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Abstract

Motivation: Genome repositories are growing faster than our storage capacities, challenging our

ability to store, transmit, process and analyze them. While genomes are not very compressible

individually, those repositories usually contain myriads of genomes or genome reads of the same

species, thereby creating opportunities for orders-of-magnitude compression by exploiting inter-

genome similarities. A useful compression system, however, cannot be only usable for archival,

but it must allow direct access to the sequences, ideally in transparent form so that applications do

not need to be rewritten.

Results: We present a highly compressed filesystem that specializes in storing large collections of

genomes and reads. The system obtains orders-of-magnitude compression by using Relative

Lempel-Ziv, which exploits the high similarities between genomes of the same species. The filesys-

tem transparently stores the files in compressed form, intervening the system calls of the applica-

tions without the need to modify them. A client/server variant of the system stores the compressed

files in a server, while the client’s filesystem transparently retrieves and updates the data from the

server. The data between client and server are also transferred in compressed form, which saves

an order of magnitude network time.

Availability and implementation: The Cþþ source code of our implementation is available for

download in https://github.com/vsepulve/relz_fs.

Contact: gnavarro@dcc.uchile.cl

1 Introduction

Since the first human genome was sequenced with the turn of the

millennium, the cost of whole-genome sequencing has dropped to a

few hundred dollars, becoming a routine activity. The amount of

sequenced genomes has been growing faster than Moore’s Law

(Sthephens et al., 2015), and threatens to overflow our storage

capacity.

Fortunately, those genome collections are highly repetitive, be-

cause they consist of many genomes of the same species, differing

from each other in small percentages only. It is then possible to

sharply compress them with Lempel-Ziv compression programs like

p7zip (http://p7zip.sourceforge.net). However, once the collection is

compressed, we need to decompress it completely in order to extract

a single genome, or to access a short snippet of it. Therefore, this is

an efficient long-term archival solution only. There exist other com-

pression mechanisms that exploit repetitiveness almost equally well

while supporting direct access to the compressed collection, such as

grammar compression (Kieffer and Yang, 2000) and block trees

(Belazzougui et al., 2015). None of them, however, allow for effi-

cient updates on the collection, e.g. adding, removing or modifying

genomes.

Relative Lempel-Ziv compression (RLZ) (Kuruppu et al., 2010)

is a recent technique that adapts particularly well to this scenario. In

RLZ, we choose a reference text (which can be, for example, one

genome from each involved species), and represent all the other texts
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as sequences of (long) substrings of the reference. In the case of gen-

ome collections, RLZ obtains compression ratios similar to plain

Lempel-Ziv compression, while allowing for a much more flexible

access to the data: it is possible to efficiently access the compressed

file at random positions (Cox et al., 2016; Deorowicz and

Grabowski, 2011; Ferrada et al., 2014), and even to modify a gen-

ome, or to add and remove whole genomes. There exist even index-

ing proposals to allow for fast pattern searches on the collection,

though they have not been implemented (Do et al., 2014) or do not

support updates (Belazzougui et al., 2014; Farruggia et al., 2018).

In this article we go further than designing algorithms for access-

ing and updating RLZ-compressed collections: we demonstrate that

it is feasible to build on RLZ to design a fully-functional compressed

filesystem specialized on managing genome collections. Our filesys-

tem uses RLZ to maintain a few references in plain form and all the

other genomes in compressed form. It intervenes all the typical sys-

tem calls to open, close, read, write, etc., so that applications can

transparently use the filesystem without need to modify them.

Our filesystem can also be used in client/server form. The server then

maintains a large centralized repository of genomes, potentially offering

stronger compression. When the intervened filesystem of the client needs

to open a file, the file is transferred from the server in compressed form,

saving orders of magnitude network transfer time (which is a serious

problem when storing large files remotely). The file is then stored locally

in compressed form, where it can be accessed and updated. Transfers of

new or modified files to the server also proceed in compressed form.

Overall, the compressed filesystem expands the storage capabil-

ities of the client computers by orders of magnitude, saving also

orders of magnitude in its own storage space and network transfer

time. Our experiments show reductions to 1–3% of the original

space and to around 10% of the original network transfer time.

In many cases, however, the sequencing data do not form fully-

assembled genomes, but consist of partially assembled contigs or,

more frequently, simple reads of a few hundred or thousand bases.

Our system can be adapted to store large numbers of such short

sequences. Even when a reference genome is unavailable, the system

is able to build an artificial reference from the data, which manages

to reduce the space to 12% of the original.

2 Materials and methods

2.1 Relative Lempel-Ziv compression
RLZ (Kuruppu et al., 2010) compresses one sequence S½1::n� with re-

spect to another, hopefully similar, sequence R½1::r�. It processes S

left-to-right. At each point, where S½1::i� 1� has already been proc-

essed, it looks for the longest prefix of S½i::n� that appears some-

where in R. If this longest prefix is S½i::j� 1� ¼ R½i0::j0 � 1�, then

RLZ outputs the pair ði0; j0 � i0Þ, and restarts the process from S½j::n�.
A special case occurs if S½i� does not appear in R, in which case RLZ

outputs ðS½i�; 0Þ. Alternatively, we can append all the alphabet char-

acters to R to ensure this case does not arise. We will assume the lat-

ter choice in this article for simplicity.

The output of RLZ is then a sequence of z pairs ðpt; ‘tÞ, so that

S ¼ R½p1::p1 þ ‘1 � 1� � � �R½pz::pz þ ‘t � 1�. When S and R are very

similar, S is represented as the concatenation of a small number z of

substrings of R (also called factors of R). The process of splitting S

into a set of factors of R is called the factorization of S.

2.2 Suffix arrays
An efficient way to implement RLZ compression is via a suffix array

(Manber and Myers, 1993). The suffix array of a sequence R½1::r� is

an array of integers A½1::r� containing the starting positions of the r

suffixes R½j::r�, sorted in increasing lexicographic order. That is, A is

a permutation of ½1::r� so that R½A½i�::n� < R½A½iþ 1�::n� for all

1 � i < r, in lexicographic order. It then holds that all the positions

where a given string P½1::m� occurs in R are contiguous in A, so this

range can be binary searched in time Oðm log rÞ.
The suffix array of R can be used to find the longest prefix of

S½i::n� occurring in R. We binary search A for the whole suffix

S½i::n�. If we find it in, say, R½i0::j0 � 1�, then we are done and can

emit the final pair ði0; j0 � i0Þ. If not, the binary search will give us the

position A½i� such that R½A½i�::r� < S½i::n� < R½A½iþ 1�::r�. We can

then form the new phrase with the longest prefix of R½A½i�::r� or

R½A½iþ 1�::r� that matches a prefix of S½i::n�. Figure 1 illustrates the

process.

When forming a pair of length ‘, we never compare more than

‘þ 1 symbols, and since the lengths of all the pairs add up to n, we

carry out the whole RLZ compression in time Oðn log rÞ. It is pos-

sible to carry out this compression more efficiently, for example,

using an FM-index (Ferragina and Manzini, 2005), which is also

more space-economical. However, we prefer to use a suffix array be-

cause we will then be able to use a sampled version of it, which will

be orders of magnitude smaller.

3 Implementation

3.1 Sequence compression
We compress a new sequence S with respect to a reference sequence

R using RLZ with the help of the suffix array A of R, as described in

Section 2. Note that the suffix array A is not needed for decompres-

sion; just the reference R and the pairs that represent S suffice.

However, the space of A may pose a significant overhead at com-

pression time, especially when compression is carried out on com-

puters with little available memory. For r < 232, A requires four

times the size of R. (Moreover, if we pack the symbols of R in 2 bits,

then A is 16 times larger.) To reduce the space of A, we use a

sampled version of it: we choose a sampling factor s (which is in

practice in the tens or hundreds) and preserve only the entries i such

that A½i� is a multiple of s. This reduces the storage requirements of

A by a factor of s, which as said can be one or two orders of

magnitude.

The result of the RLZ compression on a sampled suffix array A0

is still a valid compressed file, though it can be larger than the file

obtained with the full suffix array: only the factors ½i0::j0 � 1� of R

starting at multiples of s can be used to form pairs in S, and thus the

longest factor is not chosen in most cases. While sampling yields no

guarantee on the degradation that the compression ratio may under-

go, it is expected that the pairs are shortened by an amount around

s, which should imply only a small impact on compression. Figure 2

illustrates the sampled factorization.

Once the sequence of pairs is determined, the pairs are

encoded in a way that uses less space than just using plain integers.

Fig. 1. RLZ factorization using a suffix array
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We process the positions and the lengths separately with appropriate

techniques for their encoding. First we look for max pos, the highest

position of the factors from the compressed text segment, and we use

d log 2ðmax posÞe � d log 2re bits to encode each consecutive position

of each pair in binary form. Since each position uses a fixed number of

bits, they can be easily positionally accessed for decompression. It is

possible to use other techniques to encode the positions that may use

less space [Variable Byte (Williams and Zobel, 1999), Golomb/Rice

(Golomb,1966), etc.], but in our tests the gain in space was negligible

and the negative effect on decompression times was noticeable. On

the other hand, factor lengths are significantly compressed using

Golomb codes (Golomb, 1966). That is, we use a power-of-2 param-

eter M to divide each number N from the input and generate two val-

ues that are stored separately: the quotient q ¼ bN=Mc and the

remainder N mod M. The quotient q is encoded in unary (using

qþ1 bits), and the remainder is encoded in binary form using

log 2ðMÞ bits. In our case, we use M¼64. Sampled pointers to the

Golomb-compressed file enable efficient direct access to any factor.

The output of the process is then a compressed binary file that

encodes the pairs, preceded by a header with metadata with some

basic information on the file that was compressed. Figure 3 illus-

trates the whole process.

3.2 Compression by blocks
While it is possible to access random positions of the RLZ com-

pressed sequence in constant time (Cox et al., 2016; Ferrada et al.,

2014), our compressor must efficiently support not only positional

access to the files, but also updates and appends. Therefore, a more

flexible solution is needed. We (conceptually) split the original files

into blocks of fixed size blocksize, which are compressed independ-

ently [in the same style of previous work (Deorowicz and

Grabowski, 2011)].

This arrangement makes it very easy to identify the blocks

involved in positional operations like the system call read(pos,

len), which retrieves the text of length len from the file position

pos. Except for the last block, which may be smaller, all the other

blocks are of length exactly blocksize, so the blocks that need to be

decompressed range from bpos=blocksizec to bðposþ lenÞ=blocksizec.
Compressing the blocks independently limits the maximum length

of the factors obtained by the RLZ factorization, because a factor

cannot cross blocks in S. This may worsen the compression ratio of

the whole file, but the damage is limited: at least using the full suffix

array to find the factors, compressing the blocks independently does

not add more than n/blocksize factors in a file of size n.

To use the blocks for efficient access, we must know the position

of each block in the final compressed file. At the end of the encoding

process, the size in bytes of each block is stored in a header of the

binary file. After the header, the bytes of each successive compressed

block are written.

Since the different file blocks are compressed independently and

the result of the compression of one block does not affect the others,

these different compression processes can be performed in parallel.

The compression system uses a pool of compressor threads. At

the time of compressing the blocks of a file, the amount of threads

to use is determined and the threads are initialized. Then, the seg-

ments of the input file corresponding to each block are stored in a

work queue with exclusive access. The threads consume these seg-

ments in parallel, performing the compression of each block and

storing the data in local files of each thread, together with informa-

tion that will be used by the data consolidation process. When the

work queue becomes empty, we have all the text blocks compressed

in different files, along with the consolidation data. The compres-

sion process ends with the consolidation phase of the blocks and the

construction of the final file. In this phase, the metadata is prepared

and the headers are written in the file. Finally, the bytes of each

block are read in order (recorded by the proper thread in its consoli-

dation data), and they are written in the final file following the head-

er. Figure 4 shows the full compression process.

As mentioned, the block system facilitates positional reading and

writing without the need to decompress the entire file. For reading,

we decompress only the blocks that overlap the segment of the file

that must be read. For writing, we must implement the operation

write(buf, pos, len), which replaces len bytes from file pos-

ition pos with those from the buffer buf. This may eventually ex-

tend the file beyond its current length. We find the blocks that will

be modified and decompress them. We then replace their contents

from position pos, and recompress them into a temporary file. To

complete the process, the blocks of the original file are merged with

the new blocks, in binary form, into a new compressed file. Since the

compressed files are usually much smaller than their uncompressed

versions, the time to copy the blocks already compressed to consoli-

date the final file is negligible.

In the event that the data to be added to the compressed file

exceeds its original size, the process may create additional blocks. In

particular, appending new data at the file tail, in practice the most

common type of writing, is done very efficiently. Figure 5 illustrates

the writing process in our compressed files.

3.3 File formats
The RLZ compression approach, as described in Sections 3.1 and

3.2, works very well to store genomic sequences. In practice, the file

formats used to store those sequences contain additional text, such

as different kinds of metadata. Our software handles the FASTA

Fig. 2. Factorization with a sampled suffix array. Some positions (marked in

dotted line and gray) are not available in the array, so other factors are used

instead, generating a slightly worse compression

Fig. 3. Our complete compression method
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standard format, although it can easily be extended to handle other

formats as well. FASTA-formatted files include metadata in lines

starting with a special character (‘>’ or ‘;’). Not only the usual RLZ

approach is not the most appropriate to deal with metadata, but

also those lines could break a potentially long factor of the sequence.

To support metadata, we first extract those lines and process them

in a stream separate from the sequence. We also divide the metadata

text into blocks, in a similar way to the sequence, but we use

Lempel-Ziv-Markov chain algorithm (LZMA, https://www.7-zip.

org/sdk.html) to compress the blocks.

At the moment of accessing the compressed text by means of a

call such as read(pos, len) or write(buf, pos, len), we ex-

tract both the text from the sequence and from the metadata, and

use positional information stored while separating both streams to

combine them in the final decompressed blocks. Both the com-

pressed text from the metadata and the positional information ne-

cessary to combine it with the sequence are stored as a part of the

header in the final compressed file.

3.4 Reference generation
We have assumed up to now that the files to handle are fully-

assembled genomes. Our system can also handle partially-assembled

sequences, such as contigs or simple reads from a genome. In cases

where a fully-assembled genome is present and can be used as a ref-

erence, our scheme does not need any modification. We note, how-

ever, that the lengths of the factors will be limited by those of the

files to compress, and therefore we cannot expect the same compres-

sion ratios when representing, say, reads of a few hundred bases,

than when representing whole genomes.

A more challenging scenario arises when we only have a set of

short sequences (say, reads) and no reference sequence of the gen-

ome they belong to. To handle this case, we provide a simple pro-

cedure to generate an artificial reference based on the data: we

randomly extract segments of a certain length from the dataset and

concatenate them to build the reference. The metadata from the

processed files is omitted in this phase, since the reference is only

used for the compression of the sequence data. The length of the seg-

ments is a parameter of the reference generation program; in prac-

tice it should be hundred to thousand bases. The size of the

generated reference is also a parameter, and it depends on the

amount of data and the availability of resources on the machine

holding the reference.

More sophisticated techniques to form a reference exist (Liao

et al., 2016), but they are aimed at more complex types of repetitive-

ness, such as versioned document collections, with a linear or tree

versioning structure. Our case, without any versioning structure, is

simpler to handle.

3.5 Local version
Not all the files handled by the applications will consist of genomes.

Our filesystem can be configured to act on specific types of files,

while treating the others in the usual way.

We use FUSE (https://github.com/libfuse/libfuse), a popular

framework for the development of filesystems in user space, to build

our prototype. Using the FUSE library we can add our own code to

the processing of a number of system calls (stat, open, read, write,

close, etc.). We then add specific methods that detect and treat dif-

ferently the common files from the ones compressed by our method,

redirecting to the usual system calls in one case, and to our compres-

sion or decompression methods in the other.

In this scheme, a process receives the system calls that involve

files in a certain intervened path. Using the file’s extension and its

particular path, the system decides whether to process it as a regular

file (for example, by returning bytes from its contents in a read call),

or to treat it in a special way (for example, by decompressing part of

its content and returning it).

At the initial configuration time, the path that will be intervened

by this file system (its mounting point) and the references to be used

for compression are defined. The system can handle multiple refer-

ences to compress different kinds of files, each associated with a par-

ticular subdirectory. It can also generate an artificial reference from

the files in the directory, if none is given as a reference. When a file

with the right extension is stored in one of those subdirectories, the

system compresses it with the appropriate reference. When reading

such a file, the decompressor is activated and the appropriate refer-

ence is loaded (if it was not already in RAM) in order to extract the

desired portion of the file. The write calls on files with the right ex-

tension use, in a similar way, the appropriate compressor’s writing

method.

The files compressed by this technique are then seen and manipu-

lated by applications as if they were usual, uncompressed, files.

Yet, the effective sizes on disk of the files stored in the filesystem are

Fig. 5. Writing in the compressed file

Fig. 4. Compression by blocks
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much smaller than the sizes seen by applications. This arrangement

is shown in Figure 6.

3.6 Client/server version
Using the local filesystem as a basis, we also build a version of the

system based on the client/server model. In this mode, the client file-

system is installed and executed locally, but instead of storing the

files on its own disk, it communicates with a remote server that

stores the files in a centralized repository. Figure 7 displays the gen-

eral architecture.

When a client communicates with the server for the first time, it

sends its reference files, so that any further communication can pro-

ceed in compressed form. Server and client exchange whole files only.

The client intervenes the system calls as in the basic mode. When

it needs to open a file, the file is transferred from the server in com-

pressed form. Then the client stores the file in its own disk and han-

dles it locally, as in the basic mode, until the file is closed. At this

point, if the file was modified, it is sent back to the server in com-

pressed form, to reduce network transfer time. The client also com-

presses the new files that are added to the filesystem, before sending

them to the server.

Since the client may have little available memory for compres-

sion, it may use a sampled suffix array to (re)compress the file (recall

Section 3). The server receives the files from the client, and if they

were compressed with a sampled suffix array, it decompresses and

recompresses them with the full suffix array, in order to obtain the

best compression ratio. The next time the client requests the file, the

optimally-compressed version will be sent. Note that both server

and client can decompress a file compressed with the full or the

sampled suffix array, as long as they share the same reference.

Figure 8 shows the complete mechanism.

With minor changes, it is possible to optimize the writing process

so that the client only sends the blocks that changed in the file, and

the server only has to recompress those.

4 Results

We implemented our compressed file system using Cþþ and struc-

tures from the STL and the FUSE library, and compiled our codes

with gþþ 5.3.1 using the optimization flag -O3. All the experiments

were done using a HP ProLiant DL380 G7 (589152-001) server,

with two Quadcore Intel(R) Xeon(R) CPU E5620 @ 2.40GHz pro-

cessors and a 96GB RAM, running version 2.6.34.9-69.fc13.x86 64

of Linux kernel. In the different experiments we evaluated the real

elapsed time, and used that information to calculate the speed (in

megabytes per second) of some of the processes.

4.1 Basic setup
In order to give two distant samples of the performance of whole-

genome compression, we used two genome collections. The first is a

set of 2504 fully assembled human genomes from Phase 3 of the 1000

Genomes Project (1000 Genomes Project Consortium et al., 2015)

(http://www.internationalgenome.org), using the assembly HS37D5 as

the reference. The second is a set of 1135 Arabidopsis thaliana

genomes from the 1001 Genomes Project (https://1001genomes.org),

using the TAIR10 assembly as the reference. We chose ten human and

200A. thaliana genomes at random for the experiments. Human

genomes have an approximate size of 3 GB, whereas the size of an A.

thaliana genome is about 116 MB. Thus, a reference plus a full suffix

array require about 15 GB for humans and 464 MB for A. thaliana.

Fig. 6. The local filesystem architecture

Fig. 7. The client/server filesystem architecture
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If we just stored the genomes packing symbols in 2 bits per base

[typical compressors do not reduce this space much further anyway

(Biji and Achuthsankar, 2017)], the space required would be around

750 MB for human and 29 MB for A. thaliana genomes. Table 1

compares these sizes with the space we achieve with RLZ using the

given reference genomes (with a full suffix array on the reference,

for maximum compression) and averaging over the randomly

chosen genomes. As it can be seen, our human compressed files are

85 times smaller than the original files, whereas for A. thaliana they

are 37 times smaller. (While the compression of human genomes

varies little from genome to genome, the A. thaliana dataset has

more variance, and it could benefit from choosing more than one

reference genome. For example, a set of 20 genomes chosen to best

match the reference obtain a 58-fold compression.) Compression

proceeds at 35–70 MB/s, whereas decompression proceeds at 100–

390 MB/s (measuring MB of the original file). A whole human gen-

ome is then compressed in about 40 s, and recovered in about 30 s.

To compare with a plain compressor based on RLZ, we choose

GDC2, the recent variant of Deorowicz et al. (2015). GDC2 com-

presses the human genomes of Table 1 to 11.2 MB and those of A.

thaliana to 0.8 MB. This is roughly 3–4 times smaller than our com-

pressed file. This factor is the price of pursuing a representation that

can be directly accessed and modified: use of fixed-length numbers,

partition the file into blocks, etc.

4.2 Tuning the block size
We tested several block sizes for the compressor. Figures 9 and 10

show the normalized compressed size, compression speed, and de-

compression speed, as a function of the block size, on the human

genome HG00096 and A. thaliana genome CS78800. We tested

with block sizes from 103 to 107 bytes, looking for a size that is suffi-

ciently large to yield good space and time compression performance,

and sufficiently small not to significantly compromise positional

reads and writes on the files. The results are similar for all the

human and A. thaliana genomes in our sample.

Although the most usual operations in the filesystem are the add-

ition of new text at the end of the file and the sequential decompres-

sion of the complete file, we also tested the effect of different block

sizes in the times for random access in the compressed files. Our

tests choose random positions from where segments of some fixed

length are read. We averaged over 1000 starting positions, consider-

ing the extraction of text segments of length 100 KB, 1 MB and 10

MB for both human and A. thaliana genomes. The results are shown

in Figures 11 and 12.

The results show that block sizes between 105 and 106 are ad-

equate. We use blocks of size 105 (i.e. 100 KB) for the rest of the

experiments. With this block size, both random and sequential ac-

cess to the compressed files is roughly around 1 GB/s, and only 3–5

times slower than access to the plain files, whereas the space savings

are of orders of magnitude.

4.3 Tuning the suffix array sampling
We use a reduced version of the suffix array to facilitate the usage of

the client/server version. To reduce the size of the suffix array, we

sample the text positions that are indexed. Smaller sampled suffix

Fig. 8. Complete client/server model of the platform

Table 1. Mean sizes of the text, 2 bits per base and RLZ compressed files, and mean speed of compression and decompression (in MB/s) for

the human and A. thaliana genomes used for the experiments

Sequence File size (1 byte/base) Packed size (2 bits/base) RLZ size Compression speed Decompression speed

Human 3042 MB 750 MB 36 MB 68.26 102.28

A. thaliana 116 MB 29 MB 3.1 MB 36.59 385.38

Fig. 9. Normalized compressed size, compression and decompression speeds

for varying block size, on the human genomes

Compressed filesystem for managing large genome collections 4125

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/4120/5384493 by guest on 19 April 2024



arrays worsen the compression ratios, however. Figures 13 and 14

show the resulting index sizes with different sampling frequencies,

from 1 (i.e. the full suffix array) to 10 000 (i.e. storing one out of

10 000 text positions in the suffix array). The relative index size sta-

bilizes at 0.2 because it counts the text.

Based on the results, we use a sampling frequency of 10 for the

reference index. With that configuration, the size of the compressed

human genome HG00096 increases from 36 MB to a still manage-

able 112 MB (27-fold compression), while reducing the effective

index size from 15 GB to only 3.8 GB, enough to run smoothly on a

desktop PC. Using the A. thaliana genome CS78800 and a sampling

frequency of 10 increases the size of the compressed sequence from

2 MB to around 6.4 MB (still 18-fold compression), while reducing

the index size from 464 MB to 162 MB.

We remind that, in a client/server scenario, those weaker com-

pression ratios will be obtained only when the client compresses the

files temporarily with a reduced suffix array. Those will be recom-

pressed with a full suffix array when they arrive to the server, and

used in this better-compressed form when the client requests the files

again.

4.4 Remote access to compressed files
To test the efficiency of the remote access of compressed files com-

pared to the usage of decompressed files, we measure the time to

compress, transfer the compressed files, and decompress those files

locally. Table 2 compares those times with the cost of transferring

the uncompressed text, for different prefixes of the human genome

HG00096. It can be seen that, when considering files over hundreds

of MBs, remotely accessing the compressed data is about 4–5 times

faster accessing the corresponding uncompressed data. Moreover,

Fig. 10. Normalized compressed size, compression and decompression

speeds for varying block size, using A. thaliana sequences

Fig. 11. Random access speeds for segments of different lengths, as a func-

tion of the block size, using human genomes

Fig. 12. Random access speeds for segments of different lengths, as a func-

tion of the block size, using A. thaliana genomes

Fig. 13. Normalized sizes of the index and the compressed files depending on

the sampling frequency for human genomes

Fig. 14. Normalized sizes of the index and the compressed files depending on

the sampling frequency for A. thaliana genomes
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these times take into account the compression process prior to the

transfer, but in most cases a file is compressed only once and

accessed many times. If we consider only the transfer times of com-

pressed files and the local decompression, the gain due to using com-

pression is even more significant, 8–12 times faster.

In our experiments we used a 100 Mb/s network (which, in prac-

tice, allows the transfer of large files at about 12 Mb/s). A network

with higher transfer speeds would benefit more the remote access of

uncompressed files. However, the time to transfer the files will al-

ways be greater than the time needed to make a local copy of those

files, so we also include the cost of that operation in Table 2. In the

case of compressed files, the decompression time (which includes the

local creation of the decompressed text file) could be considered a

similar minimum time. We can see that, in fact, the decompression

times are only slightly higher than those of making a simple copy of

the data. Therefore, even using a significantly faster network, we

can access the data at comparable times and preserve the benefits of

reduced file sizes using this kind of compression.

4.5 Sequence reads
To test the case of storing a collection of non-assembled reads, we

use a set of human embryo development RNA-seq reads from the

NIH Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/

sra), the dataset SRR445718. This set contains around 3.3 Gbp and

the full FASTA file is about 5.4 GB, including metadata. We use our

reference generation method of Section 3.4, producing a reference of

5% of the size of the sequence data (i.e. 160 MB) formed by seg-

ments of length 5000. Using this reference and the metadata com-

pression system with LZMA, we reduced the sequences to 14.1% of

its original size. In this FASTA file, approximately 40% of the text

consists of metadata. This is significantly higher than in the previous

test cases, in which practically all the text consists of genetic sequen-

ces. Without considering the metadata, the space of the sequence

data is reduced to 11.5%.

The compressed file can be accessed randomly and sequentially at a

speed comparable to our fully-assembled genomes, around 800 MB/s.

5 Discussion

We have described a compressed filesystem for genome collections,

which exploits Relative Lempel-Ziv compression to obtain reduc-

tions in file sizes of 1–2 orders of magnitude, while allowing applica-

tions to transparently access and modify the files through the usual

filesystem calls. In addition, a client/server architecture frees the cli-

ents from storing the files themselves, which are stored in a central-

ized server that provides stronger compression and transfers the files

to and from the clients in compressed form, thereby reducing net-

work transfer times by an order of magnitude as well.

The most important line of future work, to let the system scale

up, is to automate the choice of the references. In the current system,

these are defined manually by the user, one per directory where the

genome files are stored. Alternatively, the system can build an artifi-

cial reference from an initial set of given files, but this process is also

launched manually. Instead, the filesystem could choose and update

the references on the fly as the sequence data evolves.

There has been some work on how to choose the references

(Deorowicz and Grabowski, 2011; Gagie et al., 2016; Kuruppu

et al., 2011; Liao et al., 2016), showing that even randomly chosen

chunks from the files work well. In our case, a simple scheme like

choosing the first stored file as a reference, and appending chunks of

incoming files that do not compress well with respect to the current

reference, is likely to produce a suitable reference without user inter-

vention. Further, a central server storing genomes from multiple cli-

ents could use the same references for many clients, thereby further

reducing the storage costs.

A second line of work is to further reduce storage needs for the

references and suffix arrays. First, we could use alphabet mapping so

as to store the references using exactly d log 2re bits per symbol

(where r is the alphabet size) instead of always 8 (i.e. bytes). On

DNA sequences, this would use 2 bits per base and thus reduce by 4

the space to store the reference. Similarly, the full suffix array could

be replaced by an FM-index (Ferragina and Manzini, 2005), which

would require about 2 bits per entry (instead of 32). This structure

has already been shown to offer competitive performance in practical

applications (see, e.g. http://bowtie-bio.sourceforge.net/bowtie2).

Finally, we may integrate some features of more recent variants

of RLZ [e.g. by Deorowicz et al. (2015)] with our filesystem, aiming

to obtain higher compression speeds or better compression ratios

while retaining direct access and the possibility to modify the com-

pressed file.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium et al. (2015) A global reference for human

genetic variation. Nature, 526(7571), 68–74.

Belazzougui,D. et al. (2014) Relative FM-indexes. In: Proc. 21st International

Symposium on String Processing and Information Retrieval (SPIRE). Vol.

8799. LNCS, pp. 52–64.

Belazzougui,D. et al. (2015) Queries on LZ-bounded encodings. In:

Proceedings of 25th Data Compression Conference (DCC), IEEE Computer

Society, pp. 83–92.

Biji, C.L. and Achuthsankar,S.N. (2017) Benchmark dataset for whole genome

sequence compression. IEEE/ACM Trans. Comput. Biol. Bioinform., 14,

1228–1236.

Cox,A.J. et al. (2016) RLZAP: relative Lempel-Ziv with adaptive pointers.

In: Proceedings of 23rd International Symposium on String Processing

and Information Retrieval (SPIRE), Springer International Publishing, pp.

1–14.

Deorowicz,S. and Grabowski,S. (2011) Robust relative compression of

genomes with random access. Bioinformatics, 27, 2979–2986.

Deorowicz,S. et al. (2015) GDC 2: compression of large collections of

genomes. Sci. Rep., 25, 11565.

Table 2. Times in milliseconds for compression, transfer, decompression, and total for RLZ compressed files, transfer time for uncom-

pressed files using a typical 100 Mb/s speed network, and the time for locally copying the text files

Filesize (MB) RLZ RLZ RLZ RLZ Uncompressed

(100 Mb/s network)

Copy time

Compression Transfer Decompression Total Time

3 91 663 7 761 842 5

30 603 1144 59 1806 3523 35

300 5315 2201 795 8311 34 921 597

3000 42 411 4569 28 676 75 656 271 604 24 018

Compressed filesystem for managing large genome collections 4127

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/4120/5384493 by guest on 19 April 2024

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://bowtie-bio.sourceforge.net/bowtie2


Do,H.H. et al. (2014) Fast relative Lempel-Ziv self-index for similar sequen-

ces. Theor. Comput. Sci., 532, 14–30.

Farruggia,A. et al. (2018) Relative suffix trees. Comput. J., 61, 773–788.

Ferrada,H. et al. (2014). Relative Lempel-Ziv with constant-time random ac-

cess. In: Proceedings of 21st International Symposium on String Processing

and Information Retrieval (SPIRE). Vol. 8799. LNCS, pp. 13–17.

Ferragina,P. and Manzini,G. (2005) Indexing compressed texts. J. ACM, 52,

552–581.

Gagie,T. et al. (2016) Analyzing relative Lempel-Ziv reference construction.

In: Proceedings of 23rd International Symposium on String Processing and

Information Retrieval (SPIRE), Springer International Publishing, pp.

160–165.

Golomb,S. (1966) Run-length encodings. IEEE Trans. Inf. Theory, 12,

399–401.

Kieffer,J.C. and Yang,E.-H. (2000) Grammar-based codes: a new class of uni-

versal lossless source codes. IEEE Trans. Inf. Theory, 46, 737–754.

Kuruppu,S. et al. (2010) Relative Lempel-Ziv compression of genomes for

large-scale storage and retrieval. In: Proceedings of 17th International

Symposium on String Processing and Information Retrieval (SPIRE). Vol.

6393. LNCS, pp. 201–206.

Kuruppu,S. et al. (2011) Reference sequence construction for relative compression

of genomes. In: Proceedings of 18th International Symposium on String

Processing and Information Retrieval (SPIRE). Vol. 7024. LNCS, pp. 420–425.

Liao,K. et al. (2016) Effective construction of relative Lempel-Ziv dictionaries.

In: Proceedings of 25th International Conference on World Wide Web

(WWW), pp. 807–816.

Manber,U. and Myers,G. (1993) Suffix arrays: a new method for on-line string

searches. SIAM J. Comput., 22, 935–948.

Sthephens,Z.D. et al. (2015) Big data: astronomical or genomical? PLoS Biol.,

17, e1002195.

Williams,H.E. and Zobel,J. (1999) Compressing integers for fast file access.

Comput. J., 42, 193–201.

4128 G.Navarro et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/20/4120/5384493 by guest on 19 April 2024


