

peripheral blood

mononuclear cells

(U133A)

#Samples¼117

Healthy ¼ 24 (neg)

type 1, 2 diabetes ¼93(pos)

#genes¼22 282

GDS3837 Non-small cell lung

carcinoma in female

nonsmokers

#Samples¼120

Lung Cancer ¼ 60 (pos)

Control ¼ 60 (neg)

#genes¼30 621

Note: The datasets are obtained from GEO. Each entry has the GEO code,

name of the data, number of samples, number of genes that were measured

and classes of the data.
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calculation of similarity among disease and miRNA in the expression

networks. They further categorized the approaches into two groups

with one based on the similarity measure and the other based on ma-

chine learning. The latter mainly aims to distinguish positive miRNA–

disease associations from large-scale negative miRNA–disease associa-

tions. The data used for this kind of research are miRNA–disease, dis-

ease–phenotype, miRNA association, gene interaction and protein

interaction networks. Such data is transformed into a network and

used to compute the similarities among nodes, particularly between a

miRNA and a disease to infer associations. For example, mirConnX

(Huang et al., 2011) creates a disease-specific regulatory network by

integrating gene expression data, sequence information, miRNA

targeting and transcription factor binding information. Another tool

for the reconstruction of regulatory networks is MAGIA2 (Bisognin

et al., 2012). It integrates miRNA target prediction and gene expres-

sion data to compile the networks. MiSEA (Çorapçıo�glu and O�gul,

2015) uses gene expression and miRNA-seq data for the enrichment of

miRNAs. MiSEA allows further analysis and grouping by, for ex-

ample, family classification and disease association. Differing from the

other tools presented, CSmiRTar (Wu et al., 2017) allows the mining

of gene expression dataset using miRNA and miRNA target filtering.

None of these tools are similar to the system that we present here, al-

though the approach employed in this study uses mRNA

expression data, which is similar to the presented methods. The expres-

sion data are integrated via miRNA target association drawn from data-

bases such as miRTarBase. Specifically, the objective is to find a set of

miRNAs that best explains differential mRNA expression among sam-

ples. To achieve this goal, we developed a novel machine learning-based

approach using two class classifications. However, apart from patient

and control data, no other data annotation is necessary and no addition-

al negative data need to be created. Instead, we use Monte Carlo cross-

validation (MCCV) (Xu and Liang, 2001) for repeated random

sampling of the dataset and training of predictive models. In each round,

the miRNAs that generate the most accurate models are combined and

an integrated miRNA group model is trained. After at least 25 iterations

(here, we use 100), an approximation of the set of miRNAs that best

explains the difference in mRNA expression is determined.

The results are compared with our previous method support

vector machine - recursive cluster elimination (SVM-RCE), which is

conceptually similar to maTE. The average accuracy for the selected

datasets for maTE is 0.17 points less than the same for SVM-RCE.

However, we assert that the difference in mRNA expression when

assigning a lower accuracy is not caused by the set of miRNAs and

their targets used in the experiment. Furthermore, maTE found, on

average, 13 more differentially expressed mRNAs than SVM-RCE

and was able to associate them with miRNAs. The much higher vari-

ance in average score generated by maTE when compared with SVM-

RCE (Table 3) seems to also be useful as a quality measure. In the fu-

ture, we aim to further evaluate the novel algorithm and amend it

with an optimization approach to improve on the selection of the best

combination of miRNAs to explain the difference in mRNA expres-

sion. By combining this approach with the ability of maTE to assign

low scores to cases where miRNA involvement is unlikely, this algo-

rithm will facilitate future research associating miRNAs with disease.

2 Materials and methods

2.1 Data
2.1.1 Gene expression data

There were 10 human gene expression datasets downloaded from

the GEO (Clough and Barrett, 2016). For all datasets, disease

(positive) and control (negative) data were available (Table 1).

Additionally, a dataset (GSE19536) containing both mRNA and

miRNA measurements (Enerly et al., 2011) was used to validate

maTE.

2.1.2 MicorRNA targets

miRNA targeting data were downloaded from miRTarBase release

7.0 (Chou et al., 2016). For compatibility with the gene expression

data, only human miRNAs and their targets were considered. All

data without experimental evidence from either Reporter assay,

Western blot, or both were discarded. In total, 740 human miRNAs

with 8496 targets remained after filtering (Supplementary Material

S1). Table 2 provides a subset of the data for illustration.

As expected, the number of targets varies among miRNAs, and

Figure 1 presents the distribution of the number of targets per

miRNA. Also, 50% of the miRNAs have 3 or fewer targets (median:

3), but a few miRNAs have more than 100 assigned targets in

miRTarBase: miR-155-5p (223), miR-145-5p (143), miR-21-5p (136),

miR-34a-5p (132), miR-125b-5p (119) and miR_20a-3p (106).

Unless these miRNAs are extremely abundant, their effect

in vivo should be minor (Saçar Demirci et al., 2019).

Table 2. Part of the miRNA–target gene table; complete data can be

found in the Supplementary Material S1

miRNA Target genes list

HSA-LET-7A-3P CCND1, CCND2, E2F2

HSA-LET-7D-5P HMGA2, APP, DICER1, SLC11A2, IL13,

MPL, AGO1, TNFRSF10B, COL3A1

HSA-MIR-103A-2-5P PDCD10

HSA-MIR-129-2-3P SOX4, UBE2F, CCP110, BCL2L2, MYC,

CDK6

HSA-MIR-140-5P HDAC4, VEGFA, PDGFRA, DNMT1, DNPEP,

SOX2, OSTM1, FGF9, TGFBR1,

ALDH1A1, SOX9, IGF1R, FZD6, RALA,

PAX6, HDAC7, LAMC1, ADA, MMD,

PIN1, STAT1, GALC, HMGN5, SOX4,

FGFRL1, SMURF1

HSA-MIR-638 OSCP1, SP2, SOX2, CDK2, STARD10, PLD1,

PTEN

HSA-MIR-944 S100PBP, HECW2

Table 3. Accuracy results for both methods, SVM-RCE and maTE

Dataset SVM-RCE maTE

SE SP ACC stdev #G SE SP ACC stdev #G

GDS1962 0.97 1.00 0.98 0.06 44 0.96 1.00 0.98 0.05 66

GDS2519 0.87 0.90 0.88 0.14 24 0.64 0.57 0.61 0.10 62

GDS3268 0.89 0.88 0.88 0.08 42 0.78 0.71 0.74 0.07 84

GDS3900 1.00 1.00 1.00 0.00 64 1.00 0.95 0.98 0.01 86

GDS3929 0.98 0.96 0.97 0.05 81 0.50 0.57 0.54 0.10 26

GDS2547 0.89 0.81 0.85 0.08 54 0.87 1.00 0.83 0.07 34

GDS5499 0.96 0.95 0.95 0.07 59 0.79 0.97 0.88 0.09 90

GDS3646 0.96 0.93 0.95 0.10 29 0.42 0.63 0.53 0.16 29

GDS3874 0.97 0.97 0.97 0.00 17 0.77 0.90 0.84 0.15 52

GDS3837 0.97 0.96 0.96 0.05 63 0.76 0.99 0.88 0.04 79

Note: We consider the top two clusters for SVM-RCE and the top two

miRNAs for the maTE.

SE, sensitivity; SP, specificity; ACC, accuracy; stdev, standard deviation,

and #G is the number of genes.
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2.2 maTE algorithm
The maTE algorithm considers miRNAs and their target gene

expression for two conditions: control (negative) and disease (positive).

Each condition is represented by their gene expression values for the ex-

periment (each sample contributes one feature). The main motivation

for the algorithm is that it is not known a priori which miRNAs may be

involved in causing diseases. Therefore, machine learning is used to

learn which miRNAs are associated with gene expression (Fig. 2), lever-

aging knowledge learned in previous studies (AbdAllah et al., 2017;

Yousef et al., 2007, 2009). One of the main components of the maTE

tool is the ranking stage R() (see Algorithm 1).

The expression of each gene (typically thousands) in the gene ex-

pression dataset represents a feature. Features are grouped by the

miRNAs that can target them according to miRTarBase (the median

is three targets per miRNA). For example, one group related to the

hsa-let-7a-3p miRNA contains the target genes CCND1, CCND2 and

E2F2, and another group related to hsa-let7d-5p contains the genes

HMGA2, APP, DICER1, SLC11A2, IL13, MPL, AGO1, TNFRSF10B

and COL3A1. miRNAs may share all or a subset of their targets. The

gene DICER1 is targeted by 20 miRNAs, e.g. by miR-581 and miR-

3928-3p. For the latter, it is the only currently known target while

miR-581 also targets EDEM1. For another example, about 20

miRNAs target both PTEN and BCL2 among other targets.

In the following, we define the maTE algorithm, which consists

of the miRNA-gene ranking (Algorithm 1) and the integration parts

(Algorithm 2).

2.2.1 Ranking lists of genes associated with miRNAs

Let X denotes a two-class gene expression dataset consisting of ‘

covariate samples and n genes (Fig. 2, input). The classes could be

disease and control, or any experimental condition versus a control

or another experimental condition.

Fig. 1. Distribution of the number of target genes per miRNA for humans in

miRTarBase. The median number of targets is 3, upper quartile is 10 targets,

and the maximum observed is 223 targets for one miRNA (miR-155-5p)

Algorithm 1. The Ranking method R(), a main component of

the maTE algorithm.

Ranking Algorithm - RðXs; gðMÞ; f ; rÞ
Xs: any subset of the input gene expression data X, the

features are gene expression values

M {m1;m2; . . . ;mpg is a list of miRNAs

Grouping function g(M)- for each mi, associate the

names of genes (Genes ID) that are targeted by miRNA

mi (See Table 2).

f is a scalar (0 � f � 1): split into train and test data

r: repeated times (iteration)

res5{} for aggregation the scores for each mi

Generate Rank for each mi-Rank(mi):

For each mi in M

smi¼0;

Perform r time (here r ¼ 5) Steps 1–5:

1. Perform stratified random sampling to split Xs into

train Xt and test Xv datasets according to f (here 80:20)

2. Remove all genes (features) from Xt and Xv which are

not targets of mi

3. Train classifier on Xt (here Random Forest)

4. t ¼ Test classifier on Xv—calculate performance

5. smi ¼ smi þ t;

Score(mi)¼ smi /r; Aggregate performance

res¼ [p
i¼1ScoreðmiÞ

Output

Return res (res ¼ {Rank(m1), Rank(m2),. . ., Rank(mp)})

Algorithm 2. The overall algorithm of maTE, which depends

on the R() method (see Algorithm 1).

maTE Algorithm

Objective

maTE aims to select j miRNAs with target genes that can

best classify samples by expressions.

Input

X: gene expression data with two-class labels, the features

are genes expression.

M {m1;m2; . . . ;mpg: list of miRNAs (here from

miRTarBase) where p is the number of miRNAs.

Grouping function g(M)- for each mi associate the names

of genes (Genes ID) that are targeted by miRNA mi (See

Table 2).

Algorithm

M*¼{} empty list

Perform N-fold cross-validation (here N ¼ 100):

Randomly split data by samples into train (Xt) and test

(Xv) parts,

performs Steps 1–6:

1. Xtf ¼ filter genes (features) from training data by t-

test (here P-value�0.05 and maximum number of

filtered genes � 2000)

2. Xvf ¼ remove all genes from Xv that are not in Xtf

3. miRp ¼ R(Xtf, g(M), f, r) (here f ¼ 80:20 with strati-

fied random sampling; r ¼ 5). R() is the procedure

in Algorithm 1, the output will be miRp

¼{Rank(m1), Rank(m2),. . ., Rank(mp)}

4. M*¼ Sort( miRp) according to performance; best first

5. M* ¼ {m*1, m*2,.., m*j}, Select best j miRNAs

(here j ¼ 2)

6. Filter Xtf and Xvf by g(M* ), now Xtf and Xvf repre-

sented by genes that are targeted by miRNA from

M*.

Train classifier using Xtf and Xvf (here random forest)

Test classifier using Xvf

Output

Report performance (e.g. average accuracy)
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Let g() be a function grouping genes into clusters. Here, g() can be

any algorithm which groups genes. For example, Yousef et al. (2007) pre-

viously used the k-means algorithm for grouping by gene expression. For

the maTE algorithm, g() is provided by miRNAs and their targets. For

example, g(hsa-let-7a-3p) groups the genes CCND1, CCND2 and E2F2

(see Table 2). More formally, let g(mi) define the grouping based on the

mi miRNA’s targets (i: index of miRNAs available in miRTarBase). We

chose to use miRTarBase, but other databases such as TarBase or compu-

tationally predicted targets would provide other/additional valid options.

Note that the number of targets varies with the chosen miRNA (Fig. 1).

By iterating over all g(mi), the miRNAs are ranked according to

their ability to differentiate the two classes based on the test out-

comes following training of a random forest (RF) classifier using an

80:20 split into training and testing data (Fig. 2: yellow section).

First, the grouping function g(mi) extracts the relevant gene expres-

sion data rows from X and then RF is applied. The ranking function

is defined as R(Xs, g(mi), f, r), where Xs is any subset of X, f defines

the data split into training and testing (here, f is 80:20), r is the num-

ber of repetitions (here 5), and R() then returns the average accur-

acy. The pseudo code is provided as Algorithm 1.

2.2.2 Integration

Following the ranking step for each miRNA as the grouping factor,

the best j miRNAs (we set j to 2) are selected and their groups (i.e.

their targets) are combined (Fig. 2, yellow section). An RF model is

trained with the g() provided by the best j miRNAs instead of just

mi. The model is tested, and the performance measures are recorded.

We performed the complete procedure 100 times using MCCV

(Fig. 2: N-fold Cross-validation loop). For each fold, the input is

stratified random sampled and split into training and testing sets.

The training set is submitted to t-test analysis. At maximum, 2000

differentially expressed genes with a P-value below 0.05 are

selected. The selected genes are then used to filter the test dataset so

both datasets contain the same genes. Within each iteration, the

miRNAs are first ranked and then the best j miRNAs are used to

train an RF classifier combining the j best miRNAs. The pseudo

code is available as Algorithm 2.

2.2.3 Workflow

The algorithms we developed can be implemented in many systems.

In order to test our approach and provide a proof of principle as

well as an interface for users, we developed the approach using the

Konstanz Information Miner (KNIME). The resulting KNIME

workflow (Fig. 3) is available for download from Bioinformatics on-

line and https://malikyousef.com/. The workflow in Figure 3 consists

of processing nodes and data connections (lines/edges). Data travel

along the edges through the workflow. For better readability and to

increase modularity, meta-nodes (grey nodes, e.g. ‘Preprocess incl.

t-test’) encapsulate sub-workflows. Workflow control includes pro-

graming constructs such as loops (blue nodes) and branching.

The maTE workflow in Figure 3 contains user input in the orange

boxes and presents the results in the green box. Processing is per-

formed in the yellow and blue box. The green dots under the nodes

indicate that the process has successfully succeeded.

Fig. 2. maTE work flow. The two main steps of the workflow are creating models for each miRNA (center) and then combining multiple miRNAs into one model

and training a classifier using these miRNAs. Input: samples are horizontal with the two classes represented as lighter and darker stripes. Genes are represented

by the vertical bars. miRTarBase depicts the miRNA target data from miRTarBase. Loops are represented by rectangles with a tag (e.g. N-fold cross-validation).

The t-test calculations are based on the training data, but filtering is applied to the genes in both training and testing data

4024 M.Yousef et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/4020/5416143 by guest on 20 April 2024

Deleted Text:  (Yousef <italic>et<?A3B2 show $146#?>al.</italic>, 2007)
Deleted Text: ,
Deleted Text: S
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: :
Deleted Text: Monte Carlo <?A3B2 thyc=10?>cross-validation<?thyc?> 
https://malikyousef.com/
Deleted Text: s
Deleted Text: ,


2.3 Classification approach
We used the RF classifier implemented by the KNIME platform

(Berthold et al., 2008). The classifier was trained and tested with a

split of 80% training and 20% testing data. We have considered the

under-sampling balancing approach to analyze imbalanced data.

The under-sampling balancing approach is reducing the size of the

abundant class by keeping all samples in the rare class and randomly

selecting an equal number of samples in the abundant class. This ap-

proach is repeated during each round of cross-validation. We imple-

ment 100-fold MCCV (Xu and Liang, 2001) for model training. We

used the default RF parameters where the split criterion is the infor-

mation gain ratio. We did not limit the number of levels (tree depth),

and the number of models was set to 100. Slight changes to these

values did not change the overall performance.

2.3.1 Model performance evaluation

For each established model, we calculated a number of statistical

measures such as sensitivity, specificity and accuracy to evaluate

model performance. The following formulations were used to calcu-

late the statistics (TP, true positive; FP, false positive; TN, true neg-

ative; and FN, false negative):

Sensitivity (SE, Recall) ¼ TP/(TP þ FN)

Specificity (SP) ¼ TN/(TN þ FP)

Accuracy (ACC) ¼ (TP þ TN)/(TP þ TN þ FP þ FN)

All reported performance measures refer to the average of 100-

fold MCCV. The positive class and negative class for each data are

described in Table 1.

2.4 Recursive cluster elimination
We have previously developed a different method with a similar aim,

SVM-RCE (Yousef et al., 2007), and later compared the methodology

with other approaches (AbdAllah et al., 2017; Yousef et al., 2009).

Although there are similarities in the general idea of using classifica-

tion, the methods differ in the way genes are grouped. The SVM-RCE

algorithm groups gene expression based on the k-means clustering

algorithm’s grouping of the gene expression data (intrinsic informa-

tion). Our novel approach (maTE) groups gene expression data based

on information about miRNAs and their target genes (extrinsic infor-

mation). The SVM-RCE algorithm performs three steps: (i) the clus-

tering step groups the genes into clusters based on k-means; (ii) the

scoring step evaluates the importance of each cluster of genes by

internal cross-validation; and (iii) the RCE step removes the clusters

with lower scores and is repeated until a desired number of clusters is

obtained. In order to benchmark our novel approach, we performed a

SVM-RCE analysis on all datasets used in this study using the default

settings presented by (Yousef et al., 2007).

3 Results and discussion

We previously showed that for categorizing miRNAs into species,

using machine learning, a minimum of 100 examples was needed

(Yousef et al., 2017a, b). Therefore, we selected datasets with large

numbers of samples (Table 1). In these datasets, patient and control

samples are indicated, but miRNAs that lead to changes in mRNA

expression and those that do not are unknown and unlabeled a

priori. However, classification, in general, depends on annotated

positive and negative data. Here, we use classification such that the

annotation of which miRNA is significantly different between the

two classes can be learned without the need for annotated examples.

This objective can be accomplished by creating an abundance of ma-

chine learning models from the data. The model performance on the

withheld test data indicates whether the model effectively separates

classes, and a better performance more likely indicates a biological

explanation. Here, our interest was to determine the miRNAs that

best describe the differential mRNA expression between patient and

control samples. However, the same approach could be used to an-

swer many other biological questions such as pathway enrichment.

Fig. 3. maTE work flow. Overview of the KNIME workflow available at Bioinformatics online. Input that needs to be adjusted is in the boxes to the left. The central

box contains the MCCV and further logic is encapsulated in meta-nodes such as PreProcess and R(). Results are stored within the box on the right based on the lo-

cation of the files with the class labels which can be adjusted in Node 323 (Y bottom of righthand box) if desired
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We applied both our novel methodology maTE and our previous

related algorithm, SVM-RCE, to the selected data in Table 1

(Table 3). Our novel approach, maTE, searches for significant

miRNAs and their targets, thereby limiting the search space to sig-

nificantly differentially expressed ones, while SVM-RCE searches

for significant genes in the complete space, not considering extrinsic

grouping factors such as miRNAs. Table 3 summarizes the result of

hundreds of thousands of trained models. The results show that

SVM-RCE (avg. acc.: 0.94) outperforms maTE (avg. acc.: 0.78) for

all datasets. However, SVM-RCE seems to be relatively indiscrimin-

ate and leads to all datasets having similar results because of the

missing extrinsic grouping factor. Therefore, SVM-RCE or other

approaches focusing on DE analysis might compile the effects of dif-

ferent regulatory mechanisms, whereas maTE focuses on effects

caused by the miRNAs. maTE seems to discriminate between data-

sets where known miRNAs may not be the main cause of the

observed difference in gene expression. Specifically, the differential

gene expressions for datasets GDS2519, GDS3929 and GDS3646

do not seem to be caused by miRNAs, and the contributions of

miRNAs seem to be low for the dataset GDS3268. Except for data-

sets GDS3646, GDS3929 and GDS2547, maTE generally collects

more genes explaining the overall difference among states. The dif-

ferences for the first two datasets are unlikely to be caused by

miRNAs, and the difference in the results of the latter dataset may

only have a limited contribution via miRNAs.

For the data analyzed, no ground truth is known; therefore, it is

difficult to assign a confidence measure to our new approach. Some

studies have measured mRNA and miRNA differential expressions

(Enerly et al., 2011). It was our aim to use such data to benchmark

our new method. Naively, the miRNAs selected by our algorithm

should have high differential expressions between conditions.

Unfortunately, this is not the case because many mRNAs are tar-

geted by multiple miRNAs (Fig. 1), so a combined effect should also

be considered. Our current approach is, however, miRNA centric

and selects miRNAs that maximally explain the differential mRNA

expression. The combined effects of miRNAs using our method are

found by selecting the top j miRNAs (see Step 7 in the maTE algo-

rithm). Here, we report results with j ¼ 2. However, we have also

tested different values of j such as 3, 4 and 5, and the results show

that using these values of j lead to little improvement. In the future,

we aim to optimize the set of miRNAs best able to separate

the classes. The motivation for this optimization is the spikes in the

trend in Figure 4. miRNAs with lower rank but high impact on the

DE can cause such spikes. An optimization approach would be able

to combine these miRNAs into a minimal set explaining a large part

of the differential RNA expression.

We applied maTE and SVM-RCE to a dataset of miRNA-

mRNA breast tumors (Enerly et al., 2011) considering the mRNA

expression of 15 basal-like and 41 luminal-A samples. These sam-

ples are the subtypes with the strongest reciprocal mRNA expression

profiles (GO identifier GSE19536). We refer to this experiment as

LumA_vs_Basal.

SVM-RCE ranks the importance of each gene by the number of

times it appears on each RCE level. For example, if we start the pro-

cess with the top 1000 genes selected by t-test from the training data

and start with 100 clusters, then we have 27 levels of RCE (each

time we reduce the number of clusters by 10%). We track the fre-

quency of each gene in each level over 100 iterations. The score is

the total number of frequencies divided by 2700 (100 iterations * 27

levels). The complete results for the top 1000 genes are available in

Supplementary Material S2. The top gene is GATA3 that is required

for the development of the mammary gland and has been implicated

in breast cancer. MLPH (Rank 2) is also a marker for breast cancer

survival. Other genes in the top 10 such as BCMP11 are also impli-

cated in breast cancer. Thus, SVM-RCE collected relevant genes

from the dataset. Because SVM-RCE does not assign any relevance

to miRNAs, it cannot be compared with maTE on this dataset that

consists of coordinated miRNA and mRNA measurements. Also,

GATA3 was also part of three miRNA target sets in the top 10

miRNAs deduced by maTE. MLPH and BCMP11 were not found as

targets because they were not available as targets in miRTarBase.

Some outcomes of the breast cancer study (Enerly et al., 2011)

used here have also been confirmed in (Sandhu et al., 2014).

Especially, miR-146a is overexpressed in basal-like breast cancer

cells. However, some p53-dependent changes, including expression

of miR-134, miR-146a and miR-181b, were found to be subtype

specific. maTE also assigns some importance to miR-146a (Rank

30), but it is not within the top 10 of miRNAs explaining the differ-

ence between luminal and basal.

Because miRNAs can have several targets, we wanted to deter-

mine whether there is a correlation between the summed absolute

differential expression of these targets versus the rank assigned by

maTE. The expectation that more differential expression is

explained in general with better ranks holds true (Fig. 4). This result

shows that maTE fulfills the expectation and, at least for mir-146a,

agrees with the previous results. Other miRNAs found to be import-

ant in separating luminal from basal type were mir-128, miR-17

(part of the miR-17–92 family) and the miR�30 family (Iorio et al.,

2005; see Enerly et al., 2011 and Sandhu et al., 2014). These

miRNAs, or representatives of their families, are found in the top 20

of maTE assignments. As expected, some results differ among algo-

rithms and the top assignments by maTE do not overlap with the

findings by Enerly et al. (2011). For the top assignments, we submit-

ted the deregulated targets to Reactome analysis and found that

many of the miR-93 (Rank 1) targets are also under p53 control and

involved in the PTEN pathway. Furthermore, the role of miR-93

(Rank 2) in breast cancer has previously been confirmed (Hao et al.,

2018; Liang et al., 2017). The same is also true for miR-24

(Khodadadi-Jamayran et al., 2018; Yu et al., 2018). The targets of

miR-24 (Rank 3) are involved in senescence control, and their

downregulation will likely lead to the avoidance of cell death.

Among the top 10, there is only miR-510 with a single target

Fig. 4. The maTE rank for miRNAs versus the sum of their absolute target dif-

ferential expressions.
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(SPDEF). Interestingly, SPDEF has been implicated with various

cancer types such as breast cancer (Sood et al., 2017) and miR-510

(Guo et al., 2013). These findings confirm all top assignments of

maTE to be implicated in breast cancer and thereby qualitatively

validate the strategy employed.

In our experiments, we used 100 MCCV iterations, which can

take a few hours on a regular personal computer. Therefore, we

were interested in whether 100 iterations are necessary.

Consequently, we recorded all miRNA ranks for the 100 iterations

for the GDS3837 experiment. We then calculated the average rank

for development per iteration i.e. the average of all ranks for each

miRNA until the iteration. The development of the average rank is

plotted for nine miRNAs (Fig. 5), including the highest ranked one

(hsa-miR-876-3p) and the lowest ranked one (hsa-miR-935).

Figure 5 shows that 100 MCCV iterations are not necessary.

Additionally, we calculated how many iterations were needed for

each miRNA to reach its average rank. The average number of itera-

tions needed was about 24 iterations. Therefore, using fewer than

100 iterations seems adequate for future calculations.

4 Conclusion

The analysis of differential gene expression is employed in various

biological scenarios such as differentiating between control and dis-

ease states. It has become clear that regulation occurs on many levels

and that some regulatory switches cause a large downstream re-

sponse while others lead to more subtle changes. miRNAs are both

master switches and fine tuners of protein expression. One mode of

the action of miRNAs leading to transcript degradation is accessible

on the transcriptomic level.

One of the novelties of our approach, called maTE, is that we

provide not just a significant list of deregulated genes, but also group

them by their targeting miRNAs. To the best of our knowledge, this

is the first account of such an approach. The generated information

is very valuable to the biology community and will allow the

addressing of novel biological questions.

We applied our approach to breast cancer data (Enerly et al.,

2011) and were able to confirm some of the previous findings.

However, the top assignments made via maTE indicate different

miRNAs and corresponding targets than in the original assessment.

Interestingly, the maTE assignments have clear associations with

breast cancer, and this result is missing in the original study.

In the future, maTE can be extended with existing tools. For ex-

ample, MetaMirClust (Chan et al., 2012) deduces miRNA clusters,

and using a grouping function based on such clusters instead of

single miRNAs would be worth considering for maTE, assuming the

coordinated transcription of miRNA clusters. MAGIA2 (Bisognin

et al., 2012) and CSMirTar (Wu et al., 2017) can be employed as an

alternative to miRTarBase to have a more comprehensive list of tar-

get genes per miRNA. MAGIA2 and miRConnX (Huang et al.,

2011) can further be utilized to construct regulatory circuits and

perform pathway enrichment following the relevant detection of

miRNAs by maTE. In order to filter maTE input, miSEA

(Çorapçıo�glu and O�gul, 2015) can be employed to reduce the num-

ber of miRNAs for datasets where both miRNA and mRNA expres-

sion are available.

Although maTE selects the top j (here 2) miRNAs, in the future,

it would be beneficial to determine a minimal network of miRNAs

and their targets that maximizes the amount of differential expres-

sion among states. To achieve this objective, we aim to add an opti-

mization step embedding the yellow part of the algorithm (Fig. 2)

using, e.g. a genetic algorithm.
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