
Sequence analysis

Shouji: a fast and efficient pre-alignment filter

for sequence alignment

Mohammed Alser1,2,3,*, Hasan Hassan1, Akash Kumar2, Onur Mutlu1,3,*

and Can Alkan3,*

1Computer Science Department, ETH Zürich, Zürich 8092, Switzerland, 2Chair for Processor Design, Center For

Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universität Dresden, 01062

Dresden, Germany and 3Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Abstract

Motivation: The ability to generate massive amounts of sequencing data continues to overwhelm

the processing capability of existing algorithms and compute infrastructures. In this work, we

explore the use of hardware/software co-design and hardware acceleration to significantly reduce

the execution time of short sequence alignment, a crucial step in analyzing sequenced genomes.

We introduce Shouji, a highly parallel and accurate pre-alignment filter that remarkably reduces

the need for computationally-costly dynamic programming algorithms. The first key idea of our

proposed pre-alignment filter is to provide high filtering accuracy by correctly detecting all com-

mon subsequences shared between two given sequences. The second key idea is to design a

hardware accelerator that adopts modern field-programmable gate array (FPGA) architectures to

further boost the performance of our algorithm.

Results: Shouji significantly improves the accuracy of pre-alignment filtering by up to two orders

of magnitude compared to the state-of-the-art pre-alignment filters, GateKeeper and SHD. Our

FPGA-based accelerator is up to three orders of magnitude faster than the equivalent CPU imple-

mentation of Shouji. Using a single FPGA chip, we benchmark the benefits of integrating Shouji

with five state-of-the-art sequence aligners, designed for different computing platforms. The add-

ition of Shouji as a pre-alignment step reduces the execution time of the five state-of-the-art

sequence aligners by up to 18.8�. Shouji can be adapted for any bioinformatics pipeline that

performs sequence alignment for verification. Unlike most existing methods that aim to accelerate

sequence alignment, Shouji does not sacrifice any of the aligner capabilities, as it does not modify

or replace the alignment step.

Availability and implementation: https://github.com/CMU-SAFARI/Shouji.

Contact: mohammed.alser@inf.ethz.ch or onur.mutlu@inf.ethz.ch or calkan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most fundamental computational steps in most bioinfor-

matics analyses is the detection of the differences/similarities be-

tween two genomic sequences. Edit distance and pairwise alignment

are two approaches to achieve this step, formulated as approximate

string matching (Navarro, 2001). Edit distance approach is a

measure of how much two sequences differ. It calculates the min-

imum number of edits needed to convert a sequence into the other.

The higher the edit distance the more different the sequences from

one another. Commonly allowed edit operations include deletion,

insertion and substitution of characters in one or both sequences.

Pairwise alignment is a measure of how much the sequences are

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4255

Bioinformatics, 35(21), 2019, 4255–4263

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

https://github.com/CMU-SAFARI/Shouji
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/

alike. It calculates the alignment that is an ordered list of characters

representing possible edit operations and matches required to

change one of the two given sequences into the other. As any two

sequences can have several different arrangements of the edit opera-

tions and matches (and hence different alignments), the alignment

algorithm usually involves a backtracking step. This step finds the

alignment that has the highest alignment score (called optimal align-

ment). The alignment score is the sum of the scores of all edits and

matches along the alignment implied by a user-defined scoring func-

tion. The edit distance and pairwise alignment approaches are non-

additive measures (Calude et al., 2002). This means that if we divide

the sequence pair into two consecutive subsequence pairs, the edit

distance of the entire sequence pair is not necessarily equivalent to

the sum of the edit distances of the shorter pairs. Instead, we need to

examine all possible prefixes of the two input sequences and keep

track of the pairs of prefixes that provide an optimal solution.

Enumerating all possible prefixes is necessary for tolerating edits

that result from both sequencing errors (Fox et al., 2014) and genet-

ic variations (McKernan et al., 2009). Therefore, the edit distance

and pairwise alignment approaches are typically implemented as

dynamic programming algorithms to avoid re-examining the same

prefixes many times. These implementations, such as Levenshtein

distance (Levenshtein, 1966), Smith–Waterman (Smith and

Waterman, 1981) and Needleman–Wunsch (Needleman and

Wunsch, 1970), are inefficient as they have quadratic time and space

complexity [i.e. O(m2) for a sequence length of m]. Many attempts

were made to boost the performance of existing sequence aligners.

Despite more than three decades of attempts, the fastest known edit

distance algorithm (Masek and Paterson, 1980) has a running time

of O(m2/log2m) for sequences of length m, which is still nearly

quadratic (Backurs and Indyk, 2017). Therefore, more recent works

tend to follow one of two key new directions to boost the perform-

ance of sequence alignment and edit distance implementations:

(i) accelerating the dynamic programming algorithms using hard-

ware accelerators. (ii) Developing filtering heuristics that reduce the

need for the dynamic programming algorithms, given an edit dis-

tance threshold.

Hardware accelerators are becoming increasingly popular for

speeding up the computationally expensive alignment and edit dis-

tance algorithms (Al Kawam et al., 2017; Aluru and Jammula,

2014; Ng et al., 2017; Sandes et al., 2016). Hardware accelerators

include multi-core and single instruction multiple data (SIMD) cap-

able central processing units (CPUs), graphics processing units

(GPUs) and field-programmable gate arrays (FPGAs). The classical

dynamic programming algorithms are typically accelerated by com-

puting only the necessary regions (i.e. diagonal vectors) of the

dynamic programming matrix rather than the entire matrix, as pro-

posed in Ukkonen’s banded algorithm (Ukkonen, 1985). The num-

ber of the diagonal bands required for computing the dynamic

programming matrix is 2E þ 1, where E is a user-defined edit dis-

tance threshold. The banded algorithm is still beneficial even with

its recent sequential implementations as in Edlib (�So�si�c and �Siki�c,

2017). The Edlib algorithm is implemented in C for standard CPUs

and it calculates the banded Levenshtein distance. Parasail (Daily,

2016) exploits both Ukkonen’s banded algorithm and SIMD-

capable CPUs to compute a banded alignment for a sequence pair

with a user-defined scoring function. SIMD instructions offer signifi-

cant parallelism to the matrix computation by executing the same

vector operation on multiple operands at once. The multi-core archi-

tecture of CPUs and GPUs provides the ability to compute align-

ments of many sequence pairs independently and concurrently

(Georganas et al., 2015; Liu and Schmidt, 2015). GSWABE (Liu and

Schmidt, 2015) exploits GPUs (Tesla K40) for highly parallel com-

putation of global alignment with a user-defined scoring function.

CUDASWþþ 3.0 (Liu et al., 2013) exploits the SIMD capability of

both CPUs and GPUs (GTX690) to accelerate the computation of

the Smith–Waterman algorithm with a user-defined scoring func-

tion. CUDASWþþ 3.0 provides only the optimal score, not the opti-

mal alignment (i.e. no backtracking step). Other designs, for

instance FPGASW (Fei et al., 2018), exploit the very large number

of hardware execution units in FPGAs (Xilinx VC707) to form a lin-

ear systolic array (Kung, 1982). Each execution unit in the systolic

array is responsible for computing the value of a single entry of the

dynamic programming matrix. The systolic array computes a single

vector of the matrix at a time. The data dependencies between the

entries restrict the systolic array to computing the vectors sequential-

ly (e.g. top-to-bottom, left-to-right or in an anti-diagonal manner).

FPGA accelerators seem to yield the highest performance gain com-

pared to the other hardware accelerators (Banerjee et al., 2018;

Chen et al., 2016; Fei et al., 2018; Waidyasooriya and Hariyama,

2015). However, many of these efforts either simplify the scoring

function, or only take into account accelerating the computation of

the dynamic programming matrix without providing the optimal

alignment as in Chen et al. (2014), Liu et al. (2013) and Nishimura

et al. (2017). Different and more sophisticated scoring functions are

typically needed to better quantify the similarity between two

sequences (Henikoff and Henikoff, 1992; Wang et al., 2011). The

backtracking step required for the optimal alignment computation

involves unpredictable and irregular memory access patterns, which

poses a difficult challenge for efficient hardware implementation.

Pre-alignment filtering heuristics aim to quickly eliminate some

of the dissimilar sequences before using the computationally expen-

sive optimal alignment algorithms. There are a few existing filtering

techniques, such as the Adjacency Filter (Xin et al., 2013), which is

implemented for standard CPUs as part of FastHASH (Xin et al.,

2013). SHD (Xin et al., 2015) is a SIMD-friendly bit-vector filter

that provides higher filtering accuracy compared to the Adjacency

Filter. GRIM-Filter (Kim et al., 2018) exploits the high memory

bandwidth and the logic layer of 3D-stacked memory to perform

highly-parallel filtering in the DRAM chip itself. GateKeeper (Alser

et al., 2017a) is designed to utilize the large amounts of parallelism

offered by FPGA architectures. MAGNET (Alser et al., 2017b)

shows a low number of falsely accepted sequence pairs but its cur-

rent implementation is much slower than that of SHD or

GateKeeper. GateKeeper (Alser et al., 2017a) provides a high filter-

ing speed but suffers from relatively high number of falsely accepted

sequence pairs.

Our goal in this work is to significantly reduce the time spent on

calculating the optimal alignment of short sequences and maintain

high filtering accuracy. To this end, we introduce Shouji (Named

after a traditional Japanese door that is designed to slide open http://

www.aisf.or.jp/�jaanus/deta/s/shouji.htm), a new, fast and very ac-

curate pre-alignment filter. Shouji is based on two key ideas: (i) a

new filtering algorithm that remarkably reduces the need for compu-

tationally expensive banded optimal alignment by rapidly excluding

dissimilar sequences from the optimal alignment calculation. (ii)

Judicious use of the parallelism-friendly architecture of modern

FPGAs to greatly speed up this new filtering algorithm.

The contributions of this paper are as follows:

• We introduce Shouji, a highly parallel and highly accurate pre-

alignment filter, which uses a sliding search window approach to

quickly identify dissimilar sequences without the need for com-

putationally expensive alignment algorithms. We overcome the

4256 M.Alser et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

http://www.aisf.or.jp/&hx223C;jaanus/deta/s/shouji.htm
http://www.aisf.or.jp/&hx223C;jaanus/deta/s/shouji.htm
http://www.aisf.or.jp/&hx223C;jaanus/deta/s/shouji.htm

implementation limitations of MAGNET (Alser et al., 2017b).

We build two hardware accelerator designs that adopt modern

FPGA architectures to boost the performance of both Shouji and

MAGNET.
• We provide a comprehensive analysis of the run time and space

complexity of Shouji and MAGNET algorithms. Shouji and

MAGNET are asymptomatically inexpensive and run in linear

time with respect to the sequence length and the edit distance

threshold.
• We demonstrate that Shouji and MAGNET significantly improve

the accuracy of pre-alignment filtering by up to two and four

orders of magnitude, respectively, compared to GateKeeper and

SHD.
• We demonstrate that our FPGA implementations of Shouji and

MAGNET are two to three orders of magnitude faster than their

CPU implementations. We demonstrate that integrating Shouji

with five state-of-the-art aligners reduces the execution time of

the sequence aligner by up to 18.8�.

2 Materials and methods

2.1 Overview
Our goal is to quickly reject dissimilar sequences with high accuracy

such that we reduce the need for the computationally-costly align-

ment step. To this end, we propose the Shouji algorithm to achieve

highly accurate filtering. Then, we accelerate Shouji by taking

advantage of the parallelism of FPGAs to achieve fast filtering oper-

ations. The key filtering strategy of Shouji is inspired by the pigeon-

hole principle, which states that if E items are distributed into E þ 1

boxes, then one or more boxes would remain empty. In the context

of pre-alignment filtering, this principle provides the following key

observation: if two sequences differ by E edits, then the two sequen-

ces should share at least a single common subsequence (i.e. free of

edits) and at most E þ 1 non-overlapping common subsequences,

where E is the edit distance threshold. With the existence of at most

E edits, the total length of these non-overlapping common subse-

quences should not be <m �E, where m is the sequence length.

Shouji employs the pigeonhole principle to decide whether or not

two sequences are potentially similar. Shouji finds all the non-

overlapping subsequences that exist in both sequences. If the total

length of these common subsequences <m�E, then there exist more

edits than the allowed edit distance threshold, and hence Shouji

rejects the two given sequences. Otherwise, Shouji accepts the two

sequences. Next, we discuss the details of Shouji.

2.2 Shouji pre-alignment filter
Shouji identifies the dissimilar sequences, without calculating the

optimal alignment, in three main steps. (i) The first step is to con-

struct what we call a neighborhood map that visualizes the pairwise

matches and mismatches between two sequences given an edit dis-

tance threshold of E characters. (ii) The second step is to find all the

non-overlapping common subsequences in the neighborhood map

using a sliding search window approach. (iii) The last step is to ac-

cept or reject the given sequence pairs based on the length of the

found matches. If the length of the found matches is small, then

Shouji rejects the input sequence pair.

2.2.1 Building the neighborhood map

The neighborhood map, N, is a binary m by m matrix, where m is the

sequence length. Given a text sequence T[1. . .m], a pattern

sequence P[1. . .m], and an edit distance threshold E, the neighborhood

map represents the comparison result of the ith character of P with

the jth character of T, where i and j satisfy 1 � i � m and

i�E � j � i þ E. The entry N[i, j] of the neighborhood map can be

calculated as follows:

N½i; j� ¼ 0; if P i½ � ¼ T j½ �
1; if P i½ � 6¼ T½j�

�
(1)

We present in Figure 1 an example of a neighborhood map for

two sequences, where a pattern P differs from a text T by three

edits.

The entry N[i, j] is set to zero if the ith character of the pattern

matches the jth character of the text. Otherwise, it is set to one. The

way we build our neighborhood map ensures that computing each

of its entries is independent of every other, and thus the entire map

can be computed all at once in a parallel fashion. Hence, our neigh-

borhood map is well suited for highly parallel computing platforms

(Alser et al., 2017a; Seshadri et al., 2017). Note that in sequence

alignment algorithms, computing each entry of the dynamic pro-

graming matrix depends on the values of the immediate left, upper

left and upper entries of its own. Different from ‘dot plot’ or ‘dot

matrix’ (visual representation of the similarities between two closely

similar genomic sequences) that is used in FASTA/FASTP (Lipman

and Pearson, 1985), our neighborhood map computes only neces-

sary diagonals near the main diagonal of the matrix (e.g. seven diag-

onals shown in Fig. 1).

j 1 2 3 4 5 6 7 8 9 10 11 12

G G T G C A G A G C T C

G

G

T

G

A

G

A

G

T

T

G

T

i

1

2

3

4

5

6

7

8

9

10

11

12

Neighborhood map:

0 0 1 0

0 0 1 0 1

1 1 0 1 1 1

0 0 1 0 1 1 0

1 1 1 1 0 1 0

1 0 1 1 0 1 0

1 1 0 1 0 1 1

1 1 0 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 0 1

1 0 1 1 1

1 1 0 1

Three common

subsequences

Search

Window # 7

Search

Window # 1

0 0 0 0 1 0 0 0 0 1 0 1

Last bottom

right entry

Search window # 1

Search window # 2

Search window # 3

Search window # 4

Search window # 5

Search window # 6

Search window # 7

Search window # 8
Shouji bit-vector:

. . . .

Fig. 1. Neighborhood map (N) and the Shouji bit-vector, for text

T¼GGTGCAGAGCTC and pattern P¼GGTGAGAGTTGT for E ¼ 3. The three

common subsequences (i.e. GGTG, AGAG and T) are highlighted in gray. We

use a search window of size four columns (two examples of which are high-

lighted in black) with a step size of a single column. Shouji searches diagonal-

ly within each search window for the 4-bit vector that has the largest number

of zeros. Once found, Shouji examines if the found 4-bit vector maximizes the

number of zeros at the corresponding location of the 4-bit vector in the Shouji

bit-vector. If so, then Shouji stores this 4-bit vector in the Shouji bit-vector at

its corresponding location

Shouji: a fast and efficient pre-alignment filter for sequence alignment 4257

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

2.2.2 Identifying the diagonally consecutive matches

The key goal of this step is to accurately find all the non-overlapping

common subsequences shared between a pair of sequences. The

accuracy of finding these subsequences is crucial for the overall fil-

tering accuracy, as the filtering decision is made solely based on total

subsequence length. With the existence of E edits, there are at most

E þ 1 non-overlapping common subsequences (based on the

pigeonhole principle) shared between a pair of sequences. Each non-

overlapping common subsequence is represented as a streak of diag-

onally consecutive zeros in the neighborhood map (as highlighted in

yellow in Fig. 1). These streaks of diagonally consecutive zeros are

distributed along the diagonals of the neighborhood map without

any prior information about their length or number. One way of

finding these common subsequences is to use a brute-force ap-

proach, which examines all the streaks of diagonally consecutive

zeros that start at the first column and selects the streak that has the

largest number of zeros as the first common subsequences. It then

iterates over the remaining part of the neighborhood map to find the

other common subsequences. However, this brute-force approach is

infeasible for highly optimized hardware implementation as the

search space is unknown at design time. Shouji overcomes this issue

by dividing the neighborhood map into equal-size parts. We call

each part a search window. Limiting the size of the search space

from the entire neighborhood map to a search window has three key

benefits. (i) It helps to provide a scalable architecture that can be

implemented for any sequence length and edit distance threshold.

(ii) Downsizing the search space into a reasonably small sub-matrix

with a known dimension at design time limits the number of all pos-

sible permutations of each bit-vector to 2n, where n is the search

window size. This reduces the size of the look-up tables (LUTs)

required for an FPGA implementation and simplifies the overall

design. (iii) Each search window is considered as a smaller

sub-problem that can be solved independently and rapidly with high

parallelism. Shouji uses a search window of four columns wide, as

we illustrate in Figure 1. We need m search windows for processing

two sequences, each of which is of length m characters. Each search

window overlaps with its next neighboring search window by three

columns. This ensures covering the entire neighborhood map and

finding all the common subsequences regardless of their starting

location. We select the width of each search window to be four col-

umns to guarantee finding the shortest possible common subse-

quence, which is a single match located between two mismatches

(i.e. ‘101’). However, we observe that the bit pattern ‘101’ is not al-

ways necessarily a part of the correct alignment (or the common

subsequences). For example, the bit pattern ‘101’ exists once as a

part of the correct alignment in Figure 1, but it also appears five

times in other different locations that are not included in the correct

alignment. To improve the accuracy of finding the diagonally con-

secutive matches, we increase the length of the diagonal vector to be

examined to four bits. We also experimentally evaluate different

search window sizes in Supplementary Materials, Section 6.1. We

find that a search window size of four columns provides the highest

filtering accuracy without falsely rejecting similar sequences.

Shouji finds the diagonally consecutive matches that are part of

the common subsequences in the neighborhood map in two main

steps. Step 1: for each search window, Shouji finds a 4-bit diagonal

vector that has the largest number of zeros. Shouji greedily considers

this vector as a part of the common subsequence as it has the least

possible number of edits (i.e. 1’s). Finding always the maximum

number of matches is necessary to avoid overestimating the actual

number of edits and eventually preserving all similar sequences.

Shouji achieves this step by comparing the 4 bits of each of the

2E þ 1 diagonal vectors within a search window and selects the

4-bit vector that has the largest number of zeros. In the case where

two 4-bit subsequences have the same number of zeros, Shouji

breaks the ties by selecting the first one that has a leading zero.

Then, Shouji slides the search window by a single column (i.e. step

size ¼1 column) toward the last bottom right entry of the neighbor-

hood map and repeats the previous computations. Thus, Shouji

performs ‘Step 1’ m times using m search windows, where m is the

sequence length. Step 2: the last step is to gather the results found

for each search window (i.e. 4-bit vector that has the largest number

of zeros) and construct back all the diagonally consecutive matches.

For this purpose, Shouji maintains a Shouji bit-vector of length m

that stores all the zeros found in the neighborhood map as we illus-

trate in Figure 1. For each sliding search window, Shouji examines if

the selected 4-bit vector maximizes the number of zeros in the

Shouji bit-vector at the same corresponding location. If so, Shouji

stores the selected 4-bit vector in the Shouji bit-vector at the same

corresponding location. This is necessary to avoid overestimating

the number of edits between two given sequences. The common sub-

sequences are represented as streaks of consecutive zeros in the

Shouji bit-vector.

2.2.3 Filtering out dissimilar sequences

The last step of Shouji is to calculate the total number of edits (i.e.

ones) in the Shouji bit-vector. Shouji examines if the total number of

ones in the Shouji bit-vector >E. If so, Shouji excludes the two

sequences from the optimal alignment calculation. Otherwise,

Shouji considers the two sequences similar within the allowed edit

distance threshold and allows their optimal alignment to be com-

puted using optimal alignment algorithms. The Shouji bit-vector

represents the differences between two sequences along the entire

length of the sequence, m. However, Shouji is not limited to end-to-

end edit distance calculation. Shouji is also able to provide edit dis-

tance calculation in local and glocal (semi-global) fashion. For ex-

ample, achieving local edit distance calculation requires ignoring the

ones that are located at the two ends of the Shouji bit-vector.

We present an example of local edit distance between two sequences

of different length in Supplementary Materials, Section 8. Achieving

glocal edit distance calculation requires excluding the ones that are

located at one of the two ends of the Shouji bit-vector from the total

count of the ones in the Shouji bit-vector. This is important for cor-

rect pre-alignment filtering for global, local and glocal alignment

algorithms. We provide the pseudocode of Shouji and discuss its

computational complexity in Supplementary Materials, Section 6.2.

We also present two examples of applying the Shouji filtering algo-

rithm in Supplementary Materials, Section 8.

2.3 Accelerator architecture
Our second aim is to substantially accelerate Shouji, by leveraging

the parallelism of FPGAs. In this section, we present our hardware

accelerator that is designed to exploit the large amounts of parallel-

ism offered by modern FPGA architectures (Aluru and Jammula,

2014; Herbordt et al., 2007; Trimberger, 2015). We then outline the

implementation of Shouji to be used in our accelerator design.

Figure 2 shows the hardware architecture of the accelerator. It con-

tains a user-configurable number of filtering units. Each filtering

unit provides pre-alignment filtering independently from other units.

The workflow of the accelerator starts with transmitting the se-

quence pair to the FPGA through the fastest communication

4258 M.Alser et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data

medium available on the FPGA board (i.e. PCIe). The sequence con-

troller manages and provides the necessary input signals for each fil-

tering unit in the accelerator. Each filtering unit requires two

sequences of the same length and an edit distance threshold. The re-

sult controller gathers the output result (i.e. a single bit of value ‘1’

for similar sequences and ‘0’ for dissimilar sequences) of each filter-

ing unit and transmits them back to the host side in the same order

as their sequences are transmitted to the FPGAs.

The host-FPGA communication is achieved using RIFFA 2.2

(Jacobsen et al., 2015). To make the best use of the available resources in

the FPGA chip, our algorithm utilizes the operations that are easily sup-

ported on an FPGA, such as bitwise operations, bit shifts and bit count.

To build the neighborhood map on the FPGA, we use the observation

that the main diagonal can be implemented using a bitwise XOR oper-

ation between the two given sequences. The upper E diagonals can be

implemented by gradually shifting the pattern (P) to the right-hand direc-

tion and then performing bitwise XOR with the text (T). This allows

each character of P to be compared with the right-hand neighbor charac-

ters (up to E characters) of its corresponding character of T. The lower E

diagonals can be implemented in a way similar to the upper E diagonals,

but here the shift operation is performed in the left-hand direction. This

ensures that each character of P is compared with the left-hand neighbor

characters (up to E characters) of its corresponding character of T.

We also build an efficient hardware architecture for each search

window of the Shouji algorithm. It quickly finds the number of zeros in

each 4-bit vector using a hardware look-up table that stores the 16 pos-

sible permutations of a 4-bit vector along with the number of zeros for

each permutation. We present the block diagram of the search window

architecture in Supplementary Materials, Section 6.3. Our hardware

implementation of the Shouji filtering unit is independent of the specific

FPGA-platform as it does not rely on any vendor-specific computing

elements (e.g. intellectual property cores). However, each FPGA board

has different resources and hardware capabilities that can directly or in-

directly affect the performance and the data throughput of the design.

The maximum data throughput of the design and the available FPGA

resources determine the number of filtering units in the accelerator.

Thus, if, e.g. the memory bandwidth is saturated, then increasing the

number of filtering units would not improve performance.

3 Results

In this section, we evaluate (i) the filtering accuracy, (ii) the FPGA

resource utilization, (iii) the execution time of Shouji, our hardware

implementation of MAGNET (Alser et al., 2017b), GateKeeper

(Alser et al., 2017a) and SHD (Xin et al., 2015), (iv) the benefits of

the pre-alignment filters together with state-of-the-art aligners and

(v) the benefits of Shouji together with state-of-the-art read map-

pers. As we mention in Section 1, MAGNET leads to a small num-

ber of falsely accepted sequence pairs but suffers from poor

performance. We comprehensively explore this algorithm and pro-

vide an efficient and fast hardware implementation of MAGNET in

Supplementary Materials, Section 7. We run all experiments using a

3.6 GHz Intel i7-3820 CPU with 8 GB RAM. We use a Xilinx

Virtex 7 VC709 board (Xilinx, 2014) to implement our accelerator

architecture (for both Shouji and MAGNET). We build the FPGA

design using Vivado 2015.4 in synthesizable Verilog.

3.1 Dataset description
Our experimental evaluation uses 12 different real datasets. Each

dataset contains 30 million real sequence pairs. We obtain three dif-

ferent read sets (ERR240727_1, SRR826460_1 and SRR826471_1)

of the whole human genome that include three different read lengths

(100, 150 and 250 bp). We download these three read sets from

EMBL-ENA (www.ebi.ac.uk/ena). We map each read set to the

human reference genome (GRCh37) using the mrFAST (Alkan et al.,

2009) mapper. We obtain the human reference genome from the

1000 Genomes Project (1000 Genomes Project Consortium, 2012).

For each read set, we use four different maximum numbers of

allowed edits using the �e parameter of mrFAST to generate four

real datasets. Each dataset contains the sequence pairs that are gen-

erated by the mrFAST mapper before the read alignment step. This

enables us to measure the effectiveness of the filters using both

aligned and unaligned sequences over a wide range of edit distance

thresholds. We summarize the details of these 12 datasets in

Supplementary Materials, Section 9. For the reader’s convenience,

when referring to these datasets, we number them from 1 to 12 (e.g.

set_1 to set_12). We use Edlib (�So�si�c and �Siki�c, 2017) to generate

the ground truth edit distance value for each sequence pair.

3.2 Filtering accuracy
We evaluate the accuracy of a pre-alignment filter by computing its

false accept rate and false reject rate. We first assess the false accept

rate of Shouji, MAGNET (Alser et al., 2017b), SHD (Xin et al.,

2015) and GateKeeper (Alser et al., 2017a) across different edit dis-

tance thresholds and datasets. The false accept rate is the ratio of the

number of dissimilar sequences that are falsely accepted by the filter

and the number of dissimilar sequences that are rejected by the opti-

mal sequence alignment algorithm. We aim to minimize the false

accept rate to maximize that number of dissimilar sequences that are

eliminated. In Figure 3, we provide the false accept rate of the four

filters across our 12 datasets and edit distance thresholds of 0–10%

of the sequence length (we provide the exact values in Section 10 in

Supplementary Materials).

Based on Figure 3, we make four key observations. (i) We ob-

serve that Shouji, MAGNET, SHD and GateKeeper are less accurate

in examining the low-edit sequences (i.e. datasets 1, 2, 5, 6, 9 and

10) than the high-edit sequences (i.e. datasets 3, 4, 7, 8, 11 and 12).

(ii) SHD (Xin et al., 2015) and GateKeeper (Alser et al., 2017a)

become ineffective for edit distance thresholds of >8% (E ¼ 8), 5%

(E ¼ 7) and 3% (E ¼ 7) for sequence lengths of 100, 150 and 250

characters, respectively. This causes them to examine each sequence

pair unnecessarily twice (i.e. once by GateKeeper or SHD and once

by the alignment algorithm). (iii) For high-edit datasets, Shouji pro-

vides up to 17.2, 73 and 467� (2.4, 2.7 and 38� for low-edit

Fig. 2. Overview of our hardware accelerator architecture. The filtering units

can be replicated as many times as possible based on the resources available

on the FPGA

Shouji: a fast and efficient pre-alignment filter for sequence alignment 4259

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
http://www.ebi.ac.uk/ena
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data

datasets) smaller false accept rate compared to GateKeeper and

SHD for sequence lengths of 100, 150 and 250 characters, respect-

ively. (iv) MAGNET shows up to 1577, 3550 and 25 552� lower

false accept rates for high-edit datasets (3.5, 14.7 and 135� for low-

edit datasets) compared to GateKeeper and SHD for sequence

lengths of 100, 150 and 250 characters, respectively. MAGNET also

shows up to 205, 951 and 16 760� lower false accept rates for high-

edit datasets (2.7, 10 and 88� for low-edit datasets) over Shouji for

sequence lengths of 100, 150 and 250 characters, respectively.

We conclude that Shouji and MAGNET (i) maintain a very low

rate of falsely accepted dissimilar sequences and (ii) significantly

improve the accuracy of pre-alignment filtering by up to two and

four orders of magnitude, respectively, compared to GateKeeper

and SHD.

Second, we assess the false reject rates of pre-alignment filters in

Supplementary Materials, Section 10. We demonstrate that Shouji,

SHD (Xin et al., 2015) and GateKeeper (Alser et al., 2017a) all have

a 0% false reject rate. We also observe that MAGNET falsely rejects

correct sequence pairs, which is unacceptable for a reliable filter.

Hence, we conclude that Shouji is the most effective pre-alignment

filter, with a low false accept rate and a zero false reject rate.

3.3 Data throughput and resource analysis
The operating frequency of our FPGA accelerator is 250 MHz. At

this frequency, we observe a data throughput of nearly 3.3 GB/s,

which corresponds to �13.3 billion bases per second. This nearly

reaches the peak throughput of 3.64 GB/s provided by the RIFFA

(Jacobsen et al., 2015) communication channel that feeds data into

the FPGA using Gen3 4-lane PCIe. We examine the FPGA resource

utilization of Shouji, MAGNET and GateKeeper (Alser et al.,

2017a) filters. SHD (Xin et al., 2015) is implemented in C with Intel

SSE instructions and cannot be directly implemented on an FPGA.

We examine the FPGA resource utilization for two commonly used

edit distance thresholds, 2 and 5% of the sequence length, as

reported in (Ahmadi et al., 2012; Alser et al., 2017a; Hatem et al.,

2013; Xin et al., 2015). The VC709 FPGA chip contains 433 200

slice LUTs (look-up tables) and 866 400 slice registers (flip-flops).

Table 1 lists the FPGA resource utilization for a single filtering unit.

We make three main observations. (i) The design for a single

MAGNET filtering unit requires about 10.5 and 37.8% of the avail-

able LUTs for edit distance thresholds of 2 and 5, respectively.

Hence, MAGNET can process 8 and 2 sequence pairs concurrently

for edit distance thresholds of 2 and 5, respectively, without violat-

ing the timing constraints of our accelerator. (ii) The design for a

single Shouji filtering unit requires about 15–21.9� fewer LUTs

compared to MAGNET. This enables Shouji to achieve more paral-

lelism over the MAGNET design as it can have 16 filtering units

within the same FPGA chip. (iii) GateKeeper requires about 26.9–

53� and 1.7–2.4� fewer LUTs compared to MAGNET and Shouji,

respectively. GateKeeper can also examine 16 sequence pairs at the

same time.

We conclude that the FPGA resource usage is correlated with the

filtering accuracy. For example, the least accurate filter,

GateKeeper, occupies the least FPGA resources. Yet, Shouji has very

low FPGA resource usage.

3.4 Filtering speed
We analyze the execution time of MAGNET and Shouji compared

to SHD (Xin et al., 2015) and GateKeeper (Alser et al., 2017a). We

evaluate GateKeeper, MAGNET and Shouji using a single FPGA

chip and run SHD using a single CPU core. SHD supports a se-

quence length of up to only 128 characters (due to the SIMD register

size). To ensure as fair a comparison as possible, we allow SHD to

divide the long sequences into batches of 128 characters, examine

each batch individually, and then sum up the results. In Table 2, we

provide the execution time of the four pre-alignment filters using

120 million sequence pairs under sequence lengths of 100 and 250

characters.

We make four key observations. (i) Shouji’s execution time is as

low as that of GateKeeper (Alser et al., 2017a), and 2–8� lower

than that of MAGNET. This observation is in accord with our ex-

pectation and can be explained by the fact that MAGNET has more

resource overhead that limits the number of filtering units on an

FPGA. Yet Shouji is up to two orders of magnitude more accurate

than GateKeeper (as we show earlier in Section 3.2). (ii) Shouji is up

to 28 and 335� faster than SHD using one and 16 filtering units, re-

spectively. (iii) MAGNET is up to 28 and 167.5� faster than SHD

using one and eight filtering units, respectively. As we present in

Supplementary Materials, Section 12, the hardware-accelerated

versions of Shouji and MAGNET provide up to three orders of

magnitude of speedup over their functionally equivalent CPU

implementations.

(a)

(b)

(c)

Fig. 3. The false accept rate of Shouji, MAGNET, SHD and GateKeeper across

12 real datasets. We use a wide range of edit distance thresholds (0–10% of

the sequence length) for sequence lengths of (a) 100, (b) 150 and (c) 250

Table 1. FPGA resource usage for a single filtering unit of Shouji,

MAGNET and GateKeeper, for a sequence length of 100 and under

different edit distance thresholds

Filter E Single filtering unit Max. no. of

filtering units
Slice LUT (%) Slice register (%)

Shouji 2 0.69 0.01 16

5 1.72 0.01 16

MAGNET 2 10.50 0.8 8

5 37.80 2.30 2

GateKeeper 2 0.39 0.01 16

5 0.71 0.01 16

Note: We highlight the best value in each column.

4260 M.Alser et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data

We conclude that Shouji is extremely fast and accurate. Shouji’s

performance also scales very well over a wide range of both edit dis-

tance thresholds and sequence lengths.

3.5 Effects of pre-alignment filtering on sequence

alignment
We analyze the benefits of integrating our proposed pre-alignment

filter (and other filters) with state-of-the-art aligners. Table 3

presents the effect of different pre-alignment filters on the overall

alignment time. We select five best-performing aligners, each of

which is designed for a different type of computing platform. We

use a total of 120 million real sequence pairs from our previously

described four datasets (set_1 to set_4) in this analysis. We evaluate

the actual execution time of Edlib (�So�si�c and �Siki�c, 2017) and

Parasail (Daily, 2016) on our machine. However, FPGASW (Fei

et al., 2018), CUDASWþþ 3.0 (Liu et al., 2013) and GSWABE (Liu

and Schmidt, 2015) are not open-source and not available to us.

Therefore, we scale the reported number of computed entries of the

dynamic programming matrix in a second (i.e. GCUPS) as follows:

120 000 000/(GCUPS/1002). We make three key observations. (i)

The execution time of Edlib (�So�si�c and �Siki�c, 2017) reduces by up to

18.8, 16.5, 13.9 and 5.2� after the addition of Shouji, MAGNET,

GateKeeper and SHD, respectively, as a pre-alignment filtering step.

We also observe a very similar trend for Parasail (Daily, 2016) com-

bined with each of the four pre-alignment filters. (ii) Aligners

designed for FPGAs and GPUs follow a different trend than that we

observe in the CPU aligners. We observe that FPGASW (Fei et al.,

2018), CUDASWþþ 3.0 (Liu et al., 2013) and GSWABE (Liu and

Schmidt, 2015) are faster alone than with SHD (Xin et al., 2015)

incorporated as the pre-alignment filtering step. Shouji, MAGNET

and GateKeeper (Alser et al., 2017a) still significantly reduce the

overall execution time of both FPGA and GPU based aligners.

Shouji reduces the overall alignment time of FPGASW (Fei et al.,

2018), CUDASWþþ 3.0 (Liu et al., 2013) and GSWABE (Liu and

Schmidt, 2015) by factors of up to 14.5, 14.2 and 17.9�, respective-

ly. This is up to 1.35, 1.4 and 85� more than the effect of

MAGNET, GateKeeper and SHD on the end-to-end alignment time.

(iii) We observe that if the execution time of the aligner is much

larger than that of the pre-alignment filter (which is the case for Edlib,

Parasail and GSWABE for E ¼ 5 characters), then MAGNET provides

up to 1.3� more end-to-end speedup over Shouji. This is expected as

MAGNET produces a smaller false accept rate compared to Shouji.

However, unlike MAGNET, Shouji provides a 0% false reject rate.

We conclude that among the four pre-alignment filters, Shouji is the

best-performing pre-alignment filter in terms of both speed and accur-

acy. Integrating Shouji with an aligner leads to strongly positive bene-

fits and reduces the aligner’s total execution time by up to 18.8�.

3.6 Effects of pre-alignment filtering on the read mapper
After confirming the benefits of integrating Shouji with sequence

alignment algorithms, we now evaluate the overall benefits of inte-

grating Shouji with the mrFAST (v. 2.6.1) mapper (Alkan et al.,

2009) and BWA-MEM (Li, 2013). Table 4 summarizes the effect of

Shouji on the overall mapping time, when all reads from

ERR240727_1 (100 bp) are mapped to GRCh37 with an edit dis-

tance threshold of 2 and 5%. We also provide the total execution

time breakdown in Supplementary Table S15. We make two obser-

vations. (i) The mapping time of mrFAST reduces by a factor of up

to five after adding Shouji as the pre-alignment step. (ii) Integrating

Shouji with BWA-MEM, without optimizing the mapper, shows less

benefit than integrating Shouji with mrFAST (up to 1.07� reduction

in the overall mapping time). This is due to the fact that BWA-MEM

generates a low number of pairs that require verification using the

Table 2. Execution time (in seconds) of FPGA-based GateKeeper,

MAGNET, Shouji and CPU-based SHD under different edit distance

thresholds and sequence lengths

E GateKeeper MAGNET Shouji SHD

Sequence length¼100

2 2.89a (0.18b, 16c) 2.89 (0.36, 8) 2.89 (0.18, 16) 60.33

5 2.89 (0.18, 16) 2.89 (1.45, 2) 2.89 (0.18, 16) 67.92

Sequence length¼250

5 5.78 (0.72, 8) 5.78 (2.89d, 2) 5.78 (0.72d, 8) 141.09

15 5.78 (0.72, 8) 5.78 (5.78d, 1) 5.78 (0.72d, 8) 163.82

Note: We use set_1 to set_4 for a sequence length of 100 and set_9 to

set_12 for a sequence length of 250. We provide the performance results for

both a single filtering unit and the maximum number of filtering units (in

parentheses).
aExecution time, in seconds, for a single filtering unit.
bExecution time, in seconds, for maximum filtering units.
cThe number of filtering units.
dTheoretical results based on the resource utilization and data throughput.

Table 3. End-to-end execution time (in seconds) for several state-of-the-art sequence alignment algorithms, with and without pre-alignment

filters (Shouji, MAGNET, GateKeeper and SHD) and across different edit distance thresholds

E Edlib w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD

2 506.66 26.86 30.69 36.39 96.54

5 632.95 147.20 106.80 208.77 276.51

E Parasail w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD

2 1310.96 69.21 78.83 93.87 154.02

5 2044.58 475.08 341.77 673.99 741.73

E FPGASW w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD

2 11.33 0.78 1.04 0.99 61.14

5 11.33 2.81 3.34 3.91 71.65

E CUDASW11 3.0 w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD

2 10.08 0.71 0.96 0.90 61.05

5 10.08 2.52 3.13 3.50 71.24

E GSWABE w/ Shouji w/ MAGNET w/ GateKeeper w/ SHD

2 61.86 3.44 4.06 4.60 64.75

5 61.86 14.55 11.75 20.57 88.31

We highlight the best value in each row.

Shouji: a fast and efficient pre-alignment filter for sequence alignment 4261

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz234#supplementary-data

read aligner. We believe by changing the mapper to work better with

Shouji, we can achieve larger speedups. We leave this for future work.

4 Discussion and future work

We demonstrate that the concept of pre-alignment filtering provides

substantial benefits to the existing and future sequence alignment

algorithms. Accelerated sequence aligners that offer different

strengths and features are frequently introduced. Many of these

efforts either simplify the scoring function, or only take into account

accelerating the computation of the dynamic programming matrix

without supporting the backtracking step. Shouji offers the ability to

make the best use of existing aligners without sacrificing any of their

capabilities, as it does not modify or replace the alignment step. As

such, we hope that it catalyzes the adoption of specialized pre-

alignment accelerators in genome sequence analysis. However, the

use of specialized hardware chips may discourage users who are not

necessarily fluent in FPGAs. This concern can be alleviated in at

least two ways. First, the Shouji accelerator can be integrated more

closely inside the sequencing machines to perform real-time pre-

alignment filtering concurrently with sequencing (Lindner et al.,

2016). This allows a significant reduction in total genome analysis

time. Second, cloud computing offers access to a large number of

advanced FPGA chips that can be used concurrently via a simple

user-friendly interface. However, such a scenario requires the devel-

opment of privacy-preserving pre-alignment filters due to privacy

and legal concerns (Salinas and Li, 2017). Our next efforts will focus

on exploring privacy-preserving real-time pre-alignment filtering.

Another potential target of our research is to explore the possi-

bility of accelerating optimal alignment calculations for longer

sequences (few tens of thousands of characters) (Senol et al., 2018)

using pre-alignment filtering. Longer sequences pose two challenges.

First, we need to transfer more data to the FPGA chip to be able pro-

cess a single pair of sequences which is mainly limited by the data

transfer rate of the communication link (i.e. PCIe). Second, typical

edit distance threshold used for sequence alignment is 5% of the se-

quence length. For considerably long sequences, edit distance thresh-

old is around few hundreds of characters. For a large edit distance

threshold, each character of a given sequence is compared to a large

number of neighboring characters of the other given sequence. This

makes the short matches (e.g. a single zero or two consecutive zeros)

to occur more frequently in the diagonal vectors, which would nega-

tively affect the accuracy of Shouji. We will investigate this effect

and explore new pre-alignment filtering approaches for the sequenc-

ing data produced by third-generation sequence machines.

5 Conclusion

In this work, we propose Shouji, a highly parallel and accurate pre-

alignment filtering algorithm accelerated on a specialized hardware

platform. The key idea of Shouji is to rapidly and accurately elimin-

ate dissimilar sequences without calculating banded optimal align-

ment. Our hardware-accelerated version of Shouji provides, on

average, three orders of magnitude speedup over its functionally

equivalent CPU implementation. Shouji improves the accuracy of

pre-alignment filtering by up to two orders of magnitude compared

to the best-performing existing pre-alignment filter, GateKeeper.

The addition of Shouji as a pre-alignment step significantly reduces

the alignment time of state-of-the-art aligners by up to 18.8�, lead-

ing to the fastest alignment mechanism that we know of.

Funding

This work was supported in part by the National Institutes of Health grant

[HG006004 to O.M. and C.A.]; and the EMBO Installation grant [IG-2521

to C.A.]. M.A. is supported in part by the HiPEAC collaboration grant and

TUBITAK-2215 graduate fellowship from the Scientific and Technological

Research Council of Turkey.

Conflict of Interest: none declared.

Acknowledgements

We thank Tuan Duy Anh Nguyen for his valuable comments on the hardware

design.

References

1000 Genomes Project Consortium. (2012) An integrated map of genetic vari-

ation from 1,092 human genomes. Nature, 491, 56–65.

Ahmadi,A. et al. (2012) Hobbes: optimized gram-based methods for efficient

read alignment. Nucleic Acids Res., 40, e41.

Al Kawam,A. et al. (2017) A Survey of Software and Hardware Approaches to

Performing Read Alignment in Next Generation Sequencing. IEEE/ACM

Trans. Comput. Biol. Bioinform., 14, 1202–1213.

Alkan,C. et al. (2009) Personalized copy number and segmental duplication

maps using next-generation sequencing. Nat. Genet., 41, 1061–1067.

Alser,M. et al. (2017a) GateKeeper: a new hardware architecture for accelerat-

ing pre-alignment in DNA short read mapping. Bioinformatics, 33,

3355–3363.

Alser,M. et al. (2017b) MAGNET: understanding and improving the accuracy

of genome pre-alignment filtering. TIR, 13, 33–42.

Aluru,S. and Jammula,N. (2014) A review of hardware acceleration for com-

putational genomics. IEEE Des. Test, 31, 19–30.

Backurs,A. and Indyk,P. (2017) Edit distance cannot be computed in strongly

subquadratic time (unless SETH is false). In: Proceedings of the forty-se-

venth annual ACM symposium on Theory of computing, ACM, pp. 51–58.

Banerjee,S.S. et al. (2018) ASAP: accelerated short-read alignment on pro-

grammable hardware. arXiv, 1803, 02657.

Calude,C. et al. (2002) Additive distances and quasi-distances between words.

J. Univers. Comput. Sci., 8, 141–152.

Table 4. Overall mrFAST and BWA-MEM mapping time (in seconds) with and without Shouji, for an edit distance threshold of 2 and 5%

E # pairs to be verified # pairs rejected by Shouji Map. time w/o Shouji (s) Mapping time w/ Shouji

mrFAST 2 40 859 970 30 679 795 242.1 195.4s (1.2�)

5 874 403 170 764 688 027 2532 504.6s (5.0�)

BWA-MEM 2 653 543 585 036 668.1 626.9s (1.07�)

2a 8 209 193 7 847 125 670.1 625.8s (1.07�)

5 660 901 593 247 695.1 655.8s (1.06�)

5a 8 542 937 8 186 550 696.1 652.7s (1.07�)

aWe configure BWA-MEM to report all secondary alignments using �a.

4262 M.Alser et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

Chen,P. et al. (2014) Accelerating the next generation long read mapping with

the FPGA-based system. IEEE/ACM Trans. Comput. Biol. Bioinform., 11,

840–852.

Chen,Y.-T. et al. (2016) When spark meets FPGAs: a case study for

next-generation DNA sequencing acceleration. In: 2016 IEEE 24th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM). p.29. IEEE.

Daily,J. (2016) Parasail: SIMD C library for global, semi-global, and local

pairwise sequence alignments. BMC Bioinformatics, 17, 81.

Fei,X. et al. (2018) FPGASW: accelerating Large-Scale Smith–Waterman

Sequence Alignment Application with Backtracking on FPGA Linear

Systolic Array. Interdiscip. Sci., 10, 176–188.

Fox,E.J. et al. (2014) Accuracy of next generation sequencing platforms. Next

Gener. Seq. Appl., 1, 1000106.

Georganas,E. et al. (2015) merAligner: a fully parallel sequence aligner. In:

2015 IEEE International Parallel and Distributed Processing Symposium

(IPDPS). pp. 561–570. IEEE.

Hatem,A. et al. (2013) Benchmarking short sequence mapping tools. BMC

Bioinformatics, 14, 184.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices from

protein blocks. Proc. Natl. Acad. Sci. USA, 89, 10915–10919.

Herbordt,M.C. et al. (2007) Achieving high performance with FPGA-based

computing. Computer, 40, 50.

Jacobsen,M. et al. (2015) RIFFA 2.1: a Reusable Integration Framework for

FPGA Accelerators. ACM TRETS, 8, 1–23.

Kim,J.S. et al. (2018) GRIM-Filter: fast seed location filtering in DNA read map-

ping using processing-in-memory technologies. BMC Genomics, 19, 89.

Kung,H.-T. (1982) Why systolic architectures? IEEE Comput., 15, 37–46.

Levenshtein,V.I. (1966) Binary codes capable of correcting deletions, inser-

tions, and reversals. Sov. Phys. Dokl., 10, 707–710.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM, arXiv, 1303, 3997.

Lindner,M.S. et al. (2016) HiLive: real-time mapping of illumina reads while

sequencing. Bioinformatics, 33, 917.

Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity

searches. Science, 227, 1435–1441.

Liu,Y. and Schmidt,B. (2015) GSWABE: faster GPU-accelerated sequence

alignment with optimal alignment retrieval for short DNA sequences.

Concurr. Comput., 27, 958–972.

Liu,Y. et al. (2013) CUDASWþþ 3.0: accelerating Smith-Waterman protein

database search by coupling CPU and GPU SIMD instructions. BMC

Bioinformatics, 14, 117.

Masek,W.J. and Paterson,M.S. (1980) A faster algorithm computing string

edit distances. J. Comput. Syst. Sci., 20, 18–31.

McKernan,K.J. et al. (2009) Sequence and structural variation in a human gen-

ome uncovered by short-read, massively parallel ligation sequencing using

two-base encoding. Genome Res., 19, 1527–1541.

Navarro,G. (2001) A guided tour to approximate string matching. ACM

Comput. Surv., 33, 31–88.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Ng,H.-C. et al. (2017) Reconfigurable acceleration of genetic sequence alignment:

a survey of two decades of efforts. In: 2017 27th International Conference on

Field Programmable Logic and Applications (FPL). pp. 1–8. IEEE.

Nishimura,T. et al. (2017) Accelerating the Smith-Waterman Algorithm Using

Bitwise Parallel Bulk Computation Technique on GPU. In: 2017 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW). pp. 932–941. IEEE.

Salinas,S. and Li,P. (2017) Secure Cloud Computing for Pairwise Sequence

Alignment. In: Proceedings of the 8th ACM International Conference on

Bioinformatics, Computational Biology, and Health Informatics. pp.

178–183. ACM.

Sandes,E.F.D.O. et al. (2016) Parallel optimal pairwise biological sequence com-

parison: algorithms, platforms, and classification. ACM Comput. Surv., 48, 1.

Senol,C.D. et al. (2018) Nanopore sequencing technology and tools for gen-

ome assembly: computational analysis of the current state, bottlenecks and

future directions. Brief. Bioinform, doi: 10.1093/bib/bby017.

Seshadri,V. et al. (2017) Ambit: in-memory accelerator for bulk bitwise opera-

tions using commodity DRAM technology. In: Proceedings of the 50th

Annual IEEE/ACM International Symposium on Microarchitecture. pp.

273–287. ACM.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.
�So�si�c,M. and �Siki�c,M. (2017) Edlib: a C/Cþþ library for fast, exact sequence

alignment using edit distance. Bioinformatics, 33, 1394–1395.

Trimberger,S.M. (2015) Three ages of FPGAs: a retrospective on the first

thirty years of FPGA technology. Proc. IEEE, 103, 318–331.

Ukkonen,E. (1985) Algorithms for approximate string matching. Inform.

Control, 64, 100–118.

Waidyasooriya,H. and Hariyama,M. (2015) Hardware-Acceleration of

Short-Read Alignment Based on the Burrows-Wheeler Transform. In: IEEE

Transactions on Parallel and Distributed Systems. p.1.

Wang,C. et al. (2011) Comparison of linear gap penalties and profile-based

variable gap penalties in profile–profile alignments. Comput. Biol. Chem.,

35, 308–318.

Xilinx (2014) Virtex-7 XT VC709 Connectivity Kit. Getting Started Guide,

UG966 (v3.0.1). https://www.xilinx.com/support/documentation/boards_

and_kits/vc709/2014_3/ug966-v7-xt-connectivity-getting-started.pdf.

Xin,H. et al. (2013) Accelerating read mapping with FastHASH. BMC

Genomics, 14, S13.

Xin,H. et al. (2015) Shifted Hamming distance: a fast and accurate

SIMD-friendly filter to accelerate alignment verification in read mapping.

Bioinformatics, 31, 1553–1560.

Shouji: a fast and efficient pre-alignment filter for sequence alignment 4263

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4255/5421509 by guest on 19 April 2024

https://www.xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/ug966-v7-xt-connectivity-getting-started.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vc709/2014_3/ug966-v7-xt-connectivity-getting-started.pdf

	btz234-TF1
	btz234-TF2
	btz234-TF3
	btz234-TF4
	btz234-TF5
	btz234-TF6
	btz234-TF51
	btz234-TF7

