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Abstract

Motivation: Long-read genome assembly tools are expected to reconstruct bacterial genomes

nearly perfectly; however, they still produce fragmented assemblies in some cases. It would be

beneficial to understand whether these cases are intrinsically impossible to resolve, or if assem-

blers are at fault, implying that genomes could be refined or even finished with little to no addition-

al experimental cost.

Results: We propose a set of computational techniques to assist inspection of fragmented bacterial

genome assemblies, through careful analysis of assembly graphs. By finding paths of overlapping

raw reads between pairs of contigs, we recover potential short-range connections between contigs

that were lost during the assembly process. We show that our procedure recovers 45% of missing

contig adjacencies in fragmented Canu assemblies, on samples from the NCTC bacterial sequenc-

ing project. We also observe that a simple procedure based on enumerating weighted Hamiltonian

cycles can suggest likely contig orderings. In our tests, the correct contig order is ranked first in

half of the cases and within the top-three predictions in nearly all evaluated cases, providing a dir-

ection for finishing fragmented long-read assemblies.

Availability and implementation: https://gitlab.inria.fr/pmarijon/knot.

Contact: pierre.marijon@inria.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Third-generation DNA sequencing using PacBio and Oxford

Nanopore instruments is increasingly becoming a go-to technology

for constructing reference genomes of non-model prokaryotes and

eukaryotes. Longer sequencing reads allow in principle to overcome

the reconstruction problems posed by genomic repetitions (Bresler

et al., 2013). Direct assembly of second-generation (Illumina)

sequencing data typically also results in high consensus accuracy yet

generally more fragmented bacterial assemblies (Bankevich et al.,

2012). The large-scale ongoing NCTC project aims to assemble

and make publicly available 3000 bacterial strains sequenced

using PacBio (https://www.sanger.ac.uk/resources/downloads/bac

teria/nctc/).

Recent works have demonstrated single-contig long-read assem-

blies of bacterial chromosomes (Koren and Phillippy, 2015; Loman

et al., 2015). Therefore, it is natural to ask whether genome assem-

bly is now a solved problem with long reads (See e.g. https://flxlex

blog.wordpress.com/2013/07/05/de-novo-bacterial-genome-assem

bly-a-solved-problem/), at minimum for smaller genomes such as

bacteria. It turns out that in several cases, bacterial assemblies re-

main fragmented into a handful of contigs, even with long-read

sequencing and recent assembly techniques. Deciding whether an as-

sembly instance is resolved is not always clear due to the presence of

plasmids, contaminants and unplaced low-quality reads. In this

work, an assembly is considered to be resolved if the number of con-

tigs classified as chromosomal is equal to the expected number of

chromosomes (generally just one, in the bacterial case).
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To date, the NCTC project contains 1735 samples for which

1136 have been assembled by the consortium, and among these,

599 (34%) are unresolved according to the criteria above (as in

February 2019). Later in this article, we will see that even when

using multiple recent tools, many assemblies remain fragmented.

Therefore there is a clear and unmet need for an investigation that

determines whether those samples are intrinsically impossible to re-

solve, or whether current assembly methods are imperfect.

In this article, we have selected a subset of NCTC samples (see

Section 5) and considered the outputs of three recent assemblers:

Canu, Miniasm, and HINGE. We observe that instances where the

assembly is fragmented can be challenging to further manually eluci-

date. In general, assemblers produce an assembly graph where nodes

are contigs and edges reflect local sequence proximity in the genome

(adjacency). In fragmented instances, the final assembly graph is

sometimes uninformative due to the absence of edges between con-

tigs, hindering further assembly finishing steps. In such cases, it

would be tempting to conclude that the assembly is fragmented due

to regions of insufficient sequencing coverage, with no way to deter-

mine a likely contig order. However, in a number of cases, we found

that a lack of connectivity can be due to reads that were discarded

early in the assembly pipeline. Here, we will show that contig adja-

cency information can be computationally recovered from the raw

data.

To automatically investigate unresolved assemblies and propose

directions for refinement, we introduce a set of in silico forensics

operations for long-read assemblies, and we built a software frame-

work. Our analyses are based solely on information present in the

raw-sequencing data in addition to the contigs produced by a given

assembly tool, and are not biased by any other source, e.g. a closely

related reference genome. For validation purposes only and to ex-

plain some of our observations, we will align contigs to a ground

truth reference when one is available. Our framework is first tested

on synthetic data to illustrate a simple case of fragmentation due to

heuristics in the Canu assembler. We then show on real data that

our method helps recover useful adjacency information between

contigs.

Going further, we demonstrate how to use this recovered infor-

mation to provide likely assembly hypotheses using Hamiltonian

paths, through a ranked list of contigs orderings. Obtaining a small

set of possible orderings between contigs, knowing that the true gen-

ome order is likely one of them, can be instrumental to guide further

genome finishing steps.

2 Related works

Assembly forensics date back to the Sanger era, e.g. with the

AMOSvalidate software (Phillippy et al., 2008), which detects mis-

assemblies within contigs using multiple sources of information (e.g.

read coverage, properly mapped pairs, clipping). Other tools have

been introduced for misassembly detection in Illumina data [REAPR

(Hunt et al., 2013), FRCbam (Vezzi et al., 2012), Pilon (Walker

et al., 2014)] and for PacBio data [VALET (Olson et al., 2017)]

using similar principles. Completeness of an assembly can be esti-

mated without any reference, using core genes as a proxy metric,

e.g. with BUSCO (Sim~ao et al., 2015) or CheckM (Parks et al.,

2015) software. Finally, assembly likelihood metrics have been

introduced to assess the fit of an assembly to a probabilistic model

of sequencing, via remapping reads to the assembly (Clark et al.,

2013; Ghodsi et al., 2013; Rahman and Pachter, 2013). For a more

complete exposition, refer to a recent survey on metagenomics

assembly validation (Olson et al., 2017), that also largely applies to

isolates.

For bacterial genomes specifically, several pipelines for assembly

finishing have been developed (Bosi et al., 2015). They usually take

as input an assembly obtained with short-read data and align it to

one or multiple close reference genomes, in order to find a contig

ordering (Kremer et al., 2017). Recent work has examined the cause

of assembly fragmentation for seven bacterial genomes sequenced

using PacBio sequencing, and rejected the hypothesis that gaps were

caused by strong secondary DNA structure (Utturkar et al., 2017).

Instead, low coverage and repetitions appear to be the two main fac-

tors for contig termination.

To the best of our knowledge, little work has been carried to in-

vestigate assemblies based on the graph of assembled contigs or the

initial string graph. Noteworthy exceptions are the Bandage soft-

ware (an assembly graph visualization tool) (Wick et al., 2015), and

the HINGE assembler that implements automated repeat handling

based on the assembly graph (Kamath et al., 2017). We use Bandage

extensively in the present work, and will consider datasets where

even HINGE failed to produce a single-contig assembly.

3 Long-read assemblers

Several genome assemblers have been developed to process third-

generation sequencing data, either stand-alone (Kamath et al., 2017;

Koren et al., 2017; Li, 2016; Lin et al., 2016) or in combination

with Illumina data (Antipov et al., 2016; Wick et al., 2017; Ye et al.,

2016; Zimin et al., 2013). In this work, we will focus on three recent

stand-alone assemblers, chosen because of their widespread usage

(Canu), automated graph analysis algorithms (HINGE) and speed/

modularity (Miniasm). However the techniques are likely to be ap-

plicable to a broader set of assemblers.

3.1 Description of Canu, Miniasm and HINGE
The Canu (Koren et al., 2017) assembler consists of three major

steps: correction, trimming and contig creation. The first two steps

should not be regarded as innocuous pre-processing steps, as they

significantly impact the rest of the assembly process. The correction

step uses MHAP to perform all-against-all read mapping then gener-

ates consensus reads with the falcon_sense tool (Chin et al., 2016).

Canu then performs overlapping of error-corrected reads with a leg-

acy algorithm from the Celera assembler, named ovl. The trimming

step detects hairpins, chimeric reads, and low-support regions and

subsequently cuts reads. A ‘unitigging’ step is performed using bo-

gart, a modified version of CABOG (Miller et al., 2008), to pro-

duce a graph that records only the longest overlaps between

corrected reads (termed BOG for ‘Best Overlap Graph’). Canu gen-

erates contigs from this graph and improves their consensus accur-

acy by remapping all reads.

The Miniasm pipeline consists of two separate tools: Minimap2

and Miniasm (Li, 2016). Minimap2 finds overlaps between raw

reads and outputs alignments. Miniasm trims low-coverage regions

of reads, then constructs a string graph from Minimap2 alignments

that are suffix–prefix overlaps. Miniasm performs simplification on

the graph inspired by short-read assembly: transitive reduction, tip

removal, bubble popping and short overlaps removal based on a

relative length threshold. After simplifications, non-branching paths

are returned as contigs.

The HINGE (Kamath et al., 2017) assembler uses raw uncorrect-

ed reads (similarly to Miniasm) to construct an overlap graph simi-

lar to the BOG of Canu. HINGE attempts to output finished
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bacterial assemblies through improved repeat-resolution. In cases

where there subsist repetitions that are not spanned by reads, HINGE

provides a visualization of the resulting assembly graph for manual

inspection.

3.2 Assembly graphs
Short-read and long-read assemblers output final assembly sequen-

ces in FASTA format, and an increasing number of tools also output

an assembly graph in Graphical Fragment Assembly (GFA) format

(https://github.com/GFA-spec/GFA-spec). A final long-read assem-

bly graph typically consists of all contig sequences as nodes, and a

set of overlaps between contigs as edges. Assembly graphs are sel-

dom used by downstream tools, and are generally provided for the

purpose of inspecting the assembly.

Most long-read assemblers start by constructing then analyzing a

string graph (SG) of the reads (Myers, 2005), where each read is a

node, and overlaps between reads are represented by edges to which

additional information is attached (e.g. overlap length, overlap error

rate). In addition, transitive reduction is performed on the edges and

reads that are fully contained in others are discarded.

4 Materials and Methods

We hypothesized that the final contig graph produced by assemblers

does not always reflect all the information present in the raw data,

and may be missing overlaps or even genomic regions. We built a

novel algorithmic framework to recover some of the ‘missing’ infor-

mation and further analyze it. The main steps are presented in

Figure 1, and the next sections describe them in more details.

4.1 Raw SG
First, we eliminate chimeric reads from the raw data based on over-

laps found by Minimap2 using a custom tool (https://gitlab.inria.fr/

pmarijon/yacrd; P.Marijon et al., manuscript in preparation, see

Supplementary Figure S6). A SG is then constructed using overlaps

between chimera-removed reads (here, overlaps found by mini-

map2). A stand-alone script was created to convert overlaps from

the PAF format [defined in Li (2016)] to a graph in the GFA format

(https://gitlab.inria.fr/pmarijon/fpa). Transitive reduction over the

edges of this SG is performed using Myers’ algorithm (Myers,

2005).

4.2 Contigs classification
In order to simplify analyses and focus on chromosomal contigs, we

filter out contigs of plasmid origin and contigs of unknown taxo-

nomic status (see Supplementary Methods Appendix 1). Contigs

that were not marked as chromosomal are discarded. Note, how-

ever, that this contig classification step can be skipped in order to

perform analysis of complete, unfiltered sets of contigs.

4.3 Computation of paths between contigs
An essential algorithmic component of our framework is the search

for paths in the SG that uncover new connections between contigs.

First, one read per contig extremity is identified among reads

included in the SG: a read is selected such that both its incoming and

outgoing neighbors also map at the same contig extremity (in order

to avoid selecting dead-end nodes in the SG).

Then for each pair of contigs, shortest paths between reads at

both extremities of each contig are computed in the SG using

Dijkstra’s algorithm. The length of a path is computed in nucleotides

as follows: the sum of all reads lengths involved in the path minus

all the overlaps between reads, as well as minus the overlaps be-

tween reads and contig extremities. If contigs overlap, the path

length is reported as zero. Since we perform path search starting

from each contig extremity, we may obtain two shortest paths for

each pair of contigs, and only the shortest of those two is kept.

4.4 Augmented assembly graph
We transform a contig graph into a novel object, the augmented as-

sembly graph (AAG), as follows. Nodes of the AAG are contig

extremities. An edge is inserted between two nodes if a path has

been found by the procedure in Section 4.3 between the two-contig

extremities. Each edge is weighted by the corresponding path length.

Additionally, zero-weight edges are created between both extrem-

ities of each contig.

Such a graph allows to explore adjacencies between contigs, be-

yond those present in the original contig graph, in order to formu-

late hypotheses regarding the ordering of contigs. At a certain contig

extremity, and in absence of genomic repeats, low-weight edges like-

ly reflect adjacent contigs, while high-weight edges likely correspond

to SG paths that pass through other contig(s) (i.e. transitively redun-

dant edges in the AAG). In the presence of repeats, low-weight edges

do not necessarily show true adjacencies between contigs, as the true

path may be longer. Yet one can observe that a path longer than the

longest repeat in the genome necessarily reveals a distant link

between two contigs (i.e. necessarily contigs which are truly non-

adjacent on the genome), and also such path may go through an-

other contig.

According to Treangen et al. (2009) most repetitions in bacteria

are shorter than 10 kb. We thus categorize edges of the AAG into

three groups according to their weight. Consider the path in the SG

that led to the creation of the edge e in the AAG between extremities

of two different contigs a and b. If the path is longer than 10 kb,

and/or it contains at least one read that was involved in the con-

struction of another contig c, the edge e is named distant. Otherwise

the edge e is considered to reflect an adjacency between a and b. If

there is more than one edge outgoing from the extremity of a or of

b, the edge e is named a multiple adjacency (likely revealing a puta-

tive repeat). Otherwise it is named a single adjacency.

4.5 Searching for parsimonious assembly scenarios
We sought to determine whether contigs could possibly be ordered

directly using the AAG. In principle, we anticipate to recover a large

Fig. 1. The proposed framework takes as input raw long-read sequencing

data and the output of an assembler. The (optional) contig classification step

removes non-chromosomal contigs. A SG of raw reads is constructed, in

which paths are searched between extremities of contigs, then are converted

into links between contigs in an AAG. When such a graph is connected, puta-

tive contig orderings are reported. Dotted nodes represent elements that are

automatically visualized in the HTML report

Graph analysis of fragmented long-read bacterial genome assemblies 4241

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4239/5421164 by guest on 09 April 2024

https://github.com/GFA-spec/GFA-spec
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz219#supplementary-data
https://gitlab.inria.fr/pmarijon/fpa
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz219#supplementary-data


number of distant edges in the AAG, therefore it would be non-

trivial to determine a contig order by direct inspection of the graph

layout (e.g. see Figure 3). Given a connected AAG, our working hy-

pothesis is that a minimum-weight Hamiltonian cycle may corres-

pond to the correct contig order (note that having a connected AAG

is a necessary condition for such a cycle to exist, but not a sufficient

one). This is guided by the intuition that edges in the AAG with high

weight are more likely to correspond to false connections due to rep-

etitions or true paths between distant contigs. For simplicity, we

search for Hamiltonian cycles and not paths, under the assumption

that the genome is circular. We further require that any

Hamiltonian cycle traverses all zero-weight edges corresponding to

both extremities of each contig. Moreover, contigs mapping inside

another one are not considered.

We designed an automated procedure to test this hypothesis,

based on computing and sorting Hamiltonian cycles according to

their total edge weights. In practice, some of the AAGs that we ob-

tain are too complex, due to the presence of short contigs (see

Section 6 for more details). Our pipeline excluded contigs shorter

than 100 kb from the AAG before listing all Hamiltonian cycles. For

validation purposes, when a reference genome is available, we

mapped all chromosomal contigs against this reference to determine

the true contig order. We then recovered the position of the true

contig order within the list of orders given by Hamiltonian cycles.

4.6 Assembly report generation
We implemented a Snakemake (Koster and Rahmann, 2012) pipe-

line that takes as input raw reads, contigs produced by an assembler,

and optionally a contig graph. The pipeline follows steps described

Figure 1, then generates an HTML report for easy inspection.

Companion tools to compute AAG edge classification and to per-

form Hamiltonian path search are also provided.

5 Results

5.1 Datasets
In order to illustrate our methods using a simple yet non-trivial case

of assembly graph analysis, we simulated long reads from a linear-

ized reference genome of Terriglobulus roseus (NC_018014.1, 5.2

Mbp). This genome contains an unusual 460 kb repeat that is chal-

lenging for assembly tools. We used LongISLND (Lau et al., 2016),

with 20� sequencing coverage and 9 kb mean read length

(Supplementary Table S9).

To investigate real datasets, we mined the NCTC project which

consists of 1735 bacterial strains (as of February 2019) sequenced

using PacBio technology. For each dataset, the NCTC consortium

had built an assembly using HGAP and Circlator (Hunt et al., 2015)

followed by a manual correction step. We estimate, based on visual

inspection of 159 NCTC fragmented HINGE assemblies (https://

web.stanford.edu/ gkamath/NCTC/report.html) out of 997, that as-

sembly graphs are missing contig adjacency information in 69% of

the fragmented assemblies of HINGE and Miniasm, i.e. around

13% of all NCTC datasets (including those that assemble perfectly).

Among datasets for which both Canu and HINGE failed to produce

a single contig per chromosome, we selected 19 datasets where the

assembly made by NCTC contains as many chromosomal contigs as

the number of expected chromosomes (i.e. is resolved), 24 datasets

where the NCTC assembly is unresolved, and finally 2 datasets that

were not yet assembled by NCTC. See Supplementary Table S2 for a

complete list of the 45 datasets. All datasets were assembled with

Canu version 1.7 and Miniasm version 0.2.

Canu contigs were classified according to Section 4.2. On aver-

age for each dataset, 10.2% (resp. 6.4%) of the Canu (resp.

Miniasm) contigs are marked as plasmid, 13.7% (resp. 12.2%) do

not match any bacteria in the Blast database and are therefore

marked as of undefined origin, and the remaining 76.0% (resp.

81.3%) of contigs are classified as chromosomal and are further

considered for analysis. Full classification results are presented in

Supplementary Tables S6 and S7.

We further investigated whether the assemblies could somehow

be combined, e.g. by improving Canu assemblies using Miniasm

contigs. We have performed a simple test to evaluate this possibility

(see Supplementary Section Appendix 2) and could not straightfor-

wardly improve assemblies this way.

5.2 Assembly graph analysis of a synthetic

low-coverage dataset
This section gives an introductory overview of the analyses that our

method performs on the T.roseus simple synthetic dataset described

above. Canu produced three contigs of total length 4.7 Mbp.

A�500 kb region is missing from the assembly. Miniasm produced

seven contigs and the HINGE assembler (commit 8613194) was not

able to produce an assembly, likely because of the low coverage

(20�).

Since the SG has a single connected component (Figure 2b) but

both the BOG and the contig graph of Canu have multiple con-

nected components (Figure 2a), assembly fragmentation can be

explained by reads that have been discarded at the BOG construc-

tion stage of Canu. The coloring of the SG using the connected com-

ponents of Canu BOG (Figure 2b) further suggests an ordering of

contigs. Note that the Canu contig graph is uninformative on this

dataset, as it contains no edges between contigs.

We performed path analysis as per Section 4.3. Figure 2d shows

the length of paths in SG found between reads at Canu contigs

extremities. Since a reference genome is available, the true order of

contigs is reported on the figure but note that path analysis does not

need this information. We find that the Canu contigs named tig8

and tig4 overlap in the SG. tig1 and tig8 are linked by a long path

involving 491922 bp. This long path can be explained by looking at

how tig1 has been built by Canu: the path goes through a large

‘loop’ (see Supplementary Figure S2) which corresponds to a repeat

in the reference (Figure 2c). The repeat (of length 460 kb) was not

resolved by Canu, leading to a region of about 440 kb missing from

the assembly between tig1 and tig8, which explains why the shortest

path between both contigs contains as many as 491922 bp. We fur-

ther checked that the path of length 755235 bp between tig1 and

tig4 indeed contains reads from tig8, and is therefore redundant. By

aligning raw reads and Canu corrected reads to the reference gen-

ome, we observe a drop of raw reads coverage (around 8�) in the re-

gion between tig8 and tig4. This likely explains why Canu failed to

connect both contigs.

As a side note, a Canu assembly of the same dataset with twice

higher read coverage (40�) yielded a two-contig assembly, also with

same pattern as in between tig8 and tig4. An older version of Canu

(1.6) fully resolved the 40� dataset into a single contig, likely due to

changes in how reads are corrected and trimmed between version

1.6 and 1.7.
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5.3 Investigation of 45 unresolved NCTC assemblies
We performed the same type of analysis on the 45 NCTC samples.

A Minimap2 AAG was constructed for each dataset using SG and

Canu contig extremities. Assembly and AAG statistics are presented

in Table 1 for an excerpt of the dataset. Full statistics and more

details are given in Supplementary Tables S2, S6 and S7. There we

observe that the number of contigs in Canu and Miniasm assem-

blies is generally higher than in the assemblies made by NCTC.

Nevertheless the sum of lengths of chromosomal contigs is about the

same in all assemblies (Supplementary Table S8).

5.3.1 Case study of two NCTC datasets

We closely examine two NCTC datasets that contain interesting pat-

terns, through the lens of a ground truth obtained by remapping

Canu contigs against respective NCTC assemblies using BWA-mem

(Li, 2013).

Fig. 2. Graph analysis of a synthetic dataset (T.roseus). (a) Contig graph produced by Canu (visualized using Bandage): three contigs, no edge. (b) SG built from

Minimap2 overlaps, on which connected components of the Canu BOG are colored. (c) Dot-plot of the T.roseus genome (NC_018014.1) aligned against itself,

showing a long tandem repeat. (d) The AAG with Canu contigs ordered according to their position on the T.roseus reference. If two contigs overlap, no length is

given and instead the link is labeled ‘ovl’

Table 1. Assemblies and contig graphs statistics for an excerpt of nine NCTC datasets (full tables in Supplementary Tables S2 and S3), con-

sisting of eight datasets where Hamiltonian cycle search succeeded, and the NCTC5050 dataset discussed in Section 5

NCTC contigs Canu contigs No. of nodes No. of dead-ends in No. of edges in AAG

NCTC ID chr pls und chr pls und in AAG Contig graph AAG Total Single

adjacency

Multiple

adjacency

NCTC10006 1 0 0 3 0 0 4 2 2 4 2 0

NCTC10332 1 0 0 12 0 0 8 8 4 24 0 3

NCTC10444 1 0 0 7 0 0 8 3 0 24 0 6

NCTC10702 1 1 1 3 3 0 4 4 4 4 0 0

NCTC12123 2 3 0 5 4 1 6 4 1 12 1 2

NCTC12132 1 0 0 2 0 2 4 4 2 4 1 0

NCTC13125 1 2 4 6 3 1 6 0 0 12 0 4

NCTC13463 1 1 4 5 2 2 4 0 0 3 2 0

NCTC5050 2 3 0 4 2 3 6 6 0 12 3 0

Note: AAGs are constructed using a SG built from Minimap2 overlaps and Canu contig extremities. The ‘contig graph’ column corresponds to the final assem-

bly graph produced by Canu; ‘chr’: number of chromosomal contigs; ‘pld’: number of plasmid contigs; ‘und’: number of other contigs. Note that some of Canu

‘chr’ contigs may be contained in others, therefore the ’# nodes in AAG’ column corresponds to twice the number of non-contained contigs.

Fig. 3. Mapping of Canu contigs (bold horizontal lines) against NCTC12123 assembly (the two thin horizontal lines). Links between contigs give the length (in bp)

of the shortest path in SG between reads at extremities. If two contigs overlap, no length is given and instead the link is labeled with ’ovl’. Plain links are paths

that are compatible with the sequential order of contigs given by mapping to the NCTC assembly, and dotted links are all other paths
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NCTC12123 This dataset was assembled into five chromosomal

contigs by Canu, including two contigs that are contained in others

and are automatically discarded by our pipeline (see Figure 3).

The assembly is made of two large contigs (tig1 and tig2) and a

shorter one (tig9) totaling 4.78 Mbp. Miniasm produces also five

chromosomal contigs, including three small ones. Both Canu and

Miniasm contig graphs are made of two components. HINGE pro-

duces a single-component assembly graph but does not resolve it

(because it detects multiple possible traversals). Finally, the NCTC

assembly consists of two chromosomal contigs: one being 4.69 Mbp

long and the other 21 kb long. Contigs tig1 and tig2 both map over

the large NCTC contig, while tig9 maps to both NCTC contigs.

Using the AAG on Canu contigs (see Figure 3), one can observe that

a number of scaffolding scenarios could be made following this

graph. Interestingly, based on the mapping of the three contigs on

the larger contig of the NCTC assembly, edges of smaller weight

(i.e. shortest paths) tend to be associated with true contig adjacen-

cies. In this example, low-weight Hamiltonian cycles (Section 4.5)

yield two likely contig orders (see Supplementary Figure S3). This

SG analysis thus enabled to retrieve an adjacency that was missed by

Canu. It also confirms the multiple traversals prediction of HINGE,

further reducing the number of putative contig orders to only two.

NCTC5050 This dataset is assembled into four chromosomal

contigs by Canu, including one that is contained in another. The

Canu contig graph is ‘fully’ fragmented as each contig is its own

connected component. There is no reference genome for this strain,

and we chose as ground truth the NCTC assembly consisting of two

contigs. One is entirely covered by a Canu contig, and the other con-

tains the three remaining contigs (see Supplementary Figure S4). In

the following, xs and xe denote left (resp. right) extremities of a con-

tig x. We found single (i.e. non-repeat) adjacencies between tig1s/

tig23s, tig1e/tig10s, tig10e/tig23s that were confirmed by mapping to

the longest contig from the NCTC assembly. Together, these single

adjacencies suggest a putative scaffolding scenario: tig1—tig10—

tig23 (reversed). This scenario is also the top-ranked one proposed

by our Hamiltonian path search procedure (see below).

We also mapped corrected and raw reads to the junction for val-

idation (see Supplementary Figure S5). We observe a drop of cover-

age at this location (see reads mapping in Supplementary Figure S4)

that is likely the cause of assembly fragmentation. Therefore, again

in this dataset the path search operation enabled to recover a link

between contigs that was discarded by the assembler due to a drop

in sequencing coverage.

5.3.2 Path search enables to recover adjacency between contigs

Table 1 reports statistics of paths found between Canu contigs by

our method for a subset of 9 NCTC datasets (for the full dataset, see

Supplementary Table S3). We first focus on unambiguous contig

adjacencies recovered by our pipeline. Single adjacency edges are

only found in six out of nine datasets, yet across the entire dataset of

45 samples, 60.4% of all single adjacency edges (43 in total) are

found in samples that have a sequencing coverage below 38�, and

only 17 single adjacency edges are found in datasets with coverage

above 38�. This is likely due to the error-correction step in assem-

blers that is less effective in low-coverage datasets (even when the

true-sequencing coverage is given to the assembler as a parameter),

which in turn causes assembly fragmentation. Our method therefore

enables to recover single adjacency edges between contigs that were

fragmented due to this effect.

To measure whether the Canu contig graphs could be used as-is

to recover contig order, we counted the number of contig extremities

that are not linked to any other extremity (i.e. dead-ends). Those are

contigs for which no chromosomal order can be reliably inferred. In

35 out of the 45 datasets (seven out of nine in Table 1), the Canu

contig graph has some dead-end extremities (between 1 and 23). In

principle dead-ends extremities should not exist in circular bacterial

assembly graphs, except for linear chromosomes. Assemblers, here

Miniasm and Canu, do not report all true contig adjacencies. In

contrast, our method enables to recover some of these adjacencies

and lower the number of dead-ends in 23 out the 37 datasets (and

all but one dataset in Table 1).

Table 2 summarizes average AAG statistics over all 38 datasets

on Canu contigs (per-dataset results in Supplementary Table S3).

Results for Miniasm contigs are shown in Supplementary Tables S4

and S3. On average, Canu contig graphs contain 4.32 nodes (5.86

extremities), among which 4.94 extremities are dead-ends. The

AAG enables to reduce the number of dead-end extremities to 2.7

(45% lower), through the discovery of 1.16 single adjacency edges

and 2.86 multiple adjacency edges in the AAG per dataset on aver-

age. The reduction is also significant for Miniasm contigs but not as

high (31%, Supplementary Table S4). Note that these adjacencies

are ‘real’ in the sense that they are all supported by paths of overlap-

ping reads of total nucleotide length less than 10 kb, yet a number of

them may be caused by repetitions. An upper bound on the ability

to mine paths in the SG is given by the theoretical maximal number

of edges in the AAG (41.83 edges). Our method is on average 78%

close to this bound for Canu contigs (resp. 90.1% for Miniasm) as

it discovered 32.67 edges per dataset (resp. 85.1). We note that large

fraction (87%) of discovered edges were classified as distant edges,

yet the remaining adjacency edges are informative as they signifi-

cantly contribute to removing dead-ends in the contig graph.

5.3.3 Contig order search retrieves parsimonious assembly scenarios

While the work done in the previous section helps to recover contig

adjacencies, the presence of multiple adjacency edges due to repeti-

tions often prevents us from unambiguously inferring a contig order.

We applied the Hamiltonian cycle procedure presented in Section

4.5 to determine likely contig orderings. Figure 4 shows orderings

sorted by weight across 23 datasets on which the method could suc-

cessfully be executed (connected AAG, low number of edges).

A ground truth is known in only 8 of those datasets. Among

them, the lowest-weight scenario is ranked first in 3 datasets, 2nd in

2 datasets, 3rd in 1, 4th in 1 and 38th in the last one.

These results suggest that the correct assembly scenario is likely

to be one of the top predictions made by our parsimonious

Table 2. Average statistics of AAGs using a SG built from

Minimap2 overlaps on Canu contigs across the 38 NCTC datasets

with two or more contigs, after size and classification filters

Mean number of

Canu contigs 4.32

Edges in AAG 32.67

Theoretical max. edges in AAG 41.83

Distant edges 28.64

All adjacency edges 4.02

Single adjacency edges 1.16

Multiple adjacency edges 2.86

Dead-ends in Canu contigs 4.94

Dead-ends in AAG, adjacency edges 2.70

Note: All rows are as per definitions in Section 4.4. ‘Theoretical max.

edges’: number of possible edges in each AAG. ‘Dead-ends in AAG, adjacency

edges’: number of dead-ends in the AAG when only adjacency edges are con-

sidered, i.e. distant edges are deleted.
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Hamiltonian cycle procedure. However finding many fragmented

datasets that also have a ground truth is inherently difficult, thus

further work is needed to confirm this hypothesis. Also, datasets

where several scenarios have similar weights (i.e. curves that ’plat-

eau’ in Figure 4) will possibly be more challenging to resolve using

this method. Yet for many samples with fragmented assemblies, par-

simonious assembly scenarios are a promising approach to explore a

limited number of hypotheses that could further be validated using

long-range PCR to finish the genome.

6 Discussion

We presented a set of concepts to provide novel insights on frag-

mented long-read bacterial genome assemblies. By searching for

paths of overlapping raw reads between extremities of contigs, we

construct an AAG that recovers unreported adjacencies between

contigs. We demonstrate several usages of this graph: to provide a

more informative representation of fragmented assemblies, to exam-

ine repeat structures, and to propose likely contig orderings. In our

tests, the AAGs of NCTC datasets recover edges for nearly half

(45%) of the dead-end nodes in Canu contig graphs, on average. We

further show a link between the lowest-weight Hamiltonian cycles

in the AAG and the true contig order. We highlight that our method

solely relies on the raw data and information produced by assem-

blers at various stages of their pipelines and, when our contig classi-

fication step is skipped, no reference genome nor external

information (e.g. genome map, BLAST database) are used.

Our method hinges on directly constructing a SG on the raw

reads, after a relatively conservative chimera removal step. Doing so

avoid biases that may be introduced in the read trimming and error-

correction steps of an assembler. Indeed, overlaps between reads

may become shorter or even absent after error-correction. For in-

stance on the 45 NCTC datasets that we analyzed, the number of

edges in SGs built from Canu error-corrected reads is reduced by

41.4% compared with the SGs of raw reads. We have classified

edges in the AAG, by considering their underlying nucleotide lengths

and whether they contain reads that belong to other contigs. To go

further, one could define confidence metrics, e.g. based on local

graph structures.

Due to a combination of engineering choices and the inherent

difficulty of visualizing large assembly graphs, our software has only

been tested on bacterial genomes and is unlikely to readily run on

larger genomes. However, the techniques presented here (AAG, path

search between contig extremities, weighted Hamiltonian cycles) are

not specific to bacterial assembly, and should in principle be applic-

able to small and large eukaryotes. However more work would be

needed, e.g. to scale path search to thousands of contigs, refine

thresholds (contig filter, adjacency edges), handle inter-

chromosomal repeats, and an evaluation of the relevance of

Hamiltonian cycles for larger genomes.

We stress that our techniques currently do not aim at detecting

misassemblies within contigs. We also did not focus on the difficulty

of running multiple assembly programs, but we note that the process

has previously been reported to be challenging (Lariviere et al.,

2018). Our work is also orthogonal to assembly reconciliation

(Alhakami et al., 2017), which consists of constructing a higher-

contiguity assembly by merging the results of multiple assemblers.

No attempt was made to optimize the detection of overlaps be-

tween reads though this could be a direction for improvement.

Finally, automatic post-assembly improvements based on the AAG

would be a natural extension of this work. One could use the AAG

to design an oracle that suggests a limited number of (long-range)

PCR experiments for resolving individual repeats.
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