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Abstract

Motivation: Protein evolution is determined by forces at multiple levels of biological organization.

Random mutations have an immediate effect on the biophysical properties, structure and function

of proteins. These same mutations also affect the fitness of the organism. However, the evolution-

ary fate of mutations, whether they succeed to fixation or are purged, also depends on population

size and dynamics. There is an emerging interest, both theoretically and experimentally, to

integrate these two factors in protein evolution. Although there are several tools available for simu-

lating protein evolution, most of them focus on either the biophysical or the population-level deter-

minants, but not both. Hence, there is a need for a publicly available computational tool to explore

both the effects of protein biophysics and population dynamics on protein evolution.

Results: To address this need, we developed SodaPop, a computational suite to simulate protein

evolution in the context of the population dynamics of asexual populations. SodaPop accepts as

input several fitness landscapes based on protein biochemistry or other user-defined fitness func-

tions. The user can also provide as input experimental fitness landscapes derived from deep muta-

tional scanning approaches or theoretical landscapes derived from physical force field estimates.

Here, we demonstrate the broad utility of SodaPop with different applications describing the inter-

play of selection for protein properties and population dynamics. SodaPop is designed such that

population geneticists can explore the influence of protein biochemistry on patterns of genetic vari-

ation, and that biochemists and biophysicists can explore the role of population size and demog-

raphy on protein evolution.

Availability and implementation: Source code and binaries are freely available at https://github.

com/louisgt/SodaPop under the GNU GPLv3 license. The software is implemented in Cþþ and sup-

ported on Linux, Mac OS/X and Windows.
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1 Introduction

Protein coding sequence evolution broadly depends on two ques-

tions. First, how random mutations change protein structure, func-

tion, and consequently organismal fitness. Second, which of these

random mutations eventually survive or are purged in evolution.

The first question relates to the distribution of fitness effects of ran-

dom mutations (DFE), which can be determined from the know-

ledge of the fitness landscape or genotype-phenotype relationship.

The second question relates to the role of population size, dynamics

and structure in determining a mutation’s fixation probability.

Unfortunately, these two questions seldom intersect—the first is

traditionally asked by molecular biochemists and biophysicists, and

the second is asked by evolutionary biologists and population

geneticists. Despite the efforts to combine these two causalities in

molecular evolution (Bershtein et al., 2017; DePristo et al., 2005;

Echave and Wilke, 2017; Goldstein, 2011; Harms and Thornton,

2013; Liberles et al., 2012; Silander et al., 2007), there remains a

divide between these disciplines, both in concepts and methods.

Indeed, to date, there is no publicly available computational tool

that integrates molecular biophysics and population genetics.

Currently available methods to perform forward evolutionary

simulations differ in scale, scope and flexibility, but they are general-

ly intended to investigate potential scenarios for whole genome evo-

lution based on observed genetic variation among natural

populations (Carvajal-Rodriguez, 2008; Hoban et al., 2012).

Several forward-based tools including forqs (Kessner and

Novembre, 2014), SLiM (Messer, 2013), ForwSim

(Padhukasahasram et al., 2008), GENOMEPOP (Carvajal-

Rodriguez, 2008), FFPopSim (Zanini and Neher, 2012),

QuantiNemo (Neuenschwander et al., 2008), GeneEvolve

(Tahmasbi and Keller, 2017), simuPOP (Peng and Kimmel, 2005),

SFS_CODE (Hernandez, 2008) and fwdpp (Thornton, 2014) imple-

ment genetic features such as chromosome types, linkage and recom-

bination. However, those tools concern themselves with patterns of

polymorphism and structural variation across chromosomes, rather

than explicit coding sequence evolution. Thus, it is challenging to

model the evolution of protein sequences. Other programs such as

OncoSimulR (Diaz-Uriarte, 2017) model the evolution of large

asexual populations with user-defined fitness landscapes but enforce

strictly bi-allelic loci on limited sites and do not model DNA sequen-

ces explicitly. Altogether, these tools account for neither the bio-

chemical nor biophysical features of specific gene products.

Another class of models in protein evolution are the methods in

molecular phylogenetics. Embedded in these phylogenetic

approaches is a quantitative model of protein evolution that

describes the amino acid substitution rates (Rodrigue et al., 2010).

Substitution matrices contain information on the rate at which

mutations can arise and the rate at which they can fix based on their

estimated selective advantage (Yang and Nielsen, 2002). These tran-

sition matrices may also contain implicit information on the bio-

physics of proteins—for instance, the transition probabilities

between amino acids of similar chemical properties are higher than

those amino acids of different types. In some cases, these matrices

can also include information on the tertiary structure of proteins

(Halpern and Bruno, 1998; Lartillot and Philippe, 2004; Scherrer

et al., 2012). However, none of these models explicitly account for

the contribution of population dynamics and structure in shaping se-

quence evolution.

Finally, there are the physics-based models of protein evolution.

To investigate the role of biophysical properties and structure to

protein evolution (Bloom et al., 2007; Shakhnovich, 2006; Taverna

and Goldstein, 2000), these models often rely on simplified repre-

sentations of proteins that fold their sequences on a lattice to calcu-

late biophysical properties. As such, they can estimate folding

stability and protein-protein interactions. Nonetheless, most of these

models for protein evolution are agnostic to the role of population

size and dynamics. Although there are studies that investigated the

interplay between population structure and protein biophysics

(Rotem et al., 2018; Serohijos et al., 2013; Wylie and Shakhnovich,

2011), the computational tools for performing forward evolutionary

simulations that account for both factors are not yet available for

the community.

More broadly, this synthesis of population genetics and protein

biophysics is important in the evolution of microbes and pathogens,

such as the acquisition of antibiotic resistance and viral evolution.

Several works have used this integrative approach to explore the

interplay between different scales in evolutionary biology. For ex-

ample, Rotem et al. showed that the evolution and dynamics of bio-

physical traits of an RNA virus subjected to a neutralizing antibody

are strongly dependent on population size (Rotem et al., 2018).

Salverda et al. showed how the dynamics of TEM-1 b-lactamase

adaptation is determined by the topography of the fitness landscape

and by mutational supply (Salverda et al., 2017). Finally,

Heckmann et al. used a population-genetic model to show that en-

zyme kinetic parameter evolution in Escherichia coli is constrained

by strong epistatic interactions (Heckmann et al., 2018).

Here we introduce SodaPop, an efficient forward simulator of

the evolutionary dynamics of asexual populations with explicit gen-

omic sequences. SodaPop is written in an object-oriented program-

ming (OOP) framework, where the effects of population structure

and the biophysical effects of mutations can be explored simultan-

eously. The input is the spectrum of mutational effects on biochem-

ical or biophysical properties, which can be derived from protein

engineering methods (Jia et al., 2015; Kumar et al., 2006; Laimer

et al., 2015; Yin et al., 2007) or from exhaustive mutagenesis experi-

ments such as deep mutational scanning (DMS) (Bloom, 2014;

Firnberg et al., 2014; Fowler and Fields, 2014). SodaPop also allows

flexibility in defining fitness functions from biochemical/biophysical

models that describe the evolution of proteins. Finally, the OOP

framework facilitates the integration of new attributes and parame-

ters into the model, as well as the customization of input and output

data.

To the best of our knowledge, SodaPop is the first publicly avail-

able tool that explicitly combines the role of protein biophysics and

population dynamics. The main program is implemented in Cþþ
with a command line interface. We also provide scripts for analysis

and visualization of the simulation results. Source code, binaries and

documentation can be downloaded freely from https://github.com/

louisgt/SodaPop under the GNU GPLv3 license. This software is

portable on any POSIX-compliant operating system, including

Linux and Mac OS/X, or on Windows using the Cygwin

environment.

2 Materials and methods

2.1 Hierarchical and object-oriented description of an

asexual population
We designed a hierarchical and object-oriented representation of an

asexual population (Fig. 1A). A population of N cells is contained in

a dynamic array. Cell is a data structure defined by the Cell.h class

whose attributes include its fitness (the reproductive capacity and

defined in greater detail below), its mutation rate, and the array of
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genes in the genome (Supplementary Fig. S1). Each cell is also

assigned an ID (15-nt barcode), which can be used to track different

lineages in the population. The Cell data structure can be extended

to include other attributes and functions. Additionally, each Cell

contains a vector of Genes, a data structure defined by the Gene.h

class (Supplementary Fig. S2). Each Gene is characterized by its nu-

cleotide sequence, thermodynamic folding stability, enzymatic effi-

ciency, intracellular abundance and essentiality. Each instance of a

gene also contains the variables Na and Ns, which track the non-

synonymous and synonymous substitutions, respectively. The

Gene.h class is also extendable to include other features such as

protein-protein interaction and information on binding partners (see

Supplementary Manual, Section 8.2).

2.2 Evolutionary algorithm
SodaPop uses an adapted Wright-Fisher model with selection

(Fisher, 1922; Wright, 1931) to evolve the population in discrete

and non-overlapping generations (Fig. 1C). To propagate to the

next generation, each cell (the parent) in the population is replicated

to k progenies. The number k is drawn from a binomial distribution

with N trials and a probability of success equal to the relative fitness

of the parent wc. This value is defined as the fitness of the parent cell

normalized by the sum of the fitness of all cells in the population

(Fig. 1C). The total number of progenies N could differ from the tar-

get population size Ne, thus to maintain a constant population size,

it is scaled appropriately between generations. If N < Ne, DN ¼
jN �Nej randomly sampled cells from the offsprings are replicated.

If N > Ne, DN randomly chosen progenies are removed. Population

size can also be adjusted between generations to mimic population

bottleneck experiments or expansion into an ecological niche

(Barrick and Lenski, 2013; Ebert, 1998; Gullberg et al., 2011).

During replication, the genome of each new progeny can acquire

mutations at a rate Ll, where l is the mutation rate per base pair

per generation and L is the length of the genome. Specifically, for

each replicated cell, the number of mutations m is drawn from a bi-

nomial distribution with L trials and a probability of success equal

to l. All mutations have equal likelihood of occurring anywhere in

the genome. Each mutation is thus randomly mapped to a specific

site in a particular gene. Depending on the fitness landscape chosen

or defined by the user (Fig. 1B), the effect of a mutation on the bio-

physical properties of the gene product and fitness can either come

from experiments such as deep mutational scan, from physical force

field calculations, or from a predefined distribution (Supplementary

Manual, Chapter 5). The mutation model is also reversible, so that

all effects on protein properties contributed by the previous allele

are removed, to be replaced by those of the incoming substitution.

The fitness landscape models are described in Section 2.3.

In the course of the simulation, SodaPop saves a snapshot of the

population every T generations, as defined by the user. The snapshot

of all the genomic sequences of cells in the population allows for the

reconstruction of evolutionary trajectories and the calculation of

A B C

Fig. 1. Conceptual overview of SodaPop. (a) A model population consists of N distinct cells defined by attributes like fitness and mutation rate. Users can expand

on these attributes in the class definition. Each cell’s genome consists of a gene array, with each gene defined by attributes such as coding sequence, biochemical

properties and abundance. (b) Users can choose from three different models of fitness landscapes. The DFE may take the form of deep mutational scanning sub-

stitution matrices for each protein, biophysical substitution matrices derived from computational tools or phenomenological distributions. (c) SodaPop’s evolu-

tionary algorithm. The pseudo-Wright-Fisher process iterates through every cell and draws a corresponding number of progeny for the next generation based on

organismal relative fitness. These progeny are mutated with probability Ll, where L is the genomic length and l is the mutation rate. Once the whole parent

population has reproduced, the new generation is rescaled to N cells
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evolutionary rates. Additionally, this snapshot can be used as input

for subsequent simulations. Users can also choose from multiple out-

put formats according to their specific needs. For instance, a shorter

output format only includes information at the level of cells, namely,

barcodes and fitness values. A more complete format includes gene

information for every cell, including DNA and amino acid sequen-

ces. This functionality allows users to tune both the level of detail

required and the speed and memory usage of the program. For com-

plete documentation on output formats, refer to the Supplementary

Manual Section 3.4.

SodaPop is built upon memory-efficient data structures and a

fast algorithm to achieve high computational performance and to

minimize the general trade-off between flexibility and runtime

(Carvajal-Rodriguez, 2008). The program can readily execute simu-

lations in the order of 106 individually defined cells with runtimes

clocking under a few hours on an ordinary four-core desktop com-

puter with 8 or 16GB RAM.

2.3 Fitness landscapes
SodaPop allows users to choose from several fitness landscapes

based on protein biochemistry. These fitness landscapes have been

used to model and explain the rates of protein evolution (Bloom

et al., 2007; Serohijos et al., 2012; Taverna and Goldstein, 2002),

polymorphisms in protein coding regions (Serohijos and

Shakhnovich, 2014a, b), epistasis (Bershtein et al., 2006; Bloom

et al., 2007) and the log-normal distribution of protein evolutionary

rates in genomes (Wolf et al., 2009).

The first landscape makes the biological assumption that the fit-

ness of the organism is proportional to the number of proteins in the

cell that are folded to their native 3D structure (Taverna and

Goldstein, 2002; Wylie and Shakhnovich, 2011). Using a two-state

model of protein folding, the fraction of proteins in the native state

(Pnat) is given by (Privalov and Khechinashvili, 1974)

Pðnat;iÞ ¼
1

1þ eðbDGiÞ
; (1)

where b ¼ 1=kBT; kBT ¼ 0:593 kcal/mol, and DGi is the folding

free energy of the protein. If gene i has an abundance Ai in cell, fit-

ness as a function of the total number of proteins that are folded in

the cells is

fitnessfolded ¼
X

i

ðAi � Pðnat;iÞÞ; (2)

where the sum is over all the protein coding genes in the genome.

The second landscape assumes that fitness is proportional to

metabolic flux, which is true for essential metabolic enzymes.

Assuming that the proteins are enzymes in a linear metabolic path-

way (Serohijos and Shakhnovich, 2014b)

fitnessflux ¼
a0P

i ðei � Ai � Pðnat;iÞÞ�1
; (3)

where ei is the enzyme efficiency and a0 is a normalizing factor that

reflects the concentration of input metabolites to the pathway (see

Supplementary Manual Section 7.2).

The third landscape is based on the assumption that fitness is in-

versely proportional to the total number of misfolded proteins in a

cell (Drummond and Wilke, 2008). Misfolded proteins form aggre-

gates that could be toxic to the cell (Bucciantini et al., 2002; Stefani

and Dobson, 2003). ð1� PnatÞ is the probability for a protein to be

misfolded, thus, fitness due to protein misfolding can be modeled as

fitnesstoxicity ¼ expð�c
X

i

Aið1� Pðnat;iÞÞÞ; (4)

where Ai is the protein abundance and c is the fitness cost per mis-

folded protein (Geiler-Samerotte et al., 2011). When initiating a

simulation with SodaPop, users can choose the fitness function by

using the appropriate index in the command-line call to the pro-

gram. The two fitness landscapes defined by Equations (3) and (4)

may be combined to explore the simultaneous effects of metabolic

flux and toxicity due to misfolding. Users can also customize their

own fitness landscape by inserting a new function in the PolyCell.h

source file (Supplementary Manual Section 8.1 and Supplementary

Fig. S3). For instance, to investigate the evolution of protein-protein

interactions, one could define a new function based on the assump-

tion that proteins must satisfy the requirement of being folded and

bound to a binding partner to be functional (Heo et al., 2011;

Manhart and Morozov, 2015; Zhang et al., 2008). This particular

fitness function has been used to investigate the dynamics of viral es-

cape against a neutralizing antibody by perturbing its interaction

with the Fab domain of the antibody complex (Cheron et al., 2016;

Rotem et al., 2018).

2.4 Fitness effects of mutations
When a random mutation occurs, it may change the biochemical

and biophysical properties of a protein and, in turn, the fitness of

the cell. SodaPop has three approaches to model the fitness effects of

mutations (Fig. 1b).

2.4.1 Mutational effects derived from a distribution

The effects of random mutations on the folding stability of globular

proteins can be characterized as Gaussian distribution with mean

l ¼ 0.6 kcal/mol and standard deviation r ¼ 0.9 kcal/mol

(Tokuriki et al., 2007). These results arose from both comprehensive

mutagenesis of several proteins and then estimating the effects of

mutations on stability using physical force fields (Tokuriki et al.,

2007). These distributions are also in agreement with >5000 stabil-

ity measurements of purified proteins (Kumar et al., 2006). Thus,

the user can define the DFE as a two-parameter distribution of the

form N(l, r) or Cða; bÞ in the command-line (Supplementary

Manual, Section 5.1). Instead of drawing DDG values from a

Gaussian, a Gamma distribution can be used to draw selection coef-

ficients (Eyre-Walker et al., 2006; Nielsen and Yang, 2003; Tamuri

et al., 2012) and calculate the corresponding fitness.

2.4.2 Mutational effects derived from physical force fields

Users can also provide as input a matrix that describes the change in

folding stability (DDGfolding) or activity (kcat=KM) for all possible

one-away substitutions at all residues. These quantities can be pro-

vided by the user (using parameter –i) as look-up tables that are

accessed at runtime. The entries in these tables are derived from

computational protein engineering tools such as Rosetta (Das and

Baker, 2008), Eris (Yin et al., 2007) or FoldX (Guerois et al., 2002)

prior to the evolutionary simulation. Updating the protein folding

stability or activity also updates the fitness using either Equations

(2)–(4).

2.4.3 Mutational effects derived from experiment

The user can also provide as input fitness effects from experimental

DMS approaches (Araya and Fowler, 2011). DMS combines muta-

tional library generation, selection, and high-throughput sequencing

to assay the fitness of up to 95% of possible one-away mutations to
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a protein. To date, over a dozen systematic and exhaustive DMS

assays have been conducted in various proteins to determine their

local fitness landscape (Fowler and Fields, 2014; Wrenbeck et al.,

2017a). New computational tools can leverage the information in

these experimental datasets to predict mutational effects for full pro-

teomes (Gray et al., 2018), allowing the creation of comprehensive

substitution matrices for thousands of proteins. Users can input

these matrices using the parameter �i (Supplementary Manual,

Section 3.3).

Indels are another major source of innovation in protein evolu-

tion. Although the current version of SodaPop does not explicitly

handle them, some types of indels can already be modeled (see

Section 8.3 of the Supplementary Manual).

2.5 Analysis of simulation data
The SodaPop package includes shell and R scripts for visualizing the

population dynamics and the time-series of the fitness and biophys-

ical properties of proteins. These scripts also allow for the tracking

of lineages and clonal structure and the calculation of protein evolu-

tionary rates. A detailed list and description of outputs and analyses

can be found in Chapter 6 of the User Manual. Since the program

registers explicit DNA and protein sequences for all the cells in the

population, a single simulation can generate thousands to millions

of sequences per saved generation. These sequences can be used as

starting points for high-resolution methods in molecular evolution

and phylogenetics. For example, the sequences can be used to create

multiple sequence alignments and apply standard molecular evolu-

tion analyses, such as the McDonald-Kreitman test or Tajima’s D.

3 Results

We describe four applications of SodaPop to demonstrate its broad

scope and flexibility.

3.1 Application I: population dynamics on fitness

landscapes based on protein biochemistry
To show how SodaPop can be used to explore population dynamics

and protein properties on biochemical fitness landscapes, we simu-

lated a population of Ne ¼ 104 cells on the fitness landscape defined

by Equation (3). Each cell contains ten genes in the folate biosyn-

thesis pathway of Escherichia coli. Shown in Figure 2A and B are

the mean population fitness and the average stability of the ten genes

over the course of the simulation. At a finer temporal resolution, we

can trace the segregation and eventual fixation of arising mutations

and the effects of clonal interference (Fig. 2C; Supplementary Fig.

S4).

3.2 Application II: simulating population dynamics with

barcoded cells for lineage-tracking and competition

assays
The ability to track the lineages of cells and frequency of clones in

an evolving population is crucial because it enables estimating the

selective advantage of mutations, the extent of clonal interference

and the establishment time of adaptive mutations. Tracking the

population dynamics typically makes use of neutral genetic or fluor-

escent markers (Hegreness et al., 2006; Illingworth and Mustonen,

2012; Moura de Sousa et al., 2013; Pinkel, 2007; Zhang et al.,

2012). More recently, through the introduction of randomized and

unique barcodes into the chromosomes, it is now possible to track

the population dynamics and lineages at the resolution of single cells

[Blundell and Levy (2014); Gerrits et al. (2010); Levy et al. (2015);

Venkataram et al. (2016)]. Nonetheless, because the resulting dy-

namics can be complex, these experimental results are comple-

mented by simulations that could provide null expectations.

SodaPop allows for this functionality. By assigning a unique barcode

identifier to each cell, one can trace the lineage and history of cells

in the simulation. As an example, we performed a simulation of la-

boratory evolution of Ne ¼ 104 cells, each assigned a 15-nt barcode

(Fig. 3). To mimic standing genetic variation, different fitness values

can be assigned to the barcodes (Supplementary Manual Section

4.2). Figure 3A is a lineage density plot showing the relative share of

each barcode in the population and Figure 3B shows the frequency

of each barcode.

3.3 Application III: simulating coding sequence

evolution under the constraints of both population

dynamics and selection for folding stability
Next, we demonstrate how SodaPop can be used to perform simula-

tions of protein sequence evolution that account for both effects of

selection for biophysical properties, such as folding stability, and

population dynamics. Specifically, we show the performance of

SodaPop in recapitulating the amino acid conservation among

orthologs. As a model system, we chose aminodeoxychorismate syn-

thase (pabB gene in Escherichia coli), an enzyme in the folate bio-

synthesis pathway.

To generate simulated orthologs, we performed evolutionary

simulations of 105 cells with E. coli pabB for 106 generations, under

selection for folding stability (Eq. 3). The effects of random muta-

tions on fitness are derived from a 452 residue � 20 amino acid ma-

trix that contains values for changes in folding stability,

DDG ¼ DGmut � DGwildtype. The DDG values are estimated using a

physical force field (Yin et al., 2007) and using the pabB 3D struc-

ture from Protein Data Bank (PDB ‘1K0E’). We first performed an

equilibration simulation where an initially monoclonal population

was evolved for 105 generations to reach mutation-selection bal-

ance. Then, to mimic divergence from a common ancestor, we used

the endpoint of the equilibration simulation as the starting popula-

tion for 250 independent evolutionary simulations. These divergent

simulations are performed for 106 generations, thereby ensuring

that the distribution of pairwise sequence identities for simulated

sequences matches that of the extant orthologs of pabB.

To compare the simulated sequences with extant orthologs of

pabB, we retrieved the top hits of a protein sequence search in

OrthoDB for bacteria (Waterhouse et al., 2013). We excluded

sequences with an absolute length difference of more than 20 bp.

We then aligned the 657 remaining sequences with hmmalign

(http://hmmer.org/) to the corresponding HMM of Pfam domains in

pabB (PF04715 and PF00425) and trimmed the flanking gaps from

the alignment. The amino acid conservation of simulated and

orthologous pabB sequences from multiple sequence alignment is

shown in Supplementary Figures S5 and S6, respectively.

We used Shannon entropy (Shannon, 1948) as a measure of per-

site conservation for each residue z

Sz ¼ �
XN

i¼1

pi lnðpiÞ; (5)

where pi is the observed frequency of amino acid i in that specific

site. A higher entropy indicates that a residue’s identity is more fre-

quently substituted based on the multiple sequence alignment.

Conversely, as the entropy approaches zero, that residue’s identity is

generally conserved throughout evolution. The site-specific entro-

pies of the simulated pabB sequences are significantly correlated
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with corresponding extant orthologs (Fig. 4A). Moreover, the mag-

nitude of this correlation is dependent on population size (Fig. 4B),

demonstrating the importance of population dynamics in shaping

protein sequence evolution. It is also expected that core residues are

more conserved than solvent exposed residues (Ramsey et al., 2011).

Indeed, the extent of the correlation between entropy and surface-

accessibility of residues (relative solvent accessibility; RSA) in real

sequences of pabB (Fig. 4C) is also recapitulated in simulation

(Fig. 4D). Lastly, the strength of this correlation is also dependent

on population size (Fig. 4E).

Next, we explored if simulations with SodaPop could also

capture the co-evolution between sites and whether this result

is dependent on Ne. Here, co-evolution is calculated by mutual

information (MI) using MISTIC (Simonetti et al., 2013).

Indeed, increasing the stringency of selection due to larger Ne

increases the number of co-evolving sites and the strength co-

evolution between those sites (Fig. 5A). Interestingly, popula-

tion dynamics seems to influence the rank-ordered distribution

of cumulative site co-evolution (CMI) with increasing Ne

(Fig. 5B). In protein engineering, site co-evolution is now being

used to predict de novo 3D structure of proteins and protein

complexes (Marks et al., 2012). Being able to explore how this

property is influenced by population dynamics will be of prac-

tical importance to the community.

A B

C

Fig. 2. Application I: population dynamics on a fitness landscape based on metabolic flux (Eq. 4). We modelled the evolution of a population of Ne ¼ 104 cells

with ten genes from the folate biosynthesis pathway. (A) Fitness of the population evolving towards mutation-selection balance. (B) Average folding stability of

the ten genes over the course of the simulation. Each gene is coloured differently and referenced by a numeric identifier. (C) Muller plot of the folding stability dy-

namics of gene 1 for a window of 1.5 � 104 generations. Cells are indexed along the y axis and grouped according to kinship. Genetically identical clones are col-

ored according to their folding stability

A B

Fig. 3. Application II: evolution under selection for folding stability (Eq. 2). (A) SodaPop tracks the segregation of lineages concurrently using 15-nt barcodes.

Each cell was assigned a unique barcode at time zero. Each colour represents the relative share of each barcode in the population at any time point. The informa-

tion in the left panel is represented in (B) as the logarithm of the number of cells sharing the same barcode

4058 L.Gauthier et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/4053/5380769 by guest on 04 April 2024

Deleted Text: &hx2009;


3.4 Application IV: simulating sequence evolution with

selection for both folding stability and catalytic activity
Mutations affect not only protein stability, but also enzyme activity.

For some residues and structural motifs, the trade-off between

activity and stability can constrain evolutionary paths (Meiering

et al., 1992). Thus, we compared two models of enzyme evolution

with SodaPop: (1) a model with effects on protein stability alone

and (2) a model with effects on enzyme activity in addition to
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Fig. 4. Application III: coding sequence evolution under the constraints of both population dynamics and selection for folding stability. (A) Comparison of

Shannon entropy per site between real pabB orthologs and sequences simulated with SodaPop (Ne ¼ 105 cells). (B) Dependence on population size (Ne) of the se-

quence conservation patterns recapitulated by SodaPop using a biophysical fitness landscape. (C and D) Simulated sequences recapitulate the strength of the

correlation between relative solvent accessibility and the conservation of real sequences. Curves are Lowess fits using all data points (smoothing parameter a ¼ 1).

(E) Dependence on Ne of the correlation between per-site conservation and surface accessibility

A B

Fig. 5. Application III: co-evolution between sites and the effects of population dynamics. (A) Mutual information (MI) in the multiple alignments of sequences

generated from simulation under different population sizes (Ne). The outer circle indicates the site in the multiple sequence alignment and the amino acid identity

of the sequence at the beginning of simulation. Pairs of sites with MI greater than 6.5 are connected by edges, with the top 5% colored red. Mutual information is

calculated from MSAs using the MISTIC web-server (Simonetti et al., 2013). (B) Positions are rank-ordered according to their cumulative MI (CMI) for multiple se-

quence alignments from real orthologs or simulations under different population sizes
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stability. For the first model, we used FoldX’s PositionScan com-

mand (Guerois et al., 2002) to get the landscape of effects on folding

stability of a protein. For the second model, we took advantage of a

recent deep-mutational scanning assay comprising >96.3% of all

possible one-away non-synonymous substitutions for hydrolysis ac-

tivity of the amiE amidase (Wrenbeck et al., 2017b). We regressed

the previously calculated effects on folding from the DMS data to

extract the contribution of each mutation to enzyme activity

(Supplementary Methods). We find that supplementing the effects

on protein stability with effects on the catalytic activity increases the

recapitulation of sequence conservation in natural orthologs in com-

parison with sequences from simulation based on folding stability

alone (Table 1, Supplementary Fig. S7).

3.5 Performance and runtime
We benchmarked SodaPop for six population sizes spanning five

orders of magnitude with cells containing ten genes (total genome size

6.5 kbp). All simulations were run on a standard iMac desktop with a

3.2GHz Intel Core i5 processor and 16GB RAM. Figure 6 shows that

runtime is quasi-monomial with respect to population size, with an

exponent of 1.1 (Supplementary Fig. S8). Simulating up to a million

cells for long time periods is entirely tractable using standard desktop

computers. We limited our desktop benchmarking to N¼106 cells, as

higher orders of magnitude introduce a shift in performance due to a

RAM bottleneck. The simulation of populations with higher orders

of magnitude requires a larger amount of memory than the current

standard in commercial desktop computers. However, these larger

population sizes can be simulated on high-performance computing

clusters where memory allocation is not limiting.

4 Discussion and conclusion

We have created SodaPop, a fast and scalable tool for evolutionary

simulations based on biochemical and biophysical fitness land-

scapes. Considering the need to address questions at the interface of

molecular evolution and population genetics, and with most of the

current computational methods unable to account for explicit clonal

dynamics, we believe SodaPop provides a comprehensive and exten-

sible framework that can encompass a wide array of evolutionary

scenarios. Briefly, we showed that our program can be used, among

other things, to simulate evolution under selection for specific bio-

physical properties, to provide null expectations for lineage-tracking

experiments of laboratory evolution, and to model coding sequence

evolution and co-evolution. To broaden these possibilities and

achieve greater predictive power, we intend to implement future

models of fitness landscapes, such as a systems-level description of

the cell that could integrate omics data—transcription level, gene

regulation networks and protein-protein interactions. We also aim

to expand the scope of the program to other types of genetic changes

by integrating features of recombination and indels to SodaPop. In

the case of recombination, the first and simplest approach is to as-

sume an ad hoc distribution of effects, as done in other forward

simulation algorithms. This approach is appropriate for modeling

whole genome recombination events (inter-genic). However, this

does not account for the consequence of recombination in specific

genes (intra-genic) and on their biophysical properties, which is the

overaching motivation for SodaPop. The second approach is to phe-

nomenologically model the fitness effect of recombination and its

dependence on recombination sites within proteins. Random recom-

bination of homologous sequences found that crossover sites in the

middle of the protein are more deleterious because it likely impacts

the packing of the core (Romero and Arnold, 2009). The third ap-

proach is to have a sequence-based model of recombination and to

calculate the biophysical properties of the recombinant sequences.

Considering that for a given evolutionary run, at least 106 sequences

need to be folded (but few of which will be selected), on-the-fly cal-

culation of folding stability for a sequence is possible only in lattice

models of protein folding (Shakhnovich and Gutin, 1993; Voigt

et al., 2002), barring the associated computational cost.

In the case of indels, their effects in protein evolution are more

nuanced and depend on structural and biophysical considerations.

For example, random indels occurring in reverse turns, loops, or sur-

faces are considered to be less deleterious than those in beta sheets,

helices, or protein cores (Benner et al., 1993; Hsing and Cherkasov,

2008; Pascarella and Argos, 1992). A detailed model of indels will

require explicit folding simulation of proteins for each mutation,

which can also be performed using lattice models of proteins.

The object-oriented design of SodaPop will facilitate these future

developments. In a technical perspective, there are several features

that could improve the performance and practical use of SodaPop.

First, modeling mutation history for each cell using a linked list of

mutations instead of explicit sequence change could reduce the

memory required to store cell objects by a significant factor without

incurring any information loss. Second, circumventing the

command-line application with a graphical user interface (GUI)

wrapper will facilitate user interaction in creating input files, setting

up simulations and choosing the appropriate parameters. Third,

implementing multi-threading options in the main program loop

and in the analysis pipeline will allow the program to run on mul-

tiple processors in parallel, which can significantly improve runtime

on high-performance computing clusters. These features are current-

ly under development for future versions.

Table 1. Application IV: Pearson correlation coefficient between

simulated amiE sequences and biological orthologs

Pearson correlation P-value

Selection for folding 0.33 3.85 � 10-10

Selection for folding and activity 0.43 2.2 � 10-16

Fig. 6. Benchmarking of SodaPop for different population sizes. The runtime

of SodaPop is shown for varying population sizes and simulation length. The

time step for each test case was set to 0.01N. Each data point represents the

average runtime over 100 simulations for a particular condition. Error bars

represent standard error of the mean (SEM)
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