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Abstract

Motivation: The molecular mechanisms of self-organization that orchestrate embryonic cells to

create astonishing patterns have been among major questions of developmental biology. It is

recently shown that embryonic stem cells (ESCs), when cultured in particular micropatterns, can

self-organize and mimic the early steps of pre-implantation embryogenesis. A systems-biology

model to address this observation from a dynamical systems perspective is essential and can

enhance understanding of the phenomenon.

Results: Here, we propose a multicellular mathematical model for pattern formation during in vitro

gastrulation of human ESCs. This model enhances the basic principles of Waddington epigenetic

landscape with cell–cell communication, in order to enable pattern and tissue formation. We have

shown the sufficiency of a simple mechanism by using a minimal number of parameters in the

model, in order to address a variety of experimental observations such as the formation of three

germ layers and trophectoderm, responses to altered culture conditions and micropattern diame-

ters and unexpected spotted forms of the germ layers under certain conditions. Moreover, we have

tested different boundary conditions as well as various shapes, observing that the pattern is initi-

ated from the boundary and gradually spreads towards the center. This model provides a basis for

in-silico modeling of self-organization.

Availability and implementation: https://github.com/HFooladi/Self_Organization.

Contact: asharifi@sharif.ir or khalaj@sharif.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

From a long time ago, a great number of prominent scientists devoted

their lives to think about how biological patterns emerge and how dif-

ferentiation occurs (e.g. Gierer and Meinhardt, 1972; Turing, 1952;

Wolpert, 1969). Different cell fates that organize through space and

time are formed from seemingly identical ones. In 1957, Waddington

depicted a well-known epigenetic landscape, which unveils how a cell

commits to different cell types starting from an undifferentiated state

(Waddington, 1957). This model has been inspiring for more than a

decade and triggered a significant number of works on cell fate deci-

sion making and envisioning cell fates as high-dimensional attractor

states of a complex gene regulatory network (Huang et al., 2005;

Mojtahedi et al., 2016). Despite a highly profound and influential vi-

sion, it does not provide sufficient clues on how diverse patterns

emerge in the coordination of cellular population. The missing com-

ponent of this model is cellular communication.
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Cells communicate with each other in different ways, and commu-

nication plays a central role in their development. Mechanical and

chemical signaling (e.g. autocrine, endocrine, paracrine and direct cell–

cell contact) are considered as the two major modes of cellular inter-

action (Howard et al., 2011). For instance, reaction-diffusion models

are considered as paracrine signaling, while delta-notch signaling is

within the category of direct cell–cell contact (Phillips et al., 2012).

Lewis Wolpert proposed one of the earliest models for explain-

ing pattern formation, known as positional information (PI) model,

in 1969 (Wolpert, 1969). This model suggests a specific embryonic

region diffuses some chemical substance, so-called morphogen,

which results in a morphogen gradient formation. Cell fate is the

function of a morphogen concentration that a cell receives (Wolpert,

1969). Positional information model does not account morphogen

interactions and consequently is incapable of producing oscillatory

patterns (Kondo and Miura, 2010). From another point of view,

Alan Turing proposed the reaction-diffusion (RD) model, which is

based on the interaction of two morphogens and can produce oscil-

latory patterns (Turing, 1952). The RD model can explain the for-

mation of different biological patterns such as animal skin patterns,

and vasculogenesis (Gierer, 1981; Kondo and Miura, 2010; Koch

and Meinhardt, 1994; Maini et al., 2012). Furthermore, it is

possible to combine RD and PI and create another sophisticated bio-

logical model (Green and Sharpe, 2015).

There are numerous examples of pattern formation during early

human embryo development, and gastrulation is among the most

important of them. Lewis Wolpert has stated, ‘it is not birth, mar-

riage, or death, but gastrulation which is the most important time in

your life’ (Vicente, 2015) unveiling the significant importance of

gastrulation. Gastrulation is a self-organized process; which means

without any external force, and only by cell–cell communication, a

group of identical cells differentiates and forms an ordered spatial

pattern. During mammalian gastrulation, epiblast cells in blastocoel

were differentiated from inner cell mass, produced three main kinds

of cells: ectoderm, mesoderm and endoderm. These three spatially

organized layers are the progenitor of almost every cell in the human

body (Deglincerti et al., 2016a,b).

It has been shown recently, that providing geometric confine-

ment is enough for recapitulation of the sequentially ordered

pattern. This finding opened new doors for studying this process

more precisely in great depth (Deglincerti et al., 2016a,b;

Warmflash et al., 2014). In this experiment, homogenous BMP4

was used as an input signal for triggering self-organized gastrula-

tion, and cells were confined to circular microcolonies of 250 to

1000 lm diameter. They investigated the effect of micropattern sizes

and different concentrations of initial BMP4 on output pattern ex-

perimentally (Warmflash et al., 2014). Etoc et al. (2016) followed

this procedure and proposed a mathematical model, explaining this

qualitative behavior (Etoc et al., 2016). As a result, they found out

initial receptor relocalization and interaction of BMP4 and its in-

hibitor, Noggin, were responsible for ordered germ layer formation.

Although their suggested mathematical model was compatible with

the previous experiment, it was not rich enough to produce an oscil-

latory pattern observed in later experiments (Tewary et al., 2017).

Tewary et al., (2017) showed that by increasing colony diameter

and initial BMP4 concentration, the spotty pattern arises (Tewary

et al., 2017). They modified (Etoc et al., 2016) genetic circuit and

added auto-regulation link for BMP4 which makes this model cap-

able of producing spatial oscillation, and their proposed model

resembles the Turing model in mind.

In spite of being in agreement with the previous experimental

results, providing a biologically plausible interpretation of model

parameters is not straightforward. Correspondence between param-

eters and specific biological or molecular property is not clear. This

restricts biologists from designing new experiments to verify the ap-

plicability of this model. i.e. it is not clear how the variation of

parameters map to concrete biological factors (e.g. the production

rate of BMP4) through in vitro experiments. Furthermore, another

thing that makes this model inconvenient from our perspective is ig-

norance of cell identity. The previous model (Tewary et al., 2017)

assumes the homogenous distribution of BMP4 and Noggin as a

continuous field, and from their interaction, the sequential ordered

pattern arises. However, a more precise and realistic model (i.e.

model that remains mathematically rigorous, and at the same time,

provide biologically testable predictions) should include cells as the

core element and incorporate cell–cell communication.

We propose a mathematical model based on the dynamical sys-

tem theory for justifying pattern formation during in vitro hESC gas-

trulation. This model not only is compatible with all the previous

experiments but also considers cells as the main elements and con-

tains parameters which have accurate and concrete biological inter-

pretation. Moreover, it provides an opportunity for making testable

biological statements about how the pattern varies in response to

perturbing parameters.

Our model is generic and capable of supporting different forms

of communication (such as direct contact) by slight modification in

its implementation. This flexibility comes from considering cells as

separate entities and secreting molecules in the extracellular space.

In the proposed model, we have assumed diffusion as the mechanism

of cellular interaction. To the best of our knowledge, this assump-

tion is consistent with the existing literature about BMP4-Noggin

interaction (Etoc et al., 2016; Warmflash et al., 2014).

2 Materials and methods

We proposed a model based on the dynamical systems approach.

The minimal genetic circuit has been considered inside each cell, and

this circuit contains the interaction of BMP4 and Noggin genes

which are among the essential genes in human gastrulation. In par-

ticular, BMP4 activates production of Noggin and itself, and

Noggin inhibits production of BMP4 (Fig. 1a). It is biologically

well-known that BMP4 does not interact with Noggin directly; it

first stimulates phosphorylation of Smad1 and complex of Smad1

and Smad4 transfer to the nucleus and activates Noggin expression

(Gromova et al., 2007). But, in the proposed model, we have

ignored these intermediate steps for the sake of simplicity. This cir-

cuit can be considered as a dynamical system and the underlying

equations that capture these interactions can be derived. Each gene

has a degradation rate as well as production rate.

d

dt
N ¼

bN
B

KBN

� �n

1þ B
KBN

� �n þ aN � aNN B : BMP4;N : Noggin (1)

d

dt
B ¼

bB
B

KBB

� �n

1þ B
KBB

� �n
þ N

KNB

� �n
þ B:N

K1

� �n þ aB � aBB (2)

In this equation, N is the concentration of Noggin and B is the

concentration of BMP4 in one cell. aB and aN stand for degradation

rates of BMP4 and Noggin in each cell respectively. Furthermore, b
and a are the production rates, and K represents the binding affinity

of one protein to the dedicated promoter.
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Since this equation plays a significant role in the subsequent ana-

lysis, it is essential to clarify the logic behind its derivation.

Moreover, a detailed interpretation of each variable in the equation

can be elucidating. So, consider the first equation which capture the

variation of Noggin over time:

• Change of one protein concentration over time has been written

as a combination of production and degradation of this protein

(Huang et al., 2007). As a result, first and second terms in the

Equation 1 correspond to the production of Noggin, and the

third term refers to the degradation of Noggin in a cell.
• The first term is the feedback-dependent component of Noggin

synthesis. BMP4 acts as an activator of Noggin synthesis and this

term captures this effect. It is important to note that often bio-

logical response function is approximated as Hill-function

(Ferrell, 2012). bN represents the maximum rate of feedback-

dependent production of Noggin. Another parameter KBN is

called activation coefficient and corresponds to the concentration

of BMP4, which is necessary to significantly activate the produc-

tion and synthesis of Noggin. The unit of this parameter is con-

centration, and it depends on the chemical binding affinity of

BMP4 to the Noggin promoter (Alon, 2006). Since the BMP4

does not directly activate Noggin and this activation is done

within the cascade of events and intermediation of other pro-

teins, KBN only models the effect of binding affinity. The last par-

ameter of this term is n, which determines the steepness of the

Hill-function; the higher n corresponds to a steeper hill-function,

and leads to a more switch-like behavior. Often in the biological

systems, n is considered to be in the range of 1–4 (Alon, 2006).
• The second term is called the basal rate of Noggin synthesis and

corresponds to the rate of Noggin synthesis in the absence of

BMP4 and other activators (Ferrell, 2012). Even in the absence

of an activator, an RNA polymerase can bind to Noggin

Promoter and synthesize Noggin in this situation. Consequently,

aN is the basal production rate and can be experimentally deter-

mined by measuring the rate of Noggin Synthesis in the absence

of BMP, e.g. by knocking down the BMP4 and measuring the

concentration change of Noggin.
• The last term refers to the degradation and dilution of Noggin

within a cell (Alon, 2006). The concentration of the protein

decreases within the cell because of two reasons. First, the expan-

sion of a cell and consequently, dilution of the protein and the se-

cond reason is the active degradation of the protein by an

enzyme called protease. There is a correspondence between a
and the half-life of the cell (Alon, 2006), which makes it easy to

measure and determine a.

Now consider Equation 2 which belongs to the variation of

BMP4 within a cell. The logic behind the derivation of this equation

is very similar to Equation 1, but there are subtle differences that

require clarification. Like Equation 1, this one again contains pro-

duction of BMP4 as well as degradation. The first and second term

relates to production, and the last term represents the degradation

of BMP4 within a cell. The second term is the basal expression of

BMP4, and the third term relates to dilution and degradation of

BMP4. Only the first term is a little ambiguous and needs more

details for elucidation. The first term is the feedback-dependent

component of BMP4 synthesis. Two processes contribute to this syn-

thesis: the first one is auto-activation of BMP4, and the second one

is cross-inhibition of BMP4 by Noggin. Again, this synthesis can be

written in the form of hill function which originates from intracellu-

lar physiochemical conditions (Huang et al., 2007). Since there are

two regulators, one activator and one repressor, there exists two

interacting promoter sites for regulation of BMP4. The first term

can be re-written as the following:

bB
B

KBB

� �n

1þ B
KBB

� �n
þ N

KNB

� �n
þ N:B

K1

� �n ¼ bB:Freg (3)

In the case of two interacting regulatory sites, Freg can be written

as the following (Bintu et al., 2005; Goentoro et al., 2009):

B
KBB

� �n

1þ B
KBB

� �n
þ N

KNB

� �n
þ N:B

K1

� �n ¼ Freg (4)

In one specific case, when there is no interaction between BMP4

and Noggin promoter sites, the situation becomes simpler and can

be written as the product of two regulatory terms:

Freg ¼ Freg1:Freg2 ¼
B

KBB

� �n

1þ B
KBB

� �n :
1

1þ N
KNB

� �n

¼
B

KBB

� �n

1þ B
KBB

� �n
þ N

KNB

� �n
þ N:B

KBB :KNB

� �n ¼ Freg

(5)

In the proposed model, a more general case, i.e. two interact-

ing regulatory sites, has been considered. In Equation 5, KBB and

KNB represent the binding affinity of BMP4 and Noggin to

BMP4 promoters respectively. There is a probability of binding of

BMP4 to the BMP4 promoter and KBB reflects the effect of this

probability. Although there is no direct link between Noggin

and BMP4, and Noggin influences the production of BMP4

through the downstream pathway indirectly, for the sake of

simplicity, we have summarized all these interactions in the par-

ameter KNB.

Fig. 1. (a) Genetic circuit that shows interaction of BMP4 and Noggin genes.

(b) Behavior of the genetic circuit in time and state space. Evolution of the

system when the parameters have been selected based on the first row of

Table 1. (c) Evolution of the system when the parameters have been selected

based on the second row of Table 1. Left: Time-space. Right: State space,

starting from different initial conditions
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Moreover, it is worth noting that all the parameters in the equa-

tions can be easily measured and determined in practice by means of

experimental observation. The only parameters that are not very con-

venient for measurement are binding affinities (K), since lots of inter-

action has been summarized and abstracted in these parameters.

2.1 Dimensionless equations
It is a reasonable idea to use non-dimensional version of dynamical

system equations. Nondimensionalization often reduces the number

of free parameters, and consequently reduces search space. It is im-

portant to choose appropriate dimensionless parameters. We chose

dimensionless parameters as shown in the following equations:

~t ¼ aBt ~N ¼ N

KNB

~B ¼ B

KBB

~bN ¼
bN

aN :KNB

~bB ¼
bB

aB:KBB
k ¼ aN

aB
~aN ¼

aN

aN :KNB
~aB ¼

aB

aB:KBB

r1 ¼ KBB :KNB

K1

� �n
r2 ¼ KBB

KBN

� �n

(6)

Manipulating the original equations with dimensionless parame-

ters can lead to the following results.

k�1 d

d~t
~N ¼ ~bN

r2
~Bn

1þ r2
~Bn
þ ~aN � ~N

d

d~t
~B ¼ ~bB

~Bn

1þ ~Bn þ ~Nn þ r1
~An ~Bn

þ ~aB � ~B

(7)

Detailed description of the derivation of Equation 7 can be found

in the Supplementary Material (Appendix A). Equation 7 consists of

eight free parameters, searching through which, can lead to different

qualitative behaviors. We simulated and tested about 100 different

sets of parameters. Observed qualitative behaviors can be classified

into two dominant regimes: approaching the fixed points and oscil-

latory behavior. When it is approaching the fixed points, the steady

state concentration of Noggin can be either higher, or lower than

that of BMP4. Furthermore, we observed various transient behav-

iors during convergence to the fixed points in terms of monotonicity.

In the second case, oscillation with different frequencies and ampli-

tudes for Noggin and BMP4 have occurred during simulations.

Figure 1b and c and Table 1 represent a sample simulation and asso-

ciated parameters for each mentioned behaviors.

2.2 Incorporating cell–cell communication via diffusion
In Section 2.1, we only consider one particular cell and derive the

corresponding equation for that. However, when dealing with cellu-

lar population, interaction plays an important role and must be

somehow reflected in the model (Fig. 2a). Without considering inter-

action, the connection of the model with reality becomes obscure

and the model would deviates from reality. Although there are dif-

ferent ways for cellular communication, in this paper cell–cell inter-

action occurs via diffusion. Our goal in this paper is to consider the

population of cells, placing the genetic circuit in each cell, and pro-

vide communication through diffusion. BMP4 and Noggin proteins

can leave the surface of the cells, diffuse through extracellular space,

penetrate through the surface of the other cells, and subsequently in-

fluence the behavior of other cells in the environment (Equations 8

and 9). In this manner, we have incorporated cellular interaction in

our model which is one of the key parts in pattern formation

(Kondo and Miura, 2010).

d

dt
N ¼

bN
B

KBN

� �n

1þ B
KBN

� �n þ aN � aNN þDN
o2N

ox2
þ o2N

oy2

 !
(8)

d

dt
B ¼

bB
B

KBB

� �n

1þ B
KBB

� �n
þ N

KNB

� �n
þ B:N

K1

� �n þ aB � aBB

þDB
o2B

ox2
þ o2B

oy2

 ! (9)

Again, by choosing appropriate parameters, equations can be-

come dimensionless and dealing with dimensionless equation is

more convenient. The details of this derivation can be found in the

Supplementary Material (Appendix B).

k�1 d

d~t
~N ¼ ~bN

r2
~B

n

1þ r2
~B

n þ ~aN � ~N þ ~DN
o2 ~N

ox2
þ o2 ~N

oy2

 !
(10)

d

d~t
~B ¼ ~bB

~B
n

1þ ~B
n þ ~N

n þ r1
~N

n ~B
n þ ~aB � ~B

þ ~DB
o2 ~B

ox2
þ o2 ~B

oy2

 ! (11)

One of the key aspects of the proposed model is this fact that the

BMP4 and Noggin can only be produced within the cells, and in

extracellular space, the protein synthesis is zero. i.e. in the extracel-

lular space, only degradation and diffusion can take place. The fol-

lowing are other assumptions:

Table 1. Two sets of parameters that can cause two completely dif-

ferent qualitative behaviors

~aN ~aB
~bB

~bN k r1 r2 n

0.1 1 100 10 3 0.1 1 2

0.1 0.1 20 20 0.4 0.1 1 2

Fig. 2. (a) Schematic of proposed model. (b–e) Comparison of pattern forma-

tion resulted from proposed model (top) with reaction-diffusion model (bot-

tom). (b, d) Same qualitative but different quantitative behavior on 500l

colony. (c, e) Ring-shape pattern emerges from reaction-diffusion model,

while spotty pattern appears from our model on 3000l colony
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1. Diffusion coefficient is constant throughout the space for both

BMP4 and Noggin, which means diffusion is homogenous. It

means that diffusion is not a function of space and is independ-

ent of the coordinate, which is not an odd assumption. It is not

hard to make diffusion a function of space; but our goal is to

keep the model as simple as possible while, capturing and con-

forming all the previous experiments and observations.

2. Diffusion is isotropic, which means that the diffusion constant is

not a function of direction and remains the same in all direction.

In real scenario and in-vivo experiment, diffusion varies in dif-

ferent directions due to different factors (Manno et al., 2017).

We have ignored this fact for the sake of the simplicity of our

model. It is possible to add this feature and make the model

more complicated in future works. It is required to know the

exact position of the cell nucleus and cell compartments such as

cytoskeleton and microtubules in order to model anisotropic dif-

fusion precisely (Trimble and Grinstein, 2015).

3. The degradation rate of proteins (a) inside and outside of the

cells are different. Within the cell, active protein degradation is

performed by an enzyme which is called protease (Schrader

et al., 2009); as a result of this active degradation, the degrad-

ation rate is higher within the cell with respect to the outside of

the cell. This difference in degradation rate has been considered

in the proposed model.

Equations 10 and 11 contain some free parameters. We have

selected the parameters according to Table 2. The logic behind this

decision and sensitivity of the pattern formation w.r.t. parameters

will be discussed more precisely in Section 3.4.

All simulations in the multicellular system have been done with

Morpheus. Morpheus is an user-friendly software designed for simu-

lating and studying multicellular systems (Starruß et al., 2014).

Detailed description of implementation in Morpheus can be found

in Appendix C in Supplementary Material.

3 Results and discussion

3.1 Communication model explains in vitro

self-organization
We tested communication-less model, i.e. the model without consid-

ering cellular interaction (Fig. 1). While it provides a baseline for

modeling some observations such as attractor (stable-steady) states

or oscillation, it fails to model enigmatic features of the living organ-

isms such as embryonic development and self-organization. We

aimed to enhance the model in order to resemble the experimental

observations of in vitro gastrulation, as performed by Warmflash

et al. (2014). For that purpose, we developed a multi-cellular model

in which the fate of each cell is determined by a genetic circuit that

reconciles intrinsic interactions with extrinsic signals of cell–cell

communication (see methods for more details).

According to the previous experiments, we expect BMP4 to decrease

from the edge towards the center of the colony, while Noggin exhibits

the opposite behavior in 500 lm colony (Etoc et al., 2016; Warmflash

et al., 2014), which is exactly the same behavior we observed (Fig. 2b).

After formation of the BMP4-Noggin pattern, the appearance of

different cell fates and ordered germ layers can be explained based on

positional information mechanism. Distribution of BMP4 and Noggin

influence the production of SOX2, SOX17 and CDX2, which induce

different cell fates during gastrulation. e.g. the region with the high con-

centration of BMP4 and low concentration of BMP4 (the center of the

colony) produces more SOX2 which induces ectodermal fate.

Tewary et al. (2017) showed that by increasing colony diameter

(3000 lm colony), the spotty pattern arises. We observed the similar

behavior (Fig. 2c). This spotty pattern can disrupt the formation of

germ layers in the gastrulation.

During simulations, we realized that diffusion of BMP4 and

Noggin has a significant effect on the pattern. In agreement with the

expectation, it has been observed that desired pattern emerges when

diffusion of Noggin is significantly greater than BMP4 (Gierer and

Meinhardt, 1972; Turing, 1952).

Moreover, it is worth noting to mention that parameters vary

within a reasonable biological range (Table 2). The typical diffusion

coefficient of protein within the cell is set around 10 lm2 s�1 (Alon,

2006). In addition, Tewary et al., (2017) considered diffusion rate

of Noggin and BMP4 as the following:

DB ¼ 10 lm2s�1 DN ¼ 50 lm2s�1 (12)

The typical degradation rate of proteins within the cell depends

on the cell generation time, varying in the range of 0:01ðsÞ � 0:001ðsÞ
(Alon, 2006) and we have considered the same ranges for deg-

radation rate of BMP4 and Noggin in proposed model.

aB ¼ 0:01 aN ¼ 0:004 DB ¼ 10 lm2s�1 DN ¼ 50 lm2s�1

k ¼ aN

aB
¼ 0:4 ~DB ¼

DB

aB
¼ 250 lm2s�1

~DN ¼
DN

aN
¼ 12500 lm2s�1

(13)

3.2 Communication model has critical advantages over

continuous reaction-diffusion models
Although our model resembles reaction-diffusion, there is one major dif-

ference that distinguishes our model. In the normal reaction-diffusion

model, production and degradation of morphogenes take place in all

points throughout the space; however, in the proposed model morpho-

genes are produced within the cells, and the rate of degradation is higher

inside the cells (as a result of active degradation) in comparison with

extracellular space. This major difference in modeling assumptions has

led to different results in simulations (Fig. 2b–e). For example according

to our model, as the colony size increases (Fig. 2c and e), a spotty pat-

tern emerges; while in the case of the continuous reaction-diffusion

model, ring-shape oscillation appears. Therefore, for a large colony size

a different qualitative behavior emerged. For a normal colony size (500

lm), although the pattern looks similar in a qualitative manner (Fig. 2b

and d), quantitative behaviors differ substantially. In our model, the

ratio of BMP4 concentration at the edge with respect to its concentra-

tion at the colony center is in agreement with previous experiments [e.g.

Fig. 6a and b of Etoc et al. (2016)]. But in the continuous model, BMP4

concentration is zero at the center.

As a result, considering cells as the separate entities and provid-

ing communication via diffusion, has made a significant change in

pattern formation with respect to continuous RD models.

3.3 Boundary analysis determines necessity of inhibitor

diffusion from the colony
Warmflash et al. (2014) suggested that diffusible inhibitors have an es-

sential role in establishing the pattern. In order to prove this assumption,

Table 2. Appropriate parameters for the emergence of the desired

pattern

~aN ~aB
~bB

~bN k r1 r2 n ~DB ¼ DB

aB

~DN ¼ DN

aN

0.1 0.1 20 20 0.4 0.1 1 2 250 12 500
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they blocked this diffusion by growing colony at the bottom of PDMS

microcell. This alteration made the boundary fate formation fails, and

by this experiment, they claimed that diffusing inhibitors out of colony

boundary are pivotal factors for pattern formation. In order to examine

our model, two available boundary conditions have been tested: constant

and no-flux. No-flux condition is the same as putting the colony at the

bottom of microcell, and constant boundary condition corresponds to

regular growing. Figure 3 depicts the results after running the model for

two types of boundary condition. No-flux boundary condition leads to

vanishing fate determination. It demonstrates the compatibility of our

model with previous experiments. Therefore, we used the ‘constant’

boundary condition throughout simulations.

3.4 Local and global sensitivity analysis highlights

parameters that influence in-silico self-organization

outcome
One key advantage of the proposed model is providing a biological

interpretation for each parameter. i.e. each parameter corresponds

to the specific biological process or molecular properties. For ex-

ample k is the ratio of degradation of Noggin and BMP4 and vary-

ing k means varying degradation rate of one of these proteins.

To get more insight into the model and its parameters, we have

done sensitivity analysis. Sensitivity analysis (SA) is an important

step in developing a biologically plausible mathematical model. SA

methods can be divided into two general groups: local and global

SA. Local SA approaches provide information about sensitivity of

the pattern w.r.t each parameter when it deviates locally around a

base point (by calculating derivatives or using more qualitative

methods that are called ‘screening methods’). The main drawback of

local methods is that derivatives provide information only around

the base point where they are computed and do not take into ac-

count the rest of the variation range of the model parameters.

Consequently, in order to explore all reasonable parameter ranges,

global SA methods are introduced. Global approaches such as

Morris methods (Campolongo et al., 2007; Morris, 1991) and

variance-based methods (McKay et al., 1999; Sobol, 1993) efficient-

ly sample from parameter space to analyze global importance and

sensitivity of each parameter. Both global and local SA are per-

formed for our parameters.

3.4.1 Local sensitivity analysis

For doing local SA, we have set the parameters according to Table 2

and we will call this set of parameters as base values. After that,

each parameter varies in the vicinity of its base value and how the

pattern changes are determined and measured (Fig. 4).

In Figure 4, y-axis corresponds to the concentration of Noggin

(Fig. 4a) and BMP4 (Fig. 4b), and it can be observed how concentra-

tion changes along the radius of the colony. Red curve corresponds

to the variation of concentration alongside the radius when the

parameters have been set to the base values. Yellow region corre-

sponds to the 95% interval of concentration in one specific radius.

In order to plot this curve, first one specific radius is considered,

then it is possible to measure how concentration changes in this spe-

cific radius in response to variation of one specific parameter. Mean

and standard deviation of concentration for all the distances from

the colony center has been calculated and 95% interval has been

plotted. In addition, variation of pattern with respect to changes in

diffusion has been examined and the result can be found in the

Supplementary Material Appendix D. We observed that diffusion

coefficients also have great impact on pattern formation.

Figure 4 reveals that the pattern is very sensitive to k and bN, and

incremental change of these parameters can have a dramatic influ-

ence on the pattern. k represents the ratio of degradation rates, and

we can speculate that by interrupting degradation rate of Noggin or

BMP4 (e.g. by blocking or interrupting active mechanism of degrad-

ation) we can disrupt the formation of germ layers.

3.4.2 Global sensitivity analysis

Morris methods are one of the most effective and robust methods in

screening sensitivity analysis (Campolongo et al., 2007; Morris,

1991). The Morris method uses the mean (l) and standard deviation

(r) of the some ‘elementary effects’ (local sensitivity features), meas-

ured at some special trajectories in order to provide an approxima-

tion of global importance of each parameter. This method has two

outputs for each parameter: average and variance. The more the

average is, the more important the parameter is. Higher standard de-

viation implies the non-linearity effect of the parameter or the result

of interactions with other inputs. One of the drawbacks of Morris

method is where there are some negative elements among our model

Fig. 3. Simulation of proposed model in population of cells when the inter-

action and diffusion is present. These patterns have emerged after the transi-

tion time is over and when the system has reached the stable situation. (a)

Simulation on 500 lm colony with constant boundary condition. (b)

Simulation with no-flux boundary condition. Above: BMP4 and Noggin field

in the environment. Below: Amount of BMP4 and Noggin within each cell

Fig. 4. Local sensitivity analysis for each parameter in models for (a) Noggin,

(b) BMP4 field in the circular colony
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output and they cancel out each other in mean operation and conse-

quently reduce the reliability of the average feature as a measure for

the importance of the parameter (Campolongo and Saltelli, 1997).

In these situations, scientific advice is to use mean absolute value

(l�) instead of the mean value to overcome this drawback (Saltelli

et al., 2004).

We applied the Morris method for analyzing sensitivity and im-

portance of parameters of the proposed model. The result has been

shown in Figure 5. According to the result, importance of bN, bB, k
and r1 is obvious in comparison with r2, a1 and a2. High sensitivity

to bN and bB was predictable because they are directly related to the

production of Noggin and BMP4 respectively (i.e. blocking produc-

tion by knocking down BMP4 or Noggin gene, obviously alters the

patterns). But the high l� value for k and r1 implies the importance

of the ratio of degradation rates and corporative bounding coeffi-

cient as well in pattern formation. So, variation of these parameters

can significantly change the final pattern and accordingly germ layer

fates.

3.5 Predicting the effect of colony geometry on self-

organization
In this section, we investigate the effect of geometry on the final pat-

tern. Simulations were performed in two categories: circular and

non-circular boundary confinement. All in vitro experiments have

been done in a circular environment, but in natural gastrulation, a

more complex situation is happening. So we decided to take this

step further by simulating our model for more diverse and real

geometries.

3.5.1 Circular geometry

Tewary et al., (2017) reported that by increasing colony diameter to

around 3 mm, the spotty pattern will appear. In fact, our model

leads to the same observation and we can see the desired pattern

after simulation (Fig. 6a). For spotty pattern, we noticed that spots

appear and oscillate through time until the system reaches a stable

point and oscillation in time vanishes. Sensitivity analysis is also per-

formed in order to investigate how much pattern varies in response

to variation of the radius of the colony (Fig. 6b). The process is the

same as what has been mentioned in Section 3.4.1. According to the

result, a small alteration in colony radius can cause significant

variation in BMP4 (Noggin) concentration and subsequently can

change cellular fate determination; especially in cells closer to the

center are more under the influence of variation of colony diameter

(ectodermal and mesodermal fates). Warmflash et al., (2014)

observed the vanishing of central fates when they reduced colony

size, perfectly matching to our sensitivity analysis result.

3.5.2 Non-circular geometry

All the previous experiments have been done on circular confinement

for colonies. Different geometries for colonies were considered and

for each one simulation performed. We have shown the result of one

geometry which resembles in-vivo gastrulation and left the others in

the Supplementary (Fig. 6c and d). Based on simulations, our hypoth-

esis about the high importance of geometry seems reasonable. By

assuming each color as a separate fate, a small variation in curvature

of geometry completely change the fate regions; but it needs an in

vitro experiment for confirmation. We think it would be interesting

to write state of the system or fate of each cell as a function of geom-

etry or at least some features of geometry like curvature. It can be

considered as future works, but for now, we have just performed

some simulations on different geometries to clarify our claim.

Moreover, based on our observation, we can speculate that pat-

tern formation initiates from the boundary (edge) of the colonies.

BMP4 (Noggin) has the wave-like property, propagation of the

wave initiates from the edge and gradually propagates toward the

center of the colony. The final pattern formation is the direct conse-

quence of interference between wave-like concentrations. Therefore,

the edge plays a very critical role in the pattern formation.

4 Conclusions

We observed that cellular interaction plays an important role in pat-

tern formation; to an extent that in absence of such interactions, the

system exhibits time-course oscillatory behavior, while in presence

Fig. 5. Morris method sensitivity analysis result. Parameters are ranked with

respect to their l� as a measure for importance and high sensitivity

Fig. 6. (a) Simulation on 3 mm colony. Increasing radius reveals spotty pat-

tern. (b) Sensitivity of final pattern w.r.t. radius. Small changes in radius lead

to significant effect on BMP and Noggin distributions in space. (c, d) Minor

alternations in geometry in the real situation has made dramatic changes in

the pattern. In the right figure, the bottleneck is slightly narrower than the left

figure, leading to a significant change in the resulting pattern
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of such interactions, the system shows stabilized behavior in time.

Hence, the cellular interactions are among the pivotal factors that

lead the system toward the desired pattern which is consistent with

previous biological and experimental evidence. In addition, the col-

ony diameter has a significant impact on the emerging pattern;

increasing colony diameter can result in the formation of the spotty

pattern, and our model also captures this behavior. Furthermore, we

studied the effect of different parameters, and observed that some of

them such as r1; k;DB and DN have greater impacts on final results.

Subsequently, we scrutinized the effect of colony geometry on final

pattern, and found out that as expected, even an incremental change

in geometry can have a significant impact on the pattern.

Experimental results are required to validate our observations.

Conflict of Interest: none declared.
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