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Abstract

Motivation: Identifying and developing novel therapeutic effects for existing drugs contributes to

reduction of drug development costs. Most of the previous methods focus on integration of the het-

erogeneous data of drugs and diseases from multiple sources for predicting the candidate drug–

disease associations. However, they fail to take the prior knowledge of drugs and diseases and

their sparse characteristic into account. It is essential to develop a method that exploits the more

useful information to predict the reliable candidate associations.

Results: We present a method based on non-negative matrix factorization, DisDrugPred, to predict

the drug-related candidate disease indications. A new type of drug similarity is firstly calculated

based on their associated diseases. DisDrugPred completely integrates two types of disease simi-

larities, the associations between drugs and diseases, and the various similarities between drugs

from different levels including the chemical structures of drugs, the target proteins of drugs, the

diseases associated with drugs and the side effects of drugs. The prior knowledge of drugs and dis-

eases and the sparse characteristic of drug–disease associations provide a deep biological perspec-

tive for capturing the relationships between drugs and diseases. Simultaneously, the possibility

that a drug is associated with a disease is also dependant on their projections in the low-dimension

feature space. Therefore, DisDrugPred deeply integrates the diverse prior knowledge, the sparse

characteristic of associations and the projections of drugs and diseases. DisDrugPred achieves

superior prediction performance than several state-of-the-art methods for drug–disease

association prediction. During the validation process, DisDrugPred also can retrieve more actual

drug–disease associations in the top part of prediction result which often attracts more attention

from the biologists. Moreover, case studies on five drugs further confirm DisDrugPred’s ability to

discover potential candidate disease indications for drugs.

Availability and implementation: The fourth type of drug similarity and the predicted candidates

for all the drugs are available at https://github.com/pingxuan-hlju/DisDrugPred.
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1 Introduction

Developing a new drug is a lengthy, complex and expensive process

which generally takes 10–15 years and 0.8–1.5 billon dollars (Dickson

and Gagnon, 2004; Pushpakom et al., 2018; Tamimi and Ellis, 2009).

Drug repositioning is to identify novel therapeutic effects for the drugs

that have been approved by the regulatory agencies (Lotfi Shahreza

et al., 2018; Padhy and Gupta, 2011). The approved drugs have

known and well-characterized bioavailability, safety and pharmacol-

ogy which can significantly accelerate drug development. Compared

to developing a drug de novo, drug repositioning may reduce the drug

development period to 6.5 years and the cost for repositioning a drug

is $300 million (Nosengo, 2016; Pritchard et al., 2017).

Computational prediction of novel therapeutic indications for

approved drugs may screen candidate drug–disease associations for

further experimental validation (Chen et al., 2016; Hurle et al.,

2013; Li et al., 2015). The previous works can be roughly grouped

into two categories. Since the drugs execute their functions by tar-

geting the related genes (Bleakley and Yamanishi, 2009; Fakhraei

et al., 2014; Yamanishi et al., 2008), the drugs and diseases that are

associated with each other are usually related to some common

genes. Furthermore, the more common genes they are related to, the

more likely that they are associated with each other. Thus, several

methods of the first category are proposed to infer the association

propensity of a drug and a disease based on their related genes or

gene expressions (Sirota et al., 2011; Wang et al., 2014a). Similarly,

the association propensity can also be estimated according to the

protein complexes shared by the drug and disease (Yu et al., 2015)

and their common perturbed genes (Peyvandipour et al., 2018).

However, these methods fail to be applied to the drugs and diseases

without common interacted genes or proteins.

The second category takes advantage of the various data that

includes the similarities of drugs, diseases and targets, as well as the

interactions and associations between drugs, targets and diseases, for

drug repositioning. The similarities of drugs and diseases are integrated

by a kernel function to predict drug–disease associations (Wang et al.,

2013). Several methods infer the candidate drug indications by infor-

mation flow or random walks on a heterogeneous network composed

of drugs, targets and diseases (Liu et al., 2016; Luo et al., 2016, 2018;

Wang et al., 2014b). A couple of methods exploit the data of drugs

and diseases and predict novel drug uses by a logistical regression

model, a statistical model, sparse subspace learning or similarity con-

strained matrix factorization (Gottlieb et al., 2011; Iwata et al., 2015;

Liang et al., 2017; Zhang et al., 2018a). In addition, recent researches

indicated that besides proteins, the microRNAs and lncRNAs may also

be used as the targets of drugs (Chen et al., 2015, 2018a; Qu et al.,

2018). Responses are also one kind of important attributes of drugs

(Liu et al., 2018; Zhang et al., 2018b). Therefore, microRNAs,

lncRNAs and responses related to drugs, are potentially additional in-

formation for drug–disease association prediction. However, there are

no enough experimentally verified microRNAs, lncRNAs and

responses so far for accurately predicting drug-related diseases.

Overall, integrating the heterogeneous data from multiple sources is es-

sential for exploring the drug–disease associations. However, these pre-

vious methods ignore the prior knowledge of drugs and diseases and

the biological characteristic of drug–disease associations.

In this article, we present DisDrugPred, a novel method for pre-

dicting the candidate drug–disease associations. We first calculate a

new type of drug similarity based on the diseases that are associated

with the drugs. DisDrugPred then completely exploits the similarity

and association, as well as interaction data about drugs, diseases

and target proteins of drugs. DisDrugPred deeply integrates not only

the diverse prior knowledge of drugs and diseases but also the pro-

jections of drugs and diseases in low-dimensional feature space.

Integrating the prior knowledge about the case in which two drugs

(diseases) will be more similar can capture the relationships between

the drug–disease associations and the similarities of drugs (diseases)

from the biological perspectives. Projecting the drugs and diseases

into a common and low-dimensional feature space contributes to

the measurement of the distances between them. These distances be-

tween drugs and diseases are also closely related to their association

possibilities. Hence a unified model is constructed and an iterative

optimization algorithm is developed for solving the model to obtain

the association possibilities of drugs and diseases. The experimental

results based on cross validation show that DisDrugPred significant-

ly outperforms than several state-of-the-art prediction methods.

In particular, when focusing on the top part of prediction result,

DisDrugPred successfully retrieves more actual drug–disease associ-

ations. Case studies on five drugs further confirm that DisDrugPred

is able to discover the potential disease indications of drugs.

2 Materials and methods

Our goal is to predict the potential therapeutic indications, i.e. the

candidate diseases, for a given drug of interest. We first calculate a

new type of similarity between drugs to exploit the information of

their associated diseases. A novel prediction model based on non-

negative matrix factorization (Lee and Seung, 2001) is proposed by

integrating the multisource data about drugs and diseases. The drug–

disease association scores are able to be obtained by solving the model

with an iterative algorithm. A greater association score of drug ri and

disease dj means that ri is more likely to be associated with dj.

2.1 Datasets for drug indication prediction
The associations between drugs and diseases, the chemical substruc-

ture profiles of drugs, the domain profiles of target proteins of drugs,

the target annotation profiles of drugs and the disease semantic simi-

larities are obtained from the previous work on prediction of drug–

disease associations (Liang et al., 2017). The 3051 drug-disease asso-

ciations are originally extracted from the Unified Medical Language

System (Bodenreider, 2004), and it contains the treatment relation-

ships between 763 drugs and 681 diseases. The chemical substructure

profile of drugs can be constructed by using the chemical fingerprints

which are extracted from the database, PubChem (Kim et al., 2015).

The domains of drug-related proteins and the gene ontology annota-

tions of these proteins are respectively obtained from the databases,

InterPro (Mitchell et al., 2015) and UniProt (Consortium, 2018). We

extract the side effect indications of drugs from the Database SIDER

(Kuhn et al., 2016), and 571 ones among 763 drugs have their side ef-

fect indications. The disease similarities that incorporated the disease

ontology (DO) and the disease-related genes are extracted from the

DincRNA database (Cheng et al., 2018), and 386 ones among 681

diseases have this kind of disease similarity. The disease names come

from the US National Library of Medicine (MeSH, http://www.ncbi.

nlm.nih.gov/mesh).

2.2 Calculation and representation of multisource data
2.2.1 Five types of drug similarities

As two drugs, such as ra and rb, with more common chemical sub-

structures are usually more similar, the previous work LRSSL (Liang

et al., 2017) calculates the cosine similarity on their chemical sub-

structure vectors as the first type of similarity of ra and rb (Fig. 1a).

Moreover, the drugs with more common domains of target proteins
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or interacted with more target proteins with similar functions often

have relatively higher similarity (Ding et al., 2013; Perlman et al.,

2011). Hence LRSSL also calculated the second and third types of

drug similarities based on cosine similarity measure.

Since the drugs associated with similar diseases are also more

similar, we additionally calculated the fourth type of similarity.

Calculating the drug similarities based on the diseases associated

with the drugs is part of the novelty of our work. Inspired by the

miRNA similarity measure (Wang et al., 2010), we firstly obtain the

disease sets related to drugs ra and rb, and denote them as DTa ¼
fd1; d4g and DTb ¼ fd2; d4;d5g (Fig. 1a). The similarity between

DTa and DTb is then calculated as the similarity of ra and rb which

is denoted as RSðra; rbÞ. RSðra; rbÞ is defined as,

RSðra; rbÞ ¼

Pm
i¼1

max
1� j� n

ðDSðdai; dbjÞÞ þ
Pn
j¼1

max
1� i�m

ðDSðdbj;daiÞÞ

mþ n
; (1)

where DSðdai; dbjÞ is the semantic similarity of diseases dai and dbj

which belong to DTa and DTb, respectively. m and n are the num-

bers of diseases included by DTa and DTb. Matrix R4 2 R
Nr�Nr is

used to represent this type of drug similarity. R represents a set of

real numbers and Nr is the number of drugs. RNr�Nr is a real coord-

inate space with Nr �Nr dimensions.

The disease semantic similarities are calculated by using the

Wang’s method (Wang et al., 2010). The method constructs a directed

acyclic graph (DAG) for a disease that contains all of the semantic

terms related to the disease, such as the DAG of Breast Neoplasms in

Figure 1(b). The similarity of two diseases is calculated based on their

DAGs. The more their DAGs have common terms, the more similar

two diseases are. The values of disease semantic similarity range be-

tween 0 and 1. Note that as only the disease semantic similarities cover

all the diseases related to our interested drugs, the fourth type of drug

similarity is just calculated based on these semantic similarities.

In addition, drugs sharing more similar side effects tend to interact

with common target proteins and further have more similar functions

(a)

(b)

Fig. 1. Representation of the data about drugs and diseases from the multiple sources. (a) Calculate and represent five types of drug similarities according to their

features from different views. (b) Calculate two types of similarities between diseases and denote them with matrices. (c) Construct the drug–disease association

matrix A according to the known associations between drugs and diseases
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(Gottlieb et al., 2012; Sridhar et al., 2016; Zitnik et al., 2018). Thus, the

fifth type of drug similarity is measured by the cosine similarity based on

the side effects related to the drugs. All of the five types of drug similar-

ities are represented by the matrices R1, R2, R3, R4 and R5 2 R
Nr�Nr ,

where ðRtÞijð1 � t � mrÞ is the tth type of similarity of drugs ri and rj,

and mr is the number of the drug similarity types.

2.2.2 Representation of disease similarities

First, the semantic similarity of two diseases quantifies how similar

the disease terms related to them are. Two diseases are generally

more similar when they have more common terms. Wang et al. have

calculated the disease semantic similarities (Wang et al., 2010), and

these similarities are widely used by the previous work on drug–dis-

ease association prediction (Liang et al., 2017; Zhang et al., 2018a).

Our method also exploits the disease similarities whose values range

between 0 and 1. Second, the DO has been developed as a formal

ontology for human disease, and it aims to provide an etiological-

based disease classification (Schriml et al., 2018). Simultaneously,

the functional similarity of two diseases may be measured by their

related genes. Cheng et al. integrated the DO and disease-related

genes to obtain another type of disease similarity (Cheng et al.,

2014). In our study, two types of disease similarities are denoted as

the matrices D1 and D2 2 R
Nd�Nd , where ðDsÞijð1 � s � mdÞ is the

sth type of similarity of diseases di and dj, Nd is the numbers of dis-

eases and md is the number of the disease similarity types (Fig. 1b).

2.2.3 Representation of the drug–disease associations

As shown in Figure 1(c), the drug–disease bipartite graph is formed

by the known associations between drugs and diseases. According to

the graph, matrix A ¼ ðAijÞ 2 R
Nd�Nr is constructed to represent the

association case between Nd diseases and Nr drugs, where Aij is 1 if

disease di was observed to be associated with drug rj or 0 otherwise.

2.3 Drug–disease association prediction model
2.3.1 Modeling the drug–disease association relationships

Let P ¼ ðPijÞ 2 R
Nd�Nr be the association score matrix, where Pij � 0

is a score measuring how probably disease di is associated with drug rj.

The observed drug–disease associations and the unobserved ones are

represented by 1s and 0s, respectively. Since the non-zero elements of A

are very sparse, the optimization item based on matrix factorization is

often established based on the observed associations (Chen et al.,

2018b; Natarajan and Dhillon, 2014; Zhao et al., 2018). Suppose X be

the set of observed drug–disease associations, and Y ¼ ðYijÞ 2 R
Nd�Nr

be the indicator matrix, where Yij is 1 if ðdi; rjÞ 2 X or 0 otherwise.

Obviously, Y is equal to A, and only the known drug–disease associa-

tions would contribute to the error term being minimized by using Y.

The estimated association cases between drugs and diseases in P should

be as consistent with the observed cases in A as possible. As a result,

we construct an optimization term as follows,

min
P�0
kA� ðP� AÞk2

F; (2)

where k � k2
F is the Frobenius norm of a matrix and � is the

Hadamard product.

2.3.2 Modeling the projections of diseases and drugs

When the drugs and diseases are projected the common k-dimension

feature space, it is more possible that there is a potential association

between a drug and a disease with similar low-dimensional features.

Let Ws 2 R
Nd�kð1 � s � mdÞ be the projection matrix of the sth

type of disease similarity, and Ht 2 R
Nr�kð1 � t � mrÞ is the

projection matrix corresponding to the tth type of drug similarity.

As the close degrees between the k-dimension features of drugs and

diseases DsWsðRtHtÞTð1 � s � md;1 � t � mrÞ offer a guidance

for estimation of the drug–disease association scores, we add a new

optimization term to the objective function,

min
P;Ws ;Ht�0

k A� ðP� AÞ k2
F þa1

Xmd

s¼1

Xmr

t¼1

k P�DsWsðRtHtÞT k2
F; (3)

where a1 is a parameter for making a tradeoff between the first opti-

mal term and the second one.

2.3.3 Modeling the prior knowledge of disease similarities

It is well known that the more two diseases are associated similar

drugs, the more similar they are. ðDsÞij in the disease similarity matrix

Ds is the sth type of actual similarity between diseases di and dj. The

ith row of matrix P, denoted as Pi, contains the possibilities that dis-

ease di is associated with the various drugs. In the transpose of P, i.e.

PT, its jth column ðPTÞj contains the association possibilities between

disease dj and all the drugs. The expected similarities between the dis-

eases, PPT, should be as close to the sth type of actual disease similar-

ity in Ds as possible, which gives rise to the following function,

min
P;Ws ;Ht�0

k A� ðP� AÞ k2
F þa1

Xmd

s¼1

Xmr

t¼1

k P�DsWsðRtHtÞT k2
F

þa2

Xmd

s¼1

k Ds � PPT k2
F;

(4)

where a2 is used to control the contribution of the third term.

2.3.4 Modeling the prior knowledge of drug similarities

As mentioned before, the five types of drug similarities, i.e. R1, R2,

R3, R4 and R5, reflect the similarities between the drugs from the

different perspectives. The prior knowledge about the drug similar-

ities is when two drugs are associated with more similar diseases,

they usually have a higher similarity. In the drug–disease association

score matrix P, the ith row of the transpose of P, ðPTÞi records the

association possibilities between drug ri and the various diseases.

The jth column of P, Pj, is the possibility column vector of drug rj to

be associated with all the diseases. Then ðPTÞiPj is the expected simi-

larity of ri and rj, while ðR1Þij is the actual first type of similarity of

these two drugs. The deviation between the expected drug similar-

ities and the actual ones can be introduced as the fourth term to the

optimization function,

min
P;Ws;Ht�0

kY � ðP�AÞk2F þ a1

Xmd

s¼1

Xmr

t¼1

kP�DsWsðRtHtÞTk2
F

þa2

Xmd

s¼1

kDs � PPTk2
F þ a3

Xmr

t¼1

kRt � PTPk2
F;

(5)

where a3 is used to adjust the contribution of the term about the

drug similarities.

2.3.5 Modeling smoothness prior

The smoothness prior specifies that a drug and one of its k most simi-

lar neighbors are more often associated with two groups of similar

diseases. Hence, we respectively construct mr graphs composed of

drug nodes according to mr types of drug similarities and construct a

regularization term based these graphs, i.e. graph regularization term

(Cai et al., 2011). For the tth (1 � t � mr) type of drug similarity,

the adjacency matrix of its corresponding graph is Mt 2 R
Nr�Nr . Its

element in the ith row and jth column, ðMtÞij, is defined as,
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ðMtÞij ¼
1; if the drug rj is one of the k most similar neighbors of the drug ri

0; otherwise

(

(6)

Since a drug and its k similar neighbors are more likely to associ-

ate with more similar diseases, the following regularization term for

smoothness can be constructed with the matrices Mt,

1

2

Xmr

t¼1

XNr

i;j¼1

kpi � pjk
2ðMtÞij

¼
Xmr

t¼1

ðTrðPUtP
TÞ � TrðPMtP

TÞÞ

¼
Xmr

t¼1

TrðPLtP
TÞ;

(7)

where pi and pj denote the ith and jth column vectors of matrix P re-

spectively, and they reflect the cases that the drugs ri and rj are po-

tentially associated with all the diseases. Ut 2 R
Nr�Nr is a diagonal

matrix whose elements ðUtÞii ¼
PNr

j¼1 ðMtÞij, and Lt ¼ Ut–Mt is the

Laplacian matrix of the tth graph. The smoothness term should also

be minimized and we have the following function,

min
P;Ws ;Ht�0

kA� ðP� AÞk2F þ a1

Xmd

s¼1

Xmr

t¼1

kP�DsWsðRtHtÞTk2
F

þa2

Xmd

s¼1

kDs � PPTk2
F þ a3

Xmr

t¼1

kRt � PTPk2
F

þa4

Xmr

t¼1

TrðPTLtPÞ;

(8)

where a4 regulates the contribution of the smoothness term.

2.3.6 Modeling the biological characteristic of associations

Only a limited number of diseases are associated with a specific drug,

so each column of matrix P that records the association scores between

the drug and all the diseases should be sparse. The l1-regularization is

imposed on the columns of P for learning the sparse associations. After

adding the sparse penalty term, we get the following function

min
P;Ws ;Ht�0

kA� ðP� AÞk2F þ a1

Xmd

s¼1

Xmr

t¼1

kP�DsWsðRtHtÞTk2
F

þa2

Xmd

s¼1

kDs � PPTk2
F þ a3

Xmr

t¼1

kRt � PTPk2
F

þa4

Xmr

t¼1

TrðPLtP
TÞ þ a5

XNr

k¼1

kPkk2
1;

(9)

where Pk is the kth column of P and Nr is the number of drugs, and

a5 is a parameter that controls the contribution of penalty term.

2.3.7 Introducing regularization term for preventing overfitting

To prevent the overfitting in our prediction model, we add the l2-regular-

ization on the projection matrices, Ws and Ht ð1 � s � md;

1 � t � mrÞ. We then get the final objective function LðP;Ws;HtÞ

minP;Ws ;Ht�0kA� ðP� AÞk2F þ a1

Xmd

s¼1

Xmr

t¼1

kP�DsWsðRtHtÞTk2
F

þa2

Xmd

s¼1

kDs � PPTk2
F þ a3

Xmr

t¼1

kRt � PTPk2
F

þa4

Xmr

t¼1

TrðPLtP
TÞ þ a5

XNr

k¼1

kPkk2
1

þa6ð
Xmd

s¼1

kWsk2
F þ k

Xmr

t¼1

Htk2
FÞ;

(10)
where a6 is a regulation parameter.

2.4 Optimization
As the objective function (10) with the variables P, Ws and Ht is not

convex, it is impractical to get its global minimum. We present an

algorithm to find its local minimum by separating the optimization

problem into several subproblems and then optimizing them

iteratively.

P-subproblem: When updating P with Ws and Ht ð1 � s � md;

1 � t � mrÞ fixed, the subproblem for solving P is as follows,

min
P�0

LðPÞ ¼ kA� ðP� AÞk2F þ a1

Xmd

s¼1

Xmr

t¼1

kP�DsWsðRtHtÞTk2
F

þa2

Xmd

s¼1

kDs � PPTk2
F þ a3

Xmr

t¼1

kRt � PTPk2
F

þa4

Xmr

t¼1

TrðPLtP
TÞ þ a5

XNr

k¼1

kPkk2
1:

(11)

After the Frobenius norms of matrices have been transformed to

their trace norms (Srebro and Shraibman, 2005), L(P) is able to be

rewritten as:

LðPÞ ¼ TrðA� ðPPT�PAT�APTþAATÞÞ

þa1

X
1� s�md

X
1� t�mr

TrðPPT � PRtHtW
T
s DT

s �DsWsH
T
t RT

t PT

þDsWsH
T
t RT

t RtHtW
T
s DT

s Þ

þa2

X
1� s�md

TrðDsD
T
s �DsPPT � PPTDT

s þ PPTPPTÞ

þa3

X
1� t�mr

TrðRtR
T
t � RtP

TP� PTPRT
t þ PTPPTPÞ

þa4

X
1� t�mr

TrðPLtP
TÞ

þa5ke1�Nd
Pk2

F;

(12)

where e1�Nd
is the 1�Nd vector where all elements are 1. By setting

the derivative of L(P) with respect to P to 0, we have

A� ð2P� 2AÞ þ a1

X
1� s�md

X
1� t�mr

ð2P� 2DsWsH
T
t RT

t Þ

þa2

X
1� s�md

ð�4DsPþ 4PPTPÞ þ a3

X
1� t�mr

ð�4PRt þ 4PPTPÞ

þa4

X
1� t�mr

2PðUt �MtÞ
� �

þ a5ð2eT
1�Nd

e1�Nd
PÞ ¼ 0:

(13)

By multiplying both sides of Equation (13) by Pij, we get the fol-

lowing equation

ðA� ð2P� 2AÞ þ a1

X
1� s�md

X
1� t�mr

ð2P� 2DsWsH
T
t RT

t Þ

þa2

X
1� s�md

ð�4DsPþ 4PPTPÞ þ a3

X
1� t�mr

ð�4PRt þ 4PPTPÞ

þa4

X
1� t�mr

2PðUt �MtÞ
� �

þ a5ð2eT
1�Nd

e1�Nd
PÞÞijPij ¼ 0:

(14)

According to the coordinate gradient descent algorithm in Tan

and Févotte (2009), Pij can be updated by multiplying it with the
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ratio of the negative terms to the positive terms in the left side of

Equation (14),

Pnew
ij  Pij �

ð2A� Aþ 2a1

X
1� s�md

X
1� t�mr

DsWsH
T
t RT

t

þ 4a2

X
1� s�md

DsPþ 4a3

X
1� t�mr

PRt þ 2a4

X
1� t�mr

PMtÞij

ð2A� Pþ 2mdmra1Pþ 4mda2PPTPþ 4mra3PPTP

þ 2a4

X
1� t�mr

PUt þ 2a5eT
1�Nd

e1�Nd
PÞij

:

(15)

Ws-subproblem: When P and Ht are fixed, the subproblem for

solving Ws ð1 � s � mdÞ is:

min
Ws�0

LðWsÞ ¼ a1

X
1� t�mr

kP�DsWsðRtHtÞTk2
F þ a6kWsk2

F: (16)

We transform the Frobenius norms of matrices in LðWsÞ to their

trace norms and rewritten LðWsÞ as:

LðWsÞ ¼ a
1

X
1� t�mr

TrðPPT � PRtHtW
T
s DT

s �DsWsH
T
t RT

t PT

þDsWsH
T
t RT

t RtHtW
T
s DT

s Þ þ a6TrðWsW
T
s Þ:

(17)

By setting the derivative of LðWsÞ with respect to Ws to 0, we get

a1

X
1� t�mr

ð�2DT
s PRtHt þ 2DT

s DsWsH
T
t RT

t RtHtÞ þ 2a6Ws ¼ 0:

(18)

After both sides of (18) are multiplied by ðWsÞij, we obtain the

equation as follows,

a1

P
1� t�mr

ð�2DT
s PRtHt þ 2DT

s DsWsH
T
t RT

t RtHtÞ þ 2a6Ws

� �
ij
ðWsÞij

¼ 0:

(19)

The equation leads to the following Ws’s updating rule by apply-

ing the coordinate gradient descent algorithm (Tan and Févotte,

2009),

ðWsÞnew
ij  ðWsÞij �

2a1

X
1� t�mr

DT
s PRtHt

� �
ij

2a1

X
1� t�mr

DT
s DsWsHT

t RT
t RtHt þ 2a6Ws

� �
ij

:

(20)

Ht-subproblem: When updating Ht with P and Ws fixed, we may

solve the subproblem of Ht ð1 � t � mrÞ,

min
Ht�0

LðHtÞ ¼ a1

X
1� s�md

kP�DsWsðRtHtÞTk2
F þ a6kHtk2

F: (21)

Similar to the process of solving the subproblems of P and Ws,

LðHtÞ is transformed firstly according to the characteristic of matrix

traces. It is then taken a derivative with respect to Ht. Finally, the

gradient descent algorithm (Tan and Févotte, 2009) is applied to get

Ht’s updating rule,

ðHtÞnew
ij  ðHtÞij �

2a1

X
1� s�md

RT
t PTDsWs

� �
ij

2a1

X
1� s�md

RT
t RtHtWT

s DT
s DsWs þ 2a6Ht

� �
ij

:

(22)

The convergence curve of the objective function LðP;Ws;HtÞ,
confirm that the function can converge to its local minima (Fig. 2).

LðP;Ws;HtÞ is solved by iteratively using the updating rules of P,

Ws and Ht. The iterative process is over when the absolute difference

of LðP;Ws;HtÞ at two adjacent moments is less than a threshold

(e ¼ 10�6) or the maximum number of iterations, 100, is reached.

Finally, Pij is regarded as the estimated association score between

disease di and drug rj (Fig. 3).

3 Experimental evaluations and discussions

3.1 Evaluation metrics
We perform 5-fold cross-validation for evaluating the performance

of a method in predicting drug–disease associations. All known

drug–disease associations are randomly divided into five equal sub-

sets, four of which are used for training a prediction model, while

the remaining subset is used for evaluation. The associations in the

remaining subset are added into the testing set and regarded as posi-

tive samples. The testing set also contains all the unobserved drug–

disease associations which are regarded as negative samples. In the

ranking list of associations, the higher the positive samples are

ranked, the better the prediction performance is. Note that associ-

ation dataset is separated to 5-fold for cross-validation, the fourth

type of drug similarity is recomputed by only using the drug–disease

associations used for training in each cross validation test.

The Receiver Operating Characteristic (ROC, Hajian-Tilaki,

2013) curve can be drawn with the true-positive rates (TPRs) and

the false-positive rates (FPRs) at different ranking cutoffs. TPR is

the proportion of positive samples identified correctly among the

total positive samples, while FPR is the ratio of misidentified nega-

tive samples accounting for all the negative samples. TPR and FPR

are defined as follows,

TPR ¼ TP

TPþ FN
; FPR ¼ FP

TNþ FP
; (23)

where TP and TN are the numbers of correctly identified positive and

negative samples, and FN and FP are the numbers of positive and nega-

tive samples that are misidentified. The area under the ROC curve

(AUC) is calculated to quantify the overall prediction performance.

There is serious imbalance between the known drug–disease

associations (positive samples) and the unobserved ones (negative

Fig. 2. Convergence of LðP ;Ws ;Ht Þ
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samples). In such case, the precision–recall (PR) curve is more in-

formative than the ROC curve (Saito and Rehmsmeier, 2015).

Precision and recall are defined as,

Precision ¼ TP

TPþ FP
; recall ¼ TP

TPþ FN
: (24)

Precision is the proportion of the correctly identified positive samples

among the retrieved samples, and recall is the same as TPR. We also

evaluate the performance of association prediction by using PR curve

and the area under PR curve (AUPR). In terms of 5-fold cross-validation,

the final performance is obtained by using averaging CV. Averaging CV

means that we obtain a separate performance (AUC or AUPR) for each

of the 5-fold when used as a test set, and the five performances are aver-

aged to give the final performance (Pahikkala et al., 2015).

Considering the candidates in the top part of ranking list are usu-

ally selected by the biologists to further validate with wet-lab experi-

ments, it is better to make the top part contain more positive

samples. We thus calculate the recall rate within top part, which is

the proportion of positive samples identified correctly in the top k

list among the total positive ones, as another evaluation metric.

3.2 Comparison with other methods
To evaluate the performance of the presented method, DisDrugPred,

we compare it with several state-of-the-art methods for drug–disease

association prediction: TL_HGBI (Wang et al., 2014b), MBiRW (Luo

et al., 2016), LRSSL (Liang et al., 2017) and SCMFDD (Zhang et al.,

2018a). We describe these methods in more detail below:

TL_HGBI (Wang et al., 2014b): TL_HGBI constructed the disease–

drug–target network and incorporated the drug similarities based on their

chemical structures, the target similarities, the disease phenotypic similar-

ities, the drug–target interactions and the disease–drug associations. It

inferred the new disease–drug associations based on information flow in

the three-layer network. TL_HGBI’s prediction model is listed as follows,

Wkþ1
dr ¼ aWk

dr � ðWrr �Wk
rt �Wtt �WkT

rr Þ þ ð1� aÞW0
dr; (25)

Wkþ1
rt ¼ aðWkT

dr �Wdd �Wk
dr �WrrÞ �Wk

rt þ ð1� aÞW0
rt; (26)

where Wrr, Wtt and Wdd are the weight matrices on the drug–drug

links, the target–target links and the disease–disease links,

respectively. Wk
dr and Wk

rt are the weights of the disease–drug links

and the drug–target links at the kth iteration. When the iterative in-

formation propagation is converged, Wdr contains the association

possibilities between diseases and drugs.

MBiRW (Luo et al., 2016): MBiRW constructed a drug–disease

network by exploiting the drug similarities based on their chemical

substructures, the disease semantic similarities and the drug–disease

associations. The association propensities between drugs and dis-

eases are obtained by random walks on the drug network and the

disease network, respectively. The prediction model of MBiRW is

defined as follows,

Rr ¼ a �MR � RDt�1 þ ð1� aÞ � A; (27)

Rd ¼ a � RDt�1 �MDþ ð1� aÞ � A; (28)

where MR and MD are the transition matrices corresponding to the

drug and disease networks, A is the drug–disease association matrix

and RDt�1 contains the drug–disease association scores at time t–1.

MBiRW combined the association propensities in Rr and Rd to get

the association scores at time t,

RDt ¼ ðrflag � Rrþ dflag � RdÞ=ðrflagþ dflagÞ; (29)

where rflag and dflag are used to balance the contributions of the

drug and disease networks.

LRSSL (Liang et al., 2017): The method uses more data about

the drugs in training than TL_HGBI, MBiRW and SCMFDD. It

regards the chemical substructure profiles of the drugs, the target

domain profiles and the target annotation profiles as the drug node

attributes, respectively. It also exploits the known drug–disease

associations and the local topological structure of graph composed

of all the drugs. Its objective function is defined as follows,

min
F;Gp

kF � Yk2
F þ TrðFTLFÞ þ l

Xm
p¼1

kXT
p Gp � Fk2

F þ k
Xm
p¼1

Xc

j¼1

kGpð:; jÞk21;

(30)

where Xp represents the pth type of drug node attribute, Y is the

drug–disease association matrix and L is the Laplacian matrix of

drug graph. Gp is used to project each type of drug node attribute to

Fig. 3. Iterative algorithm for estimation of the disease–drug association scores
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a space whose dimension is equal to the number of diseases, which

is also helpful for solving the drug–disease association scores in F.

SCMFDD (Zhang et al., 2018a): SCMFDD focuses on the drug–

disease associations, the disease semantic similarities and the drug

similarities based on their substructures. It factorizes the drug–dis-

ease association relationships into the low-rank drug and disease

feature vectors xi and yj as follows,

min
X;Y

L ¼ 1

2

X
ij

ðaij � xiy
T
j Þ

2 þ l
2

X
i

kxik2

þl
2

X
j

kyjk2 þ k
2

X
ij

kxi � xjk2wd
ij

þ k
2

X
ij

kyi � yjk2ws
ij:

(31)

Furthermore, the drug and disease similarities wd
ij and ws

ij are intro-

duced as constraints for learning the drug and disease features, re-

spectively. xiy
T
j is the estimated association score between the ith

disease and the jth drug.

DisDrugPred’s hyperparameters, a1–a6, should be tuned and

their values are selected from {0.05, 0.1, 0.2, 0.5, 1, 5, 10, 20, 50}.

DisDrugPred yields the best performance when a1 ¼ 10, a2 ¼ 10, a3

¼ 0.1, a4 ¼ 10, a5 ¼ 10 and a6 ¼ 10, and the optimal set of parame-

ters was obtained by using grid search. To make fair comparisons,

the hyperparameters of the other methods are set to their optimal

values suggested by their literatures (i.e. a ¼ 0.4 and b ¼ 0.3 for

TL_HGBI, a ¼ 0.3, l ¼ 2 and r ¼ 2 for MBiRW, l ¼ 0.01, k ¼ 0.01,

c ¼ 2 and k ¼ 10 for LRSSL, k ¼ 45%, l ¼ 1 and k ¼ 4 for

SCMFDD). In addition, the sensitivity coefficients (SC, van Riel,

2006) of DisDrugPred’s six parameters are evaluated by changing

one of parameters and fixing the remaining ones. The SC values of

a1–a6 are 5.23e-04, 0.0148, 0.0121, 0.0032, 0.0191 and 7.38e-05,

respectively. Hence DisDrugPred is not sensitive to the perturbation

of a1, a4 and a6, while a2, a3 and a5 have relatively greater impacts

on DisDrugPred.

As AUC and AUPR are the better metrics in comparing learning

algorithms with probability estimations (Ling et al., 2003; Saito and

Rehmsmeier, 2015), we use them to evaluate DisDrugPred and the

other methods. The ROC curves and their corresponding AUCs

obtained by different approaches are given in Figure 4(a).

DisDrugPred_with_R4 and LRSSL_with_R4 are the instances of

DisDrugPred and LRSSL which exploit four types of drug similar-

ities, i.e. R1, R2, R3 and R4. DisDrugPred_with_R4 achieves the

highest average AUC over all of the 763 drugs (AUC ¼ 0.922). It

outperforms TL_HGBI by 19.5%, MBiRW by 7.1%, LRSSL with

R4 by 7% and SCMFDD by 28.4%. As shown in Figure 4(b),

DisDrugPred_with_R4 also produces the highest average AUPR on

763 drugs (AUPR ¼ 0.143). Its’ AUPR is 11.3%, 9.9%, 3.6% and

13.7% better than TL_HGBI, MBiRW, LRSSL_with_R4 and

SCMFDD, respectively. LRSSL_with_R4 yields the second best per-

formance. Its’ AUC is slightly better than MBiRW while its’ AUPR

is 6.3% higher than MBiRW. SCMFDD did not perform as well as

the other methods as it is very sensitive to the disease and drug simi-

larities. DrugDisPred_with_R4 and LRSSL_with_R4 utilize multiple

types of drug similarities, while the other methods focus on only one

type of drug similarity. These two methods show the better perform-

ances over the other methods, which indicates that integrating more

types of drug similarities is essential for improving the prediction

accuracy.

In addition, the instances of DisDrugPred and LRSSL are con-

structed by using R1, R2, R3, R4 and the fifth type of drug similarity

based on their side effects (R5), and they are referred to as

DisDrugPred_side_effect and LRSSL_side_effect. The former still

performs better than the latter in terms of both AUC and AUPR,

which confirms the superiority of DisDrugPred’s algorithm. Since

only 571 ones of 763 drugs have their side effects, the subsequent

analysis still concentrates on DisDrugPred_with_R4 and

LRSSL_with_R4 which cover all of 763 drugs.

For all the prediction results on 763 drugs, we perform a

Wilcoxon test to evaluate whether DisDrugPred’s performance is

significantly better than the other methods. The statistical results

(Table 1) indicate that DisDrugPred yields the significantly better

performance under the P-value threshold of 0.05 in terms of not

only AUCs but AUPRs as well.

The higher the recall rate on the top k ranked potential drug–

disease associations is, the more the real associations are identified

successfully. DisDrugPred performs better than the other methods at

various k cutoffs (Fig. 5), and ranks 70.5% in top 30, 84.5% in top

(a) (b)

Fig. 4. (a) ROC curves and (b) PR curves of drug–disease association prediction by different methods
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90 and 89.4% in top 150. Although the AUC of LRSSL is very close

to that of MBiRW, all of the recall rates of LRSSL are higher than

MBiRW. The former ranks 61.8%, 76.2% and 80.7% in top 30, 90

and 150, respectively, and the latter ranks 47%, 68.3% and 76.8%.

TL_HGBI is not as good as MBiRW, and it ranks 37%, 51.7% and

61.8% in top 30, 90 and 150. SCMFDD still did not perform as

well as the other methods and the corresponding recall rates are

12.5%, 28.4% and 40.8%.

3.3 Importance of the drug similarities, the disease

similarities and DisDrugPred’s algorithm
To validate the importance of incorporating the fourth type of drug

similarity (R4), two DisDrugPred’s instances, DisDrugPred_with_R4

and DisDrugPred_without_R4, are constructed. The former is

trained with R4, while the latter is trained without R4. At the same

time, since LRSSL is able to be extended to exploit more types of

drug similarities, we also construct two LRSSL’s instances that are

trained with R4 and without R4, LRSSL_with_R4 and

LRSSL_without_R4, respectively.

First, the instances of DisDrugPred and LRSSL with R4 perform

better than the ones without R4, respectively (Supplementary Fig. S1).

DisDrugPred_with_R4’s AUC and AUPR are 1.9% and 1.9% higher

than DisDrugPred_without_R4. LRSSL_with_R4’s AUC and AUPR

also increase by 5.1% and 1.9% compared with LRSSL_without_R4.

It shows the importance of incorporating the drug similarities R4 for

improving prediction performance.

Second, the performances of DisDrugPred’s instances are better

than LRSSL’s instances whenever their models are trained by using

R4 or not (Supplementary Fig. S1). DisDrugPred_with_R4 achieves

7% and 3.6% higher AUC and AUPR than LRSSL_with_R4.

DisDrugPred_without_R4’s AUC and AUPR also increase by 10.2%

and 3.6% compared with LRSSL_without_R4. It confirms that the

algorithm of DisDrugPred also help with the improvement of predic-

tion performance.

In addition, to evaluate the effect of exploiting multiple types of

disease similarities, an instance of DisDrugPred is constructed by

using the first and second types of disease similarities (D1 and D2),

and is referred to as DisDrugPred_with_D2. Another DisDrugPred’s

instance is trained without D2, and is named DisDrugPred_without_D2.

Since the other methods just exploit D1 and they are not available

for using both D1 and D2, we only estimate DisDrugPred’s perform-

ance. As shown in Supplementary Figure S1, DisDrugPred_with_

D2’s AUPR is a little bit higher than DisDrugPred_without_D2 and

it increases by 0.3%, while DisDrugPred_with_D2’s AUC is equal

to DisDrugPred_without_D2’s one. It indicates D2 has a slight effect

on the prediction performances.

3.4 Case studies on five drugs
To further demonstrate DisDrugPred’s ability to discover the poten-

tial drug–disease associations, case studies on five drugs, ciprofloxa-

cin, clonidine, ampicillin, etoposide and cefotaxime, are conducted.

For each of these five drugs, the candidate drug–disease associations

are prioritized by their association scores, and the top 10 candidates

are collected, 50 candidates in total (Table 2).

First, the comparative toxicogenomics database (CTD) provides

the key information about the drugs and their effects on human dis-

eases which were manually curated from the published literatures

(Davis et al., 2016). DrugBank is also a database that captures the

clinical trial information of drugs including the drug and the disease

for which the trial was conducted (Wishart et al., 2017). The

repoDB database records the approved and failed drugs and their re-

spective indications (Brown and Patel, 2017). As shown in Table 2,

29 candidates are contained by CTD and they are supported by the

direct evidences, 13 candidates are included by DrugBank and 1

Table 1. The statistical result of the paired Wilcoxon test on the AUCs of 763 drugs comparing DisDrugPred and all of four other methods

P-value between DisDrugPred and another method TL_HGBI MBiRW LRSSL SCMFDD

P-value of ROC curve 7.2981e-140 4.2955e-55 2.4715e-11 3.1511e-297

P-value of PR curve 2.1728e-41 1.6194e-15 2.5977e-10 8.9884e-229

Fig. 5. The recalls across all the tested drugs at different top k cutoffs
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candidate is recorded by repoDB. It indicates these candidate dis-

eases are indeed associated with the corresponding drugs.

Next, ClinicalTrials.gov (https://clinicaltrials.gov/) is an online

resource provided by the US National Library of Medicine, and it

includes a great many clinical trials about various drugs and the cor-

responding diseases. PubChem is an open chemistry database sup-

ported by the National Institutes of Health (https://pubchem.ncbi.

nlm.nih.gov/), and it provides information on chemical substances

which include the drugs and their biological activities (Kim et al.,

2015). There are four candidates included by ClinicalTrials.gov and

two candidates contained by PubChem, indicating these drug–

disease associations are supported by the clinical trials. In addition,

the four candidates labeled by ‘literature’ are supported by the litera-

tures, and the drugs are confirmed to have effects on the correspond-

ing diseases.

Besides the manually curated drug–disease associations, the

CTD also contains the potential associations inferred by the litera-

tures. There is 1 etoposide-related candidate disease, Urinary Tract

Infections, contained by the inferred part of CTD. Hence etoposide

is more likely to be associated with Urinary Tract Infections. In the

total 50 candidates, 2 of them are not confirmed by the observed

evidences and they are labeled with ‘unconfirmed.’ All the case stud-

ies indicate that DisDrugPred is indeed capable of discovering poten-

tial candidate drug–disease associations.

3.5 Prediction of novel drug–disease associations
After having evaluated its prediction performance by cross valid-

ation and case studies, we applied DisDrugPred to predict the novel

drug–disease associations. All of the known drug–disease associa-

tions were utilized to train DisDrugPred’s prediction model. The po-

tential candidate associations were then obtained by using the

model and listed in Supplementary Table S1. In addition, the fourth

type of drug similarity based on their associated diseases is shown in

Supplementary Table S2.

4 Conclusions

A method based on non-negative matrix factorization,

DisDrugPred, is developed for predicting the potential drug–disease

associations. On the basis of calculating the fourth type of drug simi-

larity, DisDrugPred captures the various intra-relationships of drugs

and diseases, i.e. the five types of drug similarities and two types of

disease similarities. Meanwhile, it also captures the inter-

relationships among drugs and diseases, i.e. the known drug–disease

associations. Moreover, the various prior knowledge and the projec-

tions of drugs and diseases are deeply integrated to enhance reason-

ing on the drug–disease associations. In addition, the experimental

results confirm DisDrugPred’s algorithm also contributes to its’

Table 2. The top 10 candidates related to the drugs ciprofloxacin, clonidine, ampicillin, etoposide and cefotaxime, respectively

Drug ID Rank Disease name Description Rank Disease name Description

Ciprofloxacin 1 Gram-negative bacterial

infections

CTD 6 Pneumonia, bacterial CTD

2 Streptococcal infections DrugBank 7 Soft tissue infections CTD

3 Bacterial infections CTD 8 Serratia infections PubChem

4 Enterobacteriaceae infections CTD 9 Chlamydia infections CTD

5 Salmonella infections CTD 10 Helicobacter infections CTD

Clonidine 1 Pain CTD 6 Sleep disorders ClinicalTrials

2 Neurologic manifestations Unconfirmed 7 Nausea CTD

3 Depressive disorder CTD 8 Edema CTD

4 Vomiting CTD 9 Facial pain Literature (Yoon et al., 2015)

5 Muscle cramp PubChem 10 Muscle rigidity Unconfirmed

Ampicillin 1 Streptococcal infections CTD 6 Septicemia DrugBank, repoDB

2 Proteus infections CTD 7 Gram-positive bacterial infections CTD

3 Bacterial infections CTD 8 Enterobacteriaceae infections DrugBank

4 Pneumonia, bacterial CTD, ClinicalTrials 9 Wound infection CTD

5 Gram-negative bacterial

infections

CTD 10 Staphylococcal skin infections DrugBank

Etoposide 1 Breast CTD 6 Lymphoma CTD

2 Sarcoma CTD 7 Urinary tract infections Inferred candidate by 1 literature

3 Leukemia DrugBank 8 Ovarian neoplasms Literature (Bozkaya, 2017)

4 Hodgkin disease CTD 9 Melanoma DrugBank

5 Lymphoma, Non-Hodgkin CTD 10 Head and neck neoplasms DrugBank

Cefotaxime 1 Bacterial infections CTD, ClinicalTrials 6 Gram-positive bacterial infections CTD, DrugBank

2 Enterobacteriaceae infections DrugBank 7 Helicobacter infections Literature (van der Voort et al.,

2000)

3 Gram-negative bacterial

infections

CTD, DrugBank 8 Eye infections, bacterial Literature (Kramann et al., 2001)

4 Pseudomonas infections DrugBank 9 Staphylococcal skin infections DrugBank

5 Respiratory tract infections CTD, ClinicalTrials 10 Septicemia DrugBank

Note: (1) ‘CTD’ means a drug–disease association is included by the CTD and the association is curated manually. (2) ‘ClinicalTrials’ means that a drug–

disease association has been recorded in the online database ClinicalTrials.gov. (3) ‘DrugBank’ means that the drug–disease association is contained by the

DrugBank database that captures the drug trial information. (4) ‘repoDB’ means that the drug–disease association is included by the repoDB database that records

the approved and failed drugs and their indications. (5) ‘PubChem’ means that the PubChem database has recorded the toxicological information about the drug

and disease. (6) ‘Literature’ means that there is a published literature to support the drug–disease association. (7) ‘Inferred candidate’ means that the drug–disease

association is the potential one inferred by the literatures and included by CTD. (8) ‘Unconfirmed’ means that there is no evidence to confirm the drug–disease

association.
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superior performance. An iterative algorithm is developed to obtain

the estimated drug–disease association scores, and these scores can

be used for ranking the candidate diseases for each of the drugs. In

our experiments, we find DisDrugPred consistently outperforms

than the other methods tested here in terms of not only AUCs but

also AUPRs. In particular, DisDrugPred is more useful for the biolo-

gists as its top ranking list contains more real drug–disease associa-

tions. Case studies on five drugs demonstrate DisDrugPred’s ability

in discovering the potential disease indications. DisDrugPred can

serve as a prioritization tool to generate the reliable candidates for

subsequent identification of actual drug–disease associations with

the wet-lab experiments.
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