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Abstract

Summary: For many next generation-sequencing pipelines, the most computationally intensive

step is the alignment of reads to a reference sequence. As a result, alignment software such as the

Burrows-Wheeler Aligner is optimized for speed and is often executed in parallel on the cloud.

However, there are other less demanding steps that can also be optimized to significantly increase

the speed especially when using many threads. We demonstrate this using a unique molecular

identifier RNA-sequencing pipeline consisting of 3 steps: split, align, and merge. Optimization of all

three steps yields a 40% increase in speed when executed using a single thread. However, when

executed using 16 threads, we observe a 4-fold improvement over the original parallel implementa-

tion and more than an 8-fold improvement over the original single-threaded implementation. In

contrast, optimizing only the alignment step results in just a 13% improvement over the original

parallel workflow using 16 threads.

Availability and implementation: Code (M.I.T. license), supporting scripts and Dockerfiles are avail-

able at https://github.com/BioDepot/LINCS_RNAseq_cpp and Docker images at https://hub.docker.

com/r/biodepot/rnaseq-umi-cpp/

Contact: kayee@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to advances in next generation sequencing there are now more

than half a million datasets in the Gene Expression Omnibus

(Barrett et al., 2012). A major bottleneck for the analyses of these

data is aligning the reads to a reference genome. Many efficient

methods for sequence alignment or pseudo-alignment have been

developed, such as the Burrows-Wheeler Aligner (BWA) (Li and

Durbin, 2009), STAR (Dobin et al., 2013), Kallisto (Bray et al.,

2016) and Salmon (Patro et al., 2017). With the ready availability of

cheap multi-threaded and distributed computing on cloud plat-

forms, the alignment step is often run in parallel, greatly reducing

the time required for analyses of the data. However, as noted by

Amdahl more than 50 years ago (Amdahl, 1967), there are

diminishing returns with greater numbers of threads as the non-

parallelizable components eventually become rate-limiting.

Optimization and partial parallelization of these less computational-

ly intensive components can yield significant improvement in a high-

ly parallel environment. We demonstrate this with a pipeline for the

analyses of unique molecular identifier (UMI) RNA-seq data. In

UMI RNA-seq, a sequence tag with a barcode and random sequence

identifies the originating well on the 96 or 384 well plate and con-

trols for amplification artifacts (Islam et al., 2014).

2 A three-step UMI RNA-seq workflow

The RNA-seq alignment workflow is designed for the UMI RNA-

seq data generated by the LINCS Drug Toxicity Signature
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Generation Center at Icahn School of Medicine at Mount Sinai in

New York (Xiong et al., 2017). The workflow described in the

Standard Operating Procedure (3.1) and the scripts and supporting

files for the analytical workflow originate from the Broad Institute

(Soumillon et al., 2014). There are three steps in the original pipeline

implemented by two Python scripts. The first step (split) reads a list

of paired-end fastq files and splits them into separate fastq files. In

particular, the split step takes the sequence tag in the first (forward)

read and appends it to the sequence identifier in the second (reverse-

complement) read creating a new set of fastq files. The second step

(align) aligns the second reads to the reference genome using BWA.

The third step (merge) takes the resulting SAM files, filters out the

counts contributed by reads tagged with identical UMIs and then

consolidates the transcript counts for each of the wells. Our opti-

mized pipeline consists of the following three major changes.

1. Demultiplexing the reads by wells: In addition to appending the

sequence tag to the title of the read, reads from the same wells

are combined, resulting in 96 new fastq files. Since each well is

an independent experiment, the subsequent steps can operate on

these files in parallel. The smaller files also greatly reduced the

memory required for processing, an important consideration as

multi-threaded applications often require more RAM.

2. Parallelism is increased.

• Split: The original split step was not multi-threaded. The split

step now operates on different fastq files simultaneously

when multiple threads are available.

• Align: The original align step used BWA aln to generate ini-

tial alignments which are piped to BWA samse to combine

the results and generate a SAM file. BWA aln can use mul-

tiple threads but samse is single-threaded. The new align step

spawns multiple instances of BWA, each operating on a dif-

ferent file. This parallelizes both BWA aln and BWA samse.

• Merge: The original merge step compiled the counts using a

single thread and a single large hash table. The new merge

can have threads working simultaneously on different files.

3. Python scripts are replaced by C11 executables Even though

Python uses the same libraries for CPU-intensive operations such

as decompressing files, there is a significant amount of text ma-

nipulation that is handled by the Python scripts. Converting to

Cþþ removes the overhead from dynamic typing and automatic

garbage collection when using Python.

Additional details of our optimizations are described in the

Supplementary Material.

3 Benchmarking results

We compared the execution time and memory usage between the

optimized and original workflows when the number of threads is

varied using a 16 vCPU Amazon Web Services (AWS) m4.4xlarge

EC2 spot instance. In Figure 1, we see that when using a single

thread the dominant contribution to the execution time is the align

step. The situation changes when using 16 threads. The CPU-

intensive align step now takes the least amount of time in the origin-

al workflow. Improving the parallelization of the align step results

in a 70% improvement in this step but only a 13% improvement in

the overall workflow (see Supplementary Appendix Table S3).

However, optimizing all the steps results in almost a 4-fold improve-

ment in speed over the original parallel workflow and more than an

8-fold increase in speed over the original single-threaded workflow.

While memory requirements increase with the number of threads

used, this is offset by the memory saved from examining reads from

individual wells. The optimized workflow takes less than half the

memory of the original workflow even with 16 threads.

4 Conclusions

The ready availability of on-demand multi-core compute servers in

the cloud enables computationally demanding workflows to now

typically run with multiple threads. Optimization efforts have large-

ly and correctly focused on the most computationally intensive com-

ponents of the pipeline. However, due to diminishing returns,

optimization of other less obvious computational modules can yield

dramatic benefits in a multi-threaded cloud environment.
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Fig. 1. Comparison of execution time (A) and memory usage (B) between the

optimized and original workflows. The upper bars represent the original

workflow and the lower bars the optimized workflow. The speedups for 1, 4

and 16 threads are shown. All workflows were executed on m4.4xlarge AWS

EC2 spot instances with 64 GB of RAM and 16 vCPU cores. The input data

included six pairs of fastq files totaling 47 GB on an attached EBS volume.

The execution time and memory usage represent the median values across

three runs. Values are comparisons of the total execution time and the RAM

required. The numerical values are in Supplementary Appendix Tables S1

and S2
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