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Abstract

Motivation: The reconstruction of ancestral genetic sequences from the analysis of contemporan-

eous data is a powerful tool to improve our understanding of molecular evolution. Various statistic-

al criteria defined in a phylogenetic framework can be used to infer nucleotide, amino-acid or

codon states at internal nodes of the tree, for every position along the sequence. These criteria gen-

erally select the state that maximizes (or minimizes) a given criterion. Although it is perfectly sens-

ible from a statistical perspective, that strategy fails to convey useful information about the level of

uncertainty associated to the inference.

Results: The present study introduces a new criterion for ancestral sequence reconstruction, the

minimum posterior expected error (MPEE), that selects a single state whenever the signal con-

veyed by the data is strong, and a combination of multiple states otherwise. We also assess the

performance of a criterion based on the Brier scoring scheme which, like MPEE, does not rely on

any tuning parameters. The precision and accuracy of several other criteria that involve arbitrarily

set tuning parameters are also evaluated. Large scale simulations demonstrate the benefits of

using the MPEE and Brier-based criteria with a substantial increase in the accuracy of the inference

of past sequences compared to the standard approach and realistic compromises on the precision

of the solutions returned.

Availability and implementation: The software package PhyML (https://github.com/stephaneguin

don/phyml) provides an implementation of the Maximum A Posteriori (MAP) and MPEE criteria for

reconstructing ancestral nucleotide and amino-acid sequences.

Contact: guindon@lirmm.fr

1 Introduction

Molecular sequences collected in present day species provide a wealth

of information about past evolutionary events. Using relevant prob-

abilistic models of molecular evolution, it is possible to reconstruct

the sequences of species ancestral to a sample of taxa [see Merkl and

Sterner (2016) for a recent review]. The application of these techni-

ques led to spectacular findings. In particular, the resurrection of an-

cestral proteins using biochemical processes (Bridgham et al., 2006;

Chang and Donoghue, 2000; Thornton, 2004) improved our under-

standing of the ways evolution takes place at the molecular level.

Phylogenetics provides an adequate framework for the recon-

struction of ancestral sequences. Given a phylogenetic tree that

depicts the evolutionary history of a sample of taxa along with a set

of corresponding homologous sequences, it is possible to estimate

the sequences at each internal node of the tree. The parsimony ap-

proach (Fitch, 1971) consists in selecting the ancestral sequences
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that minimize the number of substitutions required to explain the

sequences observed at the tips of the tree. It uses information related

to the grouping of taxa in the tree while amounts of evolution (i.e.

the length of edges in the tree) are ignored. The accuracy of the an-

cestral sequences estimated with the parsimony approach has been

well studied from a theoretical perspective (Fischer and Thatte,

2009; Gascuel and Steel, 2010; Yang et al., 2011) and using simula-

tions (Zhang and Nei, 1997).

Yang et al. (1995) and Koshi and Goldstein (1996) were the first

to infer ancestral sequences using the maximum likelihood approach

under a phylogenetic model. The inference relies here on a two-step

approach. A phylogenetic model (i.e. a tree topology, with edge

lengths and substitution model parameters) is first fitted to the data.

Finding the nucleotide (or amino-acid or codon) character with the

highest (marginal) posterior probability at any internal node in a

fixed phylogeny is then relatively straightforward. Pupko et al.

(2000) later described an elegant dynamic programming algorithm

for the inference of the combination of character states at all internal

nodes that maximizes the joint posterior probability.

These methods focus on selecting the best state in the alphabet of

nucleotides, amino-acids or codons, i.e. the alphabet the data gener-

ating process relies upon. Although it is perfectly sensible from a

statistical viewpoint, it does not always reflect potential uncertainty

in the inference. Indeed, multiple characters can have high probabil-

ities and selecting only the best one obliterates available information

about the variability of ancestral sequence estimates (Blanchet et al.,

2017). Ignoring uncertainty in the reconstruction of ancestral

sequences is indeed a serious limitation of current estimation techni-

ques that has been known for a long time (Cunningham et al.,

1998). Previous attempts to deal with uncertainty in ancestral se-

quence inference consisted in generating a subset of ancestral

sequences randomly sampled from their posterior probabilities

(Gaucher et al., 2008) or considering all possible character states (or

only a subset of sub-optimal residues) at positions deemed ambigu-

ous (McKeown et al., 2014; Thomson et al., 2005). Eick et al.

(2017) compared these two approaches on three families of protein

domains and showed that sampling from the posterior distribution

of residues produced non-functional proteins in some cases. In prac-

tice, the software FastML for estimating ancestral sequences using

the maximum likelihood principle (Ashkenazy et al., 2012) can be

used to select the k most probable ancestral sequences at each node,

where k is fixed by the user.

In the present study, we introduce a new statistical criterion, the

minimum posterior expected error (MPEE), and test another one,

based on decision theory and the Brier score. Both reveal uncertainty

in the inference without compromising on the intelligibility of ances-

tral character reconstruction. We also introduce and test several

other criteria which, unlike MPEE and Brier-based criteria, require

setting tuning parameters prior to the data analysis. We focus on the

inference of past DNA and protein sequences using simulated data.

Our results indicate that accommodating for ambiguity in ancestral

sequences using MPEE or Brier amounts to a better use of the avail-

able data compared to the traditional approach.

2 Notations

The multiple sequence alignment is noted as d. Its length, i.e. the

number of columns in the alignment is l. Each sequence in d is a vec-

tor of characters, each character being taken within the alphabet A
of nucleotides, amino-acids, codons or any other well-defined dis-

crete states in finite number. Let n be the cardinality of A. In what

follows, d
ðsÞ corresponds to the sth column of d. Let s denote the

unrooted topology of the phylogeny under scrutiny and e the vector

of edge lengths on that tree. We assume that the tree is binary so

that there are u – 2 internal vertices, where u is the number of tips.

Let x denote the vector of internal nodes and x is one of these nodes.

v1(x), v2(x) and v3(x) are the three nodes directly connected to x, i.e.

its three direct neighbors. A
ðsÞ
x is the random variable giving the an-

cestral character observed at node x and site s.

Inferring ancestral characters generally relies on evaluating the

conditional probability PrðAðsÞx ¼ �js; e;dðsÞÞ, which, for a particular

character state y, is expressed using Bayes’ theorem as follows:

PrðAðsÞx ¼ yjs; e; dðsÞÞ / PrðdðsÞjs; e;AðsÞx ¼ yÞPrðAðsÞx ¼ yÞ; (1)

where PrðAðsÞx ¼ yÞ is taken as the equilibrium frequency of state y

since the substitution process at each site of the alignment is mod-

eled as a homogeneous Markov chain running along the phylogeny.

PrðdðsÞjs; e;AðsÞx ¼ yÞ is the likelihood of the model given that state y

is observed at node x. Assuming that node x has three neighbors, as

is the case if the phylogeny is a fully resolved unrooted tree,

PrðdðsÞjs; e;AðsÞx ¼ yÞ is then obtained as follows:

PrðdðsÞjs; e;AðsÞx ¼ yÞ ¼
Y3

i¼1

X
z2A

PrðdðsÞviðxÞjsviðxÞ; eviðxÞ;A
ðsÞ
viðxÞ ¼ zÞ

�PrðAðsÞviðxÞ ¼ zjAðsÞx ¼ y; eviðxÞÞ;
(2)

where d
ðsÞ
viðxÞ corresponds to the part of d made of sequences found at

the tips of the subtree rooted by viðxÞ (hence dðsÞ is the union of

d
ðsÞ
v1ðxÞ; d

ðsÞ
v2ðxÞ and d

ðsÞ
v3ðxÞ). sviðxÞ is the topology of this rooted subtree

and eviðxÞ are the lengths of its edges. PrðAðsÞviðxÞ ¼ �jA
ðsÞ
x ¼ �; eviðxÞÞ

denotes the transition probability along the edge between x and

vi(x) of length eviðxÞ.

3 Inferring ancestral states

In the following two sections, we first introduce the standard criter-

ion, i.e. the maximum a posteriori criterion, defined in the context

of an unrooted or a rooted tree. The new, minimum posterior

expected error and Brier-based criteria are presented next followed

by other, less standard approaches.

3.1 The maximum a posteriori (MAP) criterion
The most popular technique to infer ancestral states relies on the

maximum a posteriori probability (MAP) criterion based on the

marginal conditional probabilities defined above. The inferred char-

acter ŷ is selected as follows:

ŷ ¼ argmax
y
ðpyÞ; (3)

whereby py � PrðAðsÞx ¼ yjs; e; dðsÞÞ. This technique thus considers

each node separately, selecting the most probable state at each of

these nodes without any reference to the ancestral states inferred in

other parts of the tree. As mentioned earlier, dynamic programming

can also be used to infer the combination of ancestral states at all in-

ternal nodes that maximizes their joint posterior probability (Pupko

et al., 2000). In practice however, many phylogenetic software rely

on the marginal probabilities although PAML4 (Yang, 2007) and

HyPhy (Pond et al., 2005) also return joint posterior estimates

whenever the selected substitution model ignores the variation of

substitution rates across sites, while FastML (Ashkenazy et al.,

2012) implements a branch-and-bound algorithm to accommodate

for this variability when building joint estimates (Pupko et al.,

Improved ancestral sequence reconstruction 4291

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4290/5448860 by guest on 10 April 2024



2002). Simulations suggest that the performance of the marginal

and joint approaches are virtually identical (Gascuel and Steel,

2014).

In Equation 3, the marginal posterior probability derives from

the conditional likelihood as defined in Equation 2. Since the prod-

uct in Equation 2 is over the three vertices directly connected to the

internal node under scrutiny, the whole set of characters found at

the tips of the tree is involved in the calculation of this marginal

probability. A distinct approach, which applies to the case where the

tree is rooted, is to sum over the two vertices subtending the node

under scrutiny (i.e. the two nodes ‘away from the root’, taking the

node of interest as reference). This solution amounts to considering

that only the data ‘below’ the node of interest convey information

about the ancestral state. This reasoning is somehow at odds with

the time-reversible Markovian assumption about the substitution

process as the position of the root is not identifiable under this class

of models. More importantly, this approach unnecessarily ignores

part of the data. It is nonetheless implemented in the software

RAxML (Stamatakis, 2006). In the following, we will refer to this

criterion as MAPr.

3.2 The minimum posterior expected error (MPEE)

criterion
The rationale behind MPEE rests on the definition of the loss func-

tion that the estimation of an ancestral character relies upon. The

simplest way to define such function is as follows:

ekðx; yÞ ¼
ak if x \ y 6¼1;x 2 A and y 2 PþðAÞ
bk if x \ y ¼1; x 2 A and y 2 PþðAÞ;

�
(4)

where ekðx; yÞ is the error score when comparing x, the true charac-

ter and y the inferred one. We assume that bk � ak so that the cost

of a mismatch between states x and y (i.e. x \ y ¼1) is always

greater or equal to that of a match (i.e. x \ y 6¼1). PþðAÞ is the

powerset of A minus the empty set. For instance, when considering

binary character states, one may have A ¼ ff0g; f1gg and

PþðAÞ ¼ ff0g; f1g; f0; 1gg. We will refer to any element of A as a

‘character’ while any element of PþðAÞ will be referred to as a ‘char-

acter set’. k is the level of ambiguity associated to y. It is equal to jyj,
i.e. the number of elements in the character set y. For instance, when

considering nucleotide sequences this time, if y ¼ fA;C;Gg, then

k¼3 and the level of ambiguity is here equal to three.

For a given ambiguity level k, the posterior expected error associ-

ated to an inferred character set y is a weighted average of these

errors. It is obtained as follows:

EkðyÞ ¼
X
x2A

pxekðx; yÞ; (5)

i.e. for a given inferred character set y 2 PþðAÞ, one computes the

weighted average of the errors over all the potential true states

x 2 A, where the weights are the posterior probabilities of x.

Plugging the error scores (sensu Equation 4) into Equation 5, one

obtains:

EkðyÞ ¼
X

x 2 A;
x \ y 6¼1

pxak þ
X

x 2 A;
x \ y ¼1

pxbk (6)

¼ ak þ ðbk � akÞð1�
X

x 2 A;
x \ y 6¼1

pxÞ; (7)

and the minimum posterior expected error for a given ambiguity

level k, noted as Ek, is thus:

Ek ¼ ak þ ðbk � akÞPk; (8)

where Pk ¼ 1�
Pk
i¼1

pðiÞ and pð1Þ � . . . � pðnÞ are the posterior proba-

bilities of states in A, ranked in decreasing order. Finally, the

inferred ancestral character set, ŷ, is selected as follows: (i) find

k̂ ¼ arg minkðEkÞ, i.e. the optimal level of ambiguity, (ii) given k̂, re-

turn the subset of k̂ non-ambiguous states with the k̂ largest poster-

ior probabilities. This subset, chosen in PþðAÞ, is the inferred

character set ŷ. Hence, given values of ak and bk for 1 � k � n, the

time complexity for finding the ancestral state that minimizes the

posterior expected error is Oðn logðnÞÞ, i.e. the complexity involved

in sorting the posterior probabilities, despite the alphabet considered

(i.e. PþðAÞ) being of size Oð2nÞ.
In order to define sensible ranges of values for ak and bk, we

focus on the prior expected error:

E�kðyÞ ¼
1

n

X
x2A

ekðx; yÞ: (9)

Our rationale here is that this prior error should be equal for

every character set y 2 PþðAÞ, i.e. a particular character set, no mat-

ter what its ambiguity level is, should not be more (or less) probable

than any other character set before one actually observes and analy-

ses the data available. Moreover, we choose to have a1 ¼ 0 and b1 ¼
1. This choice is not arbitrary. In fact, when the inferred state is

chosen among A instead of PþðAÞ, setting a1 ¼ 0 and b1 ¼ 1 leads

to Ey ¼ 1� py and selecting the state y that minimizes the posterior

expected error is therefore equivalent to applying the MAP criterion.

Having a1 ¼ 0 and b1 ¼ 1 makes the prior expected error equal to

ðn� 1Þ=n for all ambiguity levels. For a level of ambiguity k, the

prior expected error is also defined as k
n

� �
ak þ n�k

n

� �
bk by

Equation 9, and the following equality thus holds:

kak þ ðn� kÞbk ¼ n� 1; (10)

which defines a linear relationship between ak and bk. For any ambi-

guity level k, the minimum value that ak can take is 0 as a1 ¼ 0 and

ak � a1 for all k>1 (i.e. the loss when inferring y such that y \ x 6¼
1 is greater or equal to that obtained with y0, where y0 \ x 6¼1, if

jy0j � jyj). Its maximum is k�1
k , as derived from Equation 10 when

setting bk ¼ 1 and bk � ak. Having bk ¼ 1 as the minimum value

that this parameter can take for any k is, here again, not arbitrary.

Indeed, there is no good reason for the cost of an error when infer-

ring an ambiguous character to be smaller than that of an error

made when (wrongly) selecting a non-ambiguous character.

Replacing bk in Equation 7 by the expression of that parameter

as defined by Equation 10, the minimum posterior error for the am-

biguity level k is then as given below:

Ek ¼
ak

n� k� nPk

n� k

� �
þ ðn� 1ÞPk

n� k
for k ¼ 1; . . . ;n� 1

1� 1

n
for k ¼ n:

8>><
>>:

(11)

The maximum value that Ek can take for any k ¼ 1; . . . ; n� 1 is

obtained when ak ¼ ðk� 1Þ=k and Pk is maximum, i.e. Pk ¼ 1� k
n,

in which case Ek ¼ 1� 1
n. Therefore, Ek � En and the fully ambigu-

ous character set A is never strictly optimal (it is only optimal in the

trivial case where px ¼ 1
n for all x, in which case Ek ¼ En and all

character sets are also optimal).
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Because there is no obvious reason to set ak to a particular value

(apart for the cases where k¼1 and k¼n), a natural approach is to

integrate over all possible values for these parameters. Ideally one

would thus consider all combinations of values

a1 � a2 � . . . � an�1, evaluate arg minf1;...;n�1gðE1; . . . ; En�1Þ for

these combinations and, together with pð1Þ; . . . ;pðnÞ, identify the cor-

responding best character sets (one character set per combination).

The character set inferred in the end would then be the one with the

highest frequency among all combinations. Because we cannot ac-

commodate for an infinite number of combinations in practice, we

considered a finite grid of values for a1 � a2 � . . . � an�1.

Furthermore, the procedure described above for identifying the best

scoring character set would involve OðMn�1Þ operations, where M is

the number of values of ak considered (for any k) on the grid. In

order to reduce this complexity, we considered a one-dimensional

grid instead whereby each point on that grid defines values of

a1; . . . ; an�1. The value of ak on the (iþ1)th point on that grid,

noted as aðiÞk , is calculated as follows:

aðiÞk ¼
k� 1

k

� �
i

M

� �
; i ¼ 0; . . . ;M:

We then evaluate kðiÞ :¼ argminf1;...;n�1gðE
ðiÞ
1 ; . . . ; EðiÞn�1Þ, i.e. the

ambiguity level that minimizes the posterior expected error at the

(iþ1)th point on our grid of ak values. Given kðiÞ and pð1Þ; . . . ; pðnÞ,

we then identify yðiÞ, the best scoring character set for each value of

i. The inferred character set is finally obtained by selecting the elem-

ent with the highest multiplicity in the multiset fyðiÞ; i ¼ 0; . . . ;Mg.
The computational complexity of this procedure is OðMnÞ, thereby

making it considerably faster than the ‘full grid’ approach described

before.

3.3 Brier-based score
The MPEE criterion is not the only one that can be used to achieve

the same goal of inferring ambiguous or non-ambiguous ancestral

states. Very recently, Ishikawa and colleagues (2019) described an

ancestral sequence reconstruction method based on the Brier scoring

rule. They proposed to compare the posterior probabilities of non-

ambiguous states to a null (or expected) uniform distribution on

1; 2; . . . ; n states. A squared Euclidean distance characterizes the dif-

ference between the observed and each of the n expected distribu-

tions. The inferred state, which can be ambiguous or not, is the one

that minimizes these distances.

More specifically, for each k from 1 to n, the Brier-based (Brier-

b) criterion is evaluated as follows:

Bk ¼
Xk

i¼1

pðiÞ �
1

k

� �2

þ
Xn

i¼kþ1

p2
ðiÞ: (12)

As with the MPEE criterion, one then finds k̂ ¼ arg minkðBkÞ,
i.e. the optimal level of ambiguity, and the inferred ancestral state is

that corresponding to the subset of k̂ non-ambiguous states with the

k̂ largest posterior probabilities. The time complexity for finding the

ancestral state that minimizes Brier-b criterion is Oðn2Þ, making its

calculation very quick in practice and applicable to both nucleotide

and amino-acid character states. The corresponding method is called

MPPA (Marginal Posterior Probability Approximation) in Ishikawa

et al. (2019).

The score as defined above is inspired by the Brier scoring

scheme which was originally designed to measure the accuracy of

probabilistic predictions. In its original formulation, this score aims

at evaluating how close a probabilistic prediction is from the actual

outcome. It is obtained as follows:

Brier ¼
Xn

i¼1

ðpi � oiÞ2; (13)

whereby pi is the probability that outcome i occurs as given by the

prediction and oi ¼ 1 if event i actually occurred and oi ¼ 0 other-

wise. This metric has sound statistical properties. Indeed, it is a

proper scoring scheme (Murphy and Epstein, 1967): the probabilis-

tic prediction distribution that minimizes the expected Brier score is

the posterior distribution of character states under the model that

generated the data. Following Ishikawa et al. (2019), we used the

Brier score as defined in Equation 13 to compare the performance of

the various ancestral inference criteria considered in this study.

3.4 Other criteria
The last two criteria presented above (MPEE and Brier-b) do not

rely on any tuning parameter for inferring ancestral states, ambigu-

ous or not. There are other criteria that achieve the same goal but in-

volve tuning parameter(s) that are generally set in an arbitrary

manner before starting the data analysis. We list below some of

these criteria which performance were evaluated in the present

study:

• Threshold criterion (Thresh): a threshold for the posterior prob-

ability of any non-ambiguous character set is defined a priori.

Any character with a corresponding posterior probability greater

or equal to that threshold is considered as valid, i.e. it belongs to

the set of possible ancestral states. In our study, these thresholds

were set to 1/4 and 1/20 when inferring ancestral nucleotides and

amino-acids respectively.
• The cumulative probability criterion (CumProb): the (non-am-

biguous) character states are first ranked in decreasing order of

their posterior probabilities. The list obtained is then traversed

from top to bottom. Character states keep on being added to the

set of possible ancestral states as long as the corresponding cu-

mulative probability does not exceed a certain threshold fixed a

priori. In the present study, the threshold was fixed to 0.9.
• The differential criterion (Diff): a ranked list of non-ambiguous

character states identical to that used by the CumProb criterion

is first built. Characters keep on being added to the set of possible

ancestral states as long as the difference between two successive

posterior probabilities is less than a given threshold. In our study,

the thresholds were set to 1/4 and 1/20 when inferring ancestral

nucleotides and amino-acids respectively.

4 Simulations

The performance of the criteria introduced above was assessed using

multiple simulated datasets. Each such dataset consists in a phylo-

genetic tree along which sequences are evolved according to a stand-

ard Markov model of evolution. The specifics of these simulations

are given below.

4.1 Simulating phylogenies
Random trees were generated with the R package TreeSim (Stadler,

2010). TreeSim creates random trees under a constant rate birth-

death process. The function sim.bd.taxa.age was used to generate

trees with a fixed number of taxa and fixed time since the most re-

cent common ancestor of the sampled species. The number of taxa

in the generated tree was set to 50. The tree height parameter (par-

ameter ‘age’ in sim.bd.taxa.age), H, was randomly drawn for

each tree in U[0.1; 1]. 50 trees were generated in total. The birth

rate was fixed to 0.1 while the extinction rate was fixed at 0.5.
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The trees hence generated are ultrametric, i.e. clock-like. Edge

lengths are interpreted here as amounts of codon substitutions per

(codon) site with an average length equal to 0.08.

4.2 Simulating sequences
We used the software INDELible (Fletcher and Yang, 2009) to

simulate codon sequences along the trees. INDELible evolves

sequences under a probabilistic model of molecular evolution that

accommodates for point substitutions. It also accounts for insertion

and deletion events although we did not consider this option in the

present study. We used a codon model (the M0 model) that assumes

that every codon and every lineage in the phylogeny evolves under

the same substitution process whereby the dN/dS and transition/

transversion rate ratios are fixed to 0.5 and 2.5 respectively, as sug-

gested in the example file provided with INDELible. Codon fre-

quencies at equilibrium were all equal. Sequences of length 300

codons were generated.

4.3 Computer programs and parameter settings
For each simulated dataset, we inferred ancestral sequences using

the GTR nucleotide substitution model (Tavaré, 1986), thereby

using a model distinct from the one that generated the sequences.

The parameters of the GTR model were estimated using maximum

likelihood under the ‘true’, i.e. the simulated phylogeny. A discrete

gamma distribution was used here to accommodate for the variabil-

ity of substitution rates across single sites in the alignment, thereby

taking into account (although imperfectly) the rate heterogeneity

due to the structure of the genetic code.

We also reconstructed ancestral states from the protein sequen-

ces resulting from the simulated codon sequences translated into

amino-acids using the standard genetic code. We (wrongly) assumed

that amino-acid sequences evolved under the LG model of substitu-

tion model (Le and Gascuel, 2008). For both nucleotide and amino-

acid ancestral reconstruction, sequences were inferred along the true

tree topology so that it is straightforward to match ancestral sequen-

ces to the corresponding estimated ones.

PhyML (Guindon et al., 2010) and RAxML (Stamatakis, 2006)

were used to reconstruct ancestral sequences under the GTR and LG

models. While the tree topologies used for the estimation were set to

the true ones and fixed throughout the analysis, edge lengths and

substitution model parameters (for the GTR model) were optimized

with each software prior to the ancestral sequence reconstruction.

5 Results

Figure 1 presents the performance of the six criteria for inferring an-

cestral states considered in this study. Although sequences were

simulated under a stochastic process describing changes between

codons, a model of substitutions between nucleotides was assumed

for the ancestral reconstruction (see sections 4.2 and 4.3), thereby

ignoring the non-independence between individual columns in each

alignment. For each nucleotide site in the alignment and each intern-

al node in the phylogeny, an ancestral state was inferred using one

of the six criteria and compared to the ‘true’ (i.e. simulated) nucleo-

tide. Only cases where the maximum posterior probability of any

nucleotide were smaller than 0.95 were considered here in order to

focus on examples where the inference is not obvious.

For each pair of barplots and each criterion, corresponding to a

given level of ambiguity in the inferred states, the ratio between the

number of incorrectly reconstructed states (the true state is not in

the set of inferred states, barplots on the right of each pair) and the

number of correct inferences (the true state is in the set of inferred

states, barplots on the left) gives an indication about the accuracy of

the criterion. This ratio is also given for each criterion as a percent-

age in the column separating each pair of barplots (see ‘% err’).

Also, comparing the plots obtained for the different ambiguity levels

provides information about the precision of the different

approaches: precise criteria will mostly infer non-ambiguous states

(‘# states: 1’ in the figure) while imprecise ones will return ambigu-

ous characters (‘# states: 2, 3 and 4’). The ‘% tot.’ figure given

below each error percentage corresponds to the percentage of

inferred states in the corresponding ambiguity level. For instance,

100% of the states inferred using MAP are non-ambiguous while

only 68% of those inferred with the Thresh criterion are non-

ambiguous.

The percentage of errors obtained with the various criteria when

considering only non-ambiguous inferred ancestral nucleotides

varies from 24% for MAP to 8% for CumProb. The other criteria

(Thresh, Diff, Brier-b and MPEE) all behave roughly the same with

14 to 18% of errors when considering non-ambiguous inferred

Fig. 1. Performance of several ancestral state reconstruction criteria applied

to nucleotide sequences. The four plots correspond to the four ambiguity lev-

els in the reconstructed nucleotide states, i.e. from one (the inferred ancestral

state is not ambiguous) to four (the state is fully ambiguous). The left-hand

(resp. right-hand) side of each plot gives the number of correctly (resp. incor-

rectly) reconstructed states across all internal nodes, all sites in each align-

ment and all alignments (although only cases where the highest posterior

probability is smaller than 0.95 were examined). The column separating each

pair of barplots for a given ambiguity level gives the percentage of errors

(top) and the percentage of inferred states in the corresponding ambiguity

level (bottom), separated by a dashed line, for each criterion. ‘NaN’ stands for

‘Not a Number’, resulting from divisions by zero. See text
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states and less than 5% for ambiguous states. All criteria vary how-

ever in terms of the precision of the inference. Apart from MAP

which, by construction, always returns non-ambiguous ancestral

states, CumProb suffers from a lack of precision compared to other

criteria (only 33% of inferences made with this criterion are non-

ambiguous). The Diff criterion behaves well in terms of precision

(83% of non-ambiguous), along with accuracy (18% of errors), this

last figure being slightly greater than that of Brier-b and MPEE.

Thresh, Brier-b and MPEE behave similarly in terms of precision

and accuracy although the last two appear to be slightly more

precise.

The results obtained for the reconstruction of ancestral amino-

acid sequences are largely similar to that derived with nucleotides

(Fig. 2). Yet, it is worth noting that inferences performed with the

Thresh criterion are seldom non-ambiguous (6% of non-

ambiguous), which contrasts with the results obtained with nucleo-

tide sequences (68% of non-ambiguous). Diff is, here again, not

behaving as well as Brier-b or MPEE or any other criterion except

MAP in terms of accuracy. Also, CumProb lacks precision with only

27% of all inferences being non-ambiguous. It is also interesting to

note that Brier-b and MPEE perform very similarly, with a slight ad-

vantage for MPEE in terms of the percentage of errors when infer-

ring ambiguous ancestral amino-acids (7 and 5% of errors with

Brier-b for doubly- and triply-ambiguous inferences against 4 and

2% for MPEE). Brier-b score also appears to be slightly less precise

compared to MPEE (39 versus 31% of ambiguous characters

inferred on amino-acid data with Brier-b versus MPEE and 34 ver-

sus 31% for nucleotide data).

We tested a range of values for the tuning parameters involved in

the Diff, CumProb and Thresh criteria. With nucleotide data, setting

the tuning parameters to more stringent values (0.05 for Diff, 0.5

for CumProb and 0.45 for Thresh), i.e. pushing these criteria to-

wards selecting non-ambiguous states, forcing the accuracy and the

precision of these three approaches to become virtually identical to

that of MAP (23%, 22% and 22% of errors for these three methods

respectively, with 96, 96 and 95% of non-ambiguous inferences).

We also adjusted the tuning parameters of Diff, CumProb and

Thresh so that the precision with these three criteria is close to that

achieved by Brier-b and MPEE when considering non-ambiguous

nucleotide states. The percentage of errors obtained with these crite-

ria are then all very close to that obtained with Brier-b and MPEE

(14% for Diff and CumProb, 15% for Thresh). This observation

suggests that, considering non-ambiguous inferences only, it may

not be possible to achieve a better accuracy than that obtained with

Brier-b and MPEE for the precision obtained with these two

techniques.

Finally, the percentage of errors obtained with MAPr, i.e. the ver-

sion of MAP that applies to rooted phylogenies and only considers

characters below the internal node where the ancestral reconstruction

is performed, are 46 and 49% with nucleotide and amino-acid data

respectively. Compared to MAP (24 and 28% of errors), it is fairly

obvious that ignoring part of the data is clearly detrimental and

should be avoided.

In the present study, we used Ishikawa et al. (2019) Brier-based

score as a tool to infer ancestral characters. Yet, the Brier score was

originally proposed as a metric to measure the accuracy of probabil-

istic predictions. Following Ishikawa et al. (2019), we use this metric

here to compare the performance of the various criteria considered

in our study (see Equation 13). Results presented in Table 1 show

that, for nucleotide sequences, the best methods are MPEE, Brier-b

and Thresh, with scores fairly close to best (i.e. minimum) achiev-

able score. The performance obtained with Diff and CumProb are

slightly inferior while that of MAP is worse than Diff and CumProb.

MAPr is lagging far behind, with performance relatively close to

that obtained with random predictions. Results obtained with

amino-acid sequences are similar, although in this case, Thresh does

not perform as well as what is observed with nucleotide data.

Fig. 2. Performance of several ancestral state reconstruction criteria applied

to amino-acid sequences. Results obtained for ambiguity levels greater or

equal to four (i.e. between four and twenty) were all grouped together and

presented in the bottom-right corner. See caption of Figure 1 and text

Table 1. Average Brier scores of the various inference criteria

Criterion Nucleotides Amino-acids

MPEE 0.37 0.45

Brier-b 0.37 0.44

Diff 0.40 0.54

CumProb 0.41 0.47

Thresh 0.37 0.54

MAP 0.48 0.56

MAPr 0.93 0.97

Posterior 0.33 0.39

Random 1.50 1.90

Note: Averages were computed over the simulated datasets for which the

highest posterior probability was smaller than 0.95. The second-to-last row

gives the mean Brier score obtained when using the posterior probabilities of

each nucleotide or amino-acid as predictive distribution, which is the min-

imum value the expected score can take (provided the posterior is evaluated

under the model that generated the data). The last row gives the mean Brier

score when predicted ancestral states are chosen uniformly at random, there-

by defining an upper bound for the average score.
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6 Discussion

This study focuses on new statistical criteria for the inference of an-

cestral nucleotide and amino-acid sequences. The main motivation

behind our work was to improve the way uncertainty in the ances-

tral reconstruction is dealt with. In particular, in cases where mul-

tiple nucleotides or amino-acids have similar marginal posterior

probabilities, selecting only one of them can be problematic. Doing

so is prone to an increased amount of errors in the inference (see the

accuracy of MAP in our simulations). Also, systematically selecting

a single character state in the inference fails to convey important in-

formation about uncertainty in the decision process.

We test two classes of criteria here. One class has criteria that

rely on tuning parameters that are set prior to the analysis (Thresh,

CumProb and Diff). The others do not rely on any arbitrarily set

parameter (MAP, Brier-b and MPEE). We assessed the performance

of these techniques on sequences simulated under a codon model

and analyzed under nucleotide and amino-acid substitution models.

Hence, in both cases, the models used for reconstructing ancestral

states departed from the actual process that generated the sequences.

While all criteria have strengths and weaknesses, depending on the

type of data (nucleotides or amino-acids), the main goal of the ana-

lysis and the resources available (can one afford to consider multiple

plausible ancestral states or only a single one will be taken into ac-

count?), Brier-b and MPEE behave well compared to other techni-

ques. In fact, our results suggest that these two criteria are optimal

in the sense that knowing the tuning parameter values for Thresh,

CumProb or Diff that yield the same precision as that of Brier-b and

MPEE, would not lead to higher accuracy. The MPEE criterion

slightly outperforms Brier-b on our simulations, although the differ-

ence between the two in terms of both precision and accuracy is

moderate.

The Brier-b and MPEE criteria for ancestral state reconstruction

have a sound statistical basis. These approaches help unveil relevant

information about the uncertainty in the inference in a concise for-

mat, which is relevant to biologists. Moreover, the computational

overload associated to the application of these new criteria is negli-

gible compared to the standard approach (i.e. MAP), thereby offer-

ing a practical alternative. We thus recommend that these criteria

are considered alongside the traditional approach for inferring the

biochemical properties of ancient genetic sequences. In cases where

reconstruction is ambiguous, as pointed out by Brier-b and/or

MPEE, considering multiple alternative ancestral states could lead

to a greater complexity in downstream analyses. Yet, this increase of

complexity may also help unveil plausible properties of ancient mol-

ecules that would have been ignored otherwise.

7 Software availability

The MPEE and MAP criteria for inferring ancestral nucleotide and

amino-acid states are implemented and documented in the PhyML

software package (https://github.com/stephaneguindon/phyml). The

scripts that were used to perform the simulations and analyze the

results are available from https://github.com/stephaneguindon/

ancestral.
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