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Abstract

Motivation: Predicting the secondary structure of RNA is a fundamental task in bioinformatics.

Algorithms that predict secondary structure given only the primary sequence, and a model to

evaluate the quality of a structure, are an integral part of this. These algorithms have been updated

as our model of RNA thermodynamics changed and expanded. An exception to this has been the

treatment of multi-loops. Although more advanced models of multi-loop free energy change have

been suggested, a simple, linear model has been used since the 1980s. However, recently, new

dynamic programing algorithms for secondary structure prediction that could incorporate these

models were presented. Unfortunately, these models appear to have lower accuracy for secondary

structure prediction.

Results: We apply linear regression and a new parameter optimization algorithm to find better

parameters for the existing linear model and advanced non-linear multi-loop models. These

include the Jacobson-Stockmayer and Aalberts & Nandagopal models. We find that the current

linear model parameters may be near optimal for the linear model, and that no advanced model

performs better than the existing linear model parameters even after parameter optimization.

Availability and implementation: Source code and data is available at https://github.com/maxh

wardg/advanced_multiloops.

Contact: max.ward-graham@research.uwa.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ribonucleic acid (RNA) is a fundamental molecule in biology. It has

dual purpose, serving as both a carrier of genetic information and as

a functional molecule. This duality underlies the RNA world hy-

pothesis, which posits that life started with RNA as the primary

building block (Bernhardt, 2012; Gilbert, 1986). In fact, it has been

suggested that eukaryote development is facilitated by an RNA ma-

chine consisting of a cascade of functional RNAs (Amaral et al.,

2008). Non-coding RNAs (ncRNAs) are transcribed to serve a

biological purpose outside of being translated into protein. For ex-

ample, ncRNAs can act as catalysts (Doudna and Cech, 2002), regu-

late gene expression (He and Hannon, 2004; Meister and Tuschl,

2004), and can recognize sequences (Kiss-László et al., 1996).

Because RNA secondary structure informs the complete RNA

structure (Tinoco and Bustamante, 1999), and because structure

informs function, there has been significant interest in determining

RNA secondary structure. Experimental methods, such as nuclear

magnetic resonance, cryo-electron microscopy, and X-ray
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crystallography, require significant investment and effort (Neidle,

2010). Comparative methods, which exploit conservation of struc-

ture through sequence covariation, require the sequences from many

species, covering a specific range of nucleotide substitutions (Pace

et al., 1999; Rivas et al., 2017). The third type of method finds an

RNA secondary structure given just the primary sequence. We call

these de novo methods. Because these do not require auxiliary infor-

mation, and because they generally under other methods, they have

been an important area of research (Lorenz et al., 2011; Mathews,

2006; Reuter and Mathews, 2010; Zuker, 2003).

We refer to de novo RNA secondary structure prediction as

‘RNA folding’. The dominant model for RNA folding algorithms is

a thermodynamic model, which uses a nearest neighbor model to es-

timate folding stability. The nearest neighbor model was determined

by Turner and coworkers (Andronescu et al., 2014; Jaeger et al.,

1989; Mathews et al., 1999, 2004; Xia et al., 1998), and is based on

groundwork laid by Tinoco et al. (1971, 1973) and Salser (1978).

Zuker and Stiegler (1981) developed a dynamic programing algo-

rithm that was able to use the nearest neighbor model to fold RNAs.

Their recursions proved robust, and have been modified as the

model was revised and expanded. Some examples of this include the

introduction of coaxial stacking (Mathews et al., 2004; Rivas and

Eddy, 1999), the extension to include some types of pseudoknots

(Rivas and Eddy, 1999), and the inclusion of SHAPE information

(Deigan et al., 2009). An exception from this, however, is the treat-

ment of multi-loops.

Multi-loops (see Fig. 1) are loops closed by three or more base

pairs. Multi-loop free energy change in RNA folding algorithms was

first described in its current form by Zuker and Sankoff (1984).

They used a linear model on the number of unpaired nucleotides (u)

and branches (b) in a multi-loop. As such, we refer to this model as

the linear model. The parameters for the current state of the linear

model comes from work by Mathews and Turner (2002), and is

found in modern RNA folding packages (Lorenz et al., 2011; Reuter

and Mathews, 2010). It has the following form (in kcal/mol):

DG
�

37 ¼ 9:3� 0:6bþ 0u (1)

Other models have been suggested. Notably, a model based on

Jacobson-Stockmayer polymer theory (Jacobson and Stockmayer,

1950) was suggested by Salser (1978), but it was not included in

RNA folding dynamic programing algorithms until recently (Ward

et al., 2017). Despite this, it is used in RNA folding packages

(Lorenz et al., 2011; Reuter and Mathews, 2010; Zuker, 2003) for

energy calculation. The most recent parameters for this model were

published by Mathews et al. (1999). We refer to this model as the

logarithmic model due to its logarithmic dependence on unpaired

nucleotides. The logarithmic model is described as follows (in kcal/

mol):

DG
�

37 ¼
10:1� 0:3b� 0:3u if u � 6
10:1� 0:3b� 0:3� 6þ 1:1� lnðu=6Þ otherwise

�
(2)

A third model was proposed by Aalberts and Nandagopal

(2010). We refer to this as the AN model after the authors’ initials.

The AN model defines multi-loop free energy change as a function

of the number of length-a and -b segments in a multi-loop. These

segment lengths represent the distance between consecutive nucleoti-

des in the RNA backbone, and across multi-loop helical branches re-

spectively. Call the number of length-a segments N, and the number

of length-b segments M. The model is defined (in kcal/mol) to be:

DG
�

37 ¼
59

36
kTln N

6
5a2 þM

6
5b2

� �
þ C (3)

In this equation, the values of a and b are defined in angstroms as a ¼
6.2 and b ¼ 15. Also, k, T, and C refer to the Boltzmann constant, the

absolute temperature, and a scaling factor, respectively. By default, the

temperature typically is set to 310.15 K. Also, C typically should be set

to zero as suggested by Aalberts and Nandagopal (2010).

The first efficient RNA folding algorithms using the logarithmic

and AN models were published recently (Ward et al., 2017). These

algorithms represent new recursions that use dynamic programing

to minimize free energy under the nearest neighbor thermodynamic

model. Substantial changes to the existing recursions were needed to

incorporate the new, non-linear models. Unexpectedly, the linear

model was superior for predicting the secondary structure. This may

be because the linear model has been actively used for decades, and

its parameters underwent several refinements. Early approaches

used parameters optimized for prediction accuracy (Jaeger et al.,

1989), as did later approaches (Andronescu et al., 2007; Mathews

et al., 1999, 2004). The parameters in Equation (1) come from

linear regression (Mathews and Turner, 2002) using a set of experi-

mental data, as do the majority of parameters in the Turner model.

In contrast, the parameters for the logarithmic model are partially

theoretical, and partially optimized for prediction accuracy

(Mathews et al., 1999). The AN model parameters are purely theor-

etical (Aalberts and Nandagopal, 2010).

To definitively compare the linear, logarithmic, and AN models,

optimized parameters for the logarithmic and AN models were

needed. We apply linear regression with an updated dataset to find

new parameters for all models. In addition, we devise a new algo-

rithm to optimize the parameters of all the models for prediction on

known structures. Our algorithm is well suited to optimizing small

parameter sets, such as multi-loop models. We also use these param-

eters to make predictions on a large set of RNAs with known struc-

tures. The results are compared with determine which model is most

accurate for structure prediction.
RNA folding methods that do not require the experimentally based

nearest neighbor model exist. These include statistical methods. Rivas

reviewed the current state of RNA folding algorithms and contrasted

minimum free energy (MFE) folding algorithms to statistical methods

(Rivas, 2013). Statistical methods include algorithms such as

CONTRAfold (Do et al., 2006) and TORNADO (Rivas et al., 2012). In

a sense, they generalize the MFE algorithms, as they free themselves

from a thermodynamic model, and can learn from known structures via
Fig. 1. An example of a multi-loop. The central loop with four exiting branches

is a multi-loop
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statistical training. Rivas found that, while the statistical methods are

able to explore different models of RNA folding; only modest improve-

ments over the classical MFE folding algorithms can be achieved at

present.

Statistical RNA folding methods have convenient algorithms for

training parameters for new models. We opted, however, to not to

use a statistical method for two reasons. First, we are focusing on

thermodynamic models, and the logarithmic and AN models nearest

neighbor models are thermodynamic in origin. It is informative to

analyze thermodynamic parameters for these models as they can be

put into the context of existing parameters. Second, the existing

implementations of folding algorithms for the logarithmic and AN

models are for MFE structure prediction (Ward et al., 2017).

Re-implementing them for a statistical method would require sub-

stantial work. Similarly, implementing a partition function variant

of the two algorithms, to estimate structure formation probabilities,

would require substantial work. The probabilities would be required

for some types of training (Andronescu et al., 2010) and for a max-

imum expected accuracy folding algorithm (Lu et al., 2009). Free

energy minimization provides the most probable structure under the

thermodynamic model, and there is much to learn from predictions

of the most probable structure.

2 Materials and methods

2.1 Nearest neighbor model derivation through linear

regression for multi-loops
Folding stabilities for RNA multi-branch loops were collected

(Diamond et al., 2001; Hill and Schroeder, 2017; Liu et al., 2011;

Mathews and Turner, 2002). Multiple linear regression (Cohen

et al., 2013), which fits model parameters to best match the data,

was performed on this dataset using R (Ihaka and Gentleman,

1996). To select the set of parameters that are significant to the sta-

bility of multi-loops, we use a stepwise algorithm to prevent overfit-

ting, and the criterion we choose is the Akaike Information

Criterion (AIC) (Akaike, 1998; Chambers et al., 1990):

AIC ¼ �2lnðLÞ þ 2k (4)

The larger the likelihood value (L) is, the smaller the AIC.

Likewise, the fewer the number of parameters in the model (k), the

smaller the AIC. The best model is the model with the smallest AIC

value. When applying the stepwise algorithm, the direction could be

forward, backward, or both (Efroymson, 1960). The method starts

with a full model. At each step, it works by evaluating AIC values

for dropping each candidate parameter, and for adding each candi-

date parameter between the current model and the full model.

A parameter is then either removed or added if a better AIC can be

achieved. The steps continue until the lowest AIC value is reached.

The likelihood value (L) of a given model is the probability of a

proposed model being true given the dataset (Jeffreys, 1998):

Lðh1; h2; h3; . . . ; hk;r
2jDG

�

37Þ ¼
Yn
i¼1

pðDG
�

37ðiÞÞ (5)

Here, h is a parameter in the proposed model; r is standard

error; pðDG
�

37ðiÞÞ is the probability of predicting observation i:

pðDG
�

37jh1; h2; h3; . . . ; hk;r
2Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�

ðDG
�
37
�DG0

37
�Þ

2r2 (6)

In this equation, DG
�

37 is the experimental value for observation

i; DG037
� is the predicted value using the proposed model and this

value can be calculated using:

DG037
� ¼

Xjhj
i¼1

hifi (7)

where h is a parameter value vector and f is parameter frequency

vector.

2.2 An algorithm for optimizing multi-loop model

parameters
We applied algorithmic optimization of model parameter perform-

ance for RNA folding to the linear, logarithmic, and AN models.

This has precedent (Jaeger et al., 1989; Mathews et al., 1999, 2004).

A notable advance was the iterative constraint generation (ICG)

technique of Andronescu et al. (2007). We call these algorithms par-

ameter optimization algorithms.

To begin, some fundamental definitions should be provided. A

parameter optimization algorithm aims to optimize the values

assigned to parameters in a model so that folding accuracy is good

on known structures in a training set. This is different to a technique

like linear regression, which fits parameters to experimental values.

To use such an algorithm, we need a set S ¼ fðx1; y1Þ;
ðx2; y2Þ; . . ., ðxN ; yNÞg containing known RNA sequence–structure

pairs on which to optimize performance. xi denotes a sequence and

yi denotes the corresponding structure. A nearest neighbor model

can be said to score an RNA sequence–structure pair’s folding free

energy change as the sum of the free energy changes of features—

such as a specific type of hairpin loop, or a branch in a multi-loop

(Mathews et al., 1999, 2004; Turner and Mathews, 2009). A model

therefore informs how to score each of these features. As such, each

feature corresponds uniquely to a parameter in a model. Thus, a

model is described by a parameter vector h with a dimension for

each feature. Each element in h is the free energy change correspond-

ing to a particular feature. An RNA sequence–structure pair p is

described by a feature vector f(p) with jhj dimensions where f ðpÞi is

the frequency of feature i in p. The free energy of p is thus provided

by Equation (7).

2.2.1 The ICG algorithm

Our solution to parameter optimization for multi-loop models

modifies the constraint generation approach of Andronescu et al.

(2007, 2010). We refer to their algorithm as the ICG algorithm.

The ICG algorithm starts with an arbitrary parameter vector h,

and attempts to iteratively improve it (Andronescu et al., 2007).

As with most parameter optimization algorithms, the algorithm

must start with a set S of known sequence–structure pairs. Every pri-

mary sequence in S is then folded subject to h. The resulting predic-

tions can be represented as a set S0 of sequence–structure pairs. Each

p0 2 S0 corresponds to a true sequence–structure pair p 2 S, which

has the same primary sequence, but may have a different structure.

Note that we refer to the corresponding true sequence–structure pair

of a folded pair p0 as p.

Let us define the total free energy change of a sequence–structure

pair x using a parameter vector h to be DG
� ðx; hÞ. Now, if we have

two sequence–structure pairs, a true structure p, and a correspond-

ing pair p0 such that p0 6¼ p, then we would expect DG
� ðp; hÞ <

DG
� ðp0; hÞ if h were an optimal parameter vector. This is because a

true structure should be the MFE structure for a given primary se-

quence at equilibrium. It follows that
Pjhj

i¼1 hif ðpÞi <
Pjhj

i¼1 hif ðp0Þi.
This gives us a constraint for each p0 2 S0 such that p 6¼ p0. If we can

satisfy all these constraints by modifying the parameter vector h,

then we have found parameter values that predict the true sequence-
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structure as the MFE sequence–structure for S0 [ S, which is tanta-

mount to optimizing prediction performance.

In the ICG algorithm, Andronescu et al. (2007) apply this idea it-

eratively to build S0, a corresponding set of constraints, and an

improved h. Constrained optimization algorithms can be used to

solve these constraints in each iteration generating a new h for the

next. When h converges, it is expected to be an improved parameter

value assignment. Note that convergence happens when h does not

change after an iteration. Important extensions to what we describe

include the incorporation of experimental thermodynamic informa-

tion, and robustness to the lack of a complete solution to generated

constraints. It is not always possible to solve all the constraints and

enforce that all true structures have MFE, so it is important to slack-

en this requirement in practice.

2.2.2 Our multi-loop parameter optimization algorithm

The ICG algorithm optimizes all parameters simultaneously.

Although this is a powerful, holistic approach, we optimize only the

multi-loop parameters while keeping the other model parameters

fixed to existing values. The reason is that we wanted to compare

the multi-loop models fairly. Additionally, we believe it is inform-

ative to see how the parameters fit with the existing thermodynamic

parameters. The multi-loop models are fit to a limited dataset and

small changes in parameter values are known to have large effects

on the predicted structures relative to other parameters (Zuber

et al., 2017). Optimizing this restricted space has two advantages.

First, the ICG algorithm attempts to find a parameter set that mini-

mizes the free energy of a true structure relative to other possible struc-

tures. This is an indicator of the prediction accuracy of a parameter set,

but it is sometimes not a good measure. For example, it is possible for the

free energy of the true structure to be close to the MFE, and the MFE

structure to be dissimilar to the true structure. We preferred to optimize

the accuracy directly by maximizing F-score, and found that this yielded

more accurate parameter sets, as expected. Comparable approaches have

been used before that maximize the probability of the true structures

(Andronescu et al., 2010). These require more computation time (6–8

CPU months) than the ICG algorithm (1–3 CPU days) (Andronescu

et al., 2010), and the implementation of a partition function version of

the new algorithms for the logarithmic and AN models, which do not

exist yet. The second advantage of our approach is computation time.

For the ICG algorithm, it was reported that solving the systems of con-

straints required around 80% of the total computation time (Andronescu

et al., 2010). Solving constraints is not the bottleneck for our algorithm.

We refer to our algorithm as the Iterative Brute Force (IBF) algo-

rithm. It is iterative in the same way that ICG is, but instead of using

constraint generation, a form of brute force is used. It modifies the

basic template of the ICG algorithm for parameter optimization to

only multi-loop parameters, a relatively small set. Andronescu et al.

(2007) reported that the Turner 1999 nearest neighbor model

(Mathews et al., 1999) had 363 free parameters to be optimized. In

contrast, the logarithmic model has only five free parameters

(Equation 2). In addition, we limit these five parameters to thermo-

dynamically plausible ranges, and choose values rounded to a tenth

of a kcal/mol, resulting in a total number of combinations that is in

the hundreds of millions. Although this is large, it is not astronomic-

al, and it is feasible to try every combination.

This allows us to formulate a parameter optimization algorithm

that does not require the generation and solving of constraints. In ab-

stract terms, the IBF algorithm works as follows. We start with an arbi-

trary parameter vector h containing only multi-loop parameters, and

a set of known sequence–structure pairs S on which to optimize

performance.

Similar to ICG, the IBF algorithm iteratively improves h. In each

iteration, each primary sequence in S is folded subject to h to predict

a MFE structure. The resulting sequence-structure is added to S0,

which is the set of folded sequence-structures from all iterations.

Next, we update h. This is done by examining every thermodynam-

ically plausible configuration for h, and picking the best. We only

examine parameter vectors that have variation in multi-loop param-

eters. In addition, we define the best parameter vector to be the vec-

tor whose MFE prediction yields the highest average F-score (see

Section 2.3.3 for a definition) in S [ S0. We judge F-score in S [ S0 by

evaluating DG
� ðp; hÞ8p 2 S [ S0, and picking the sequence–structure

pair with the minimum DG
�

for each unique primary sequence as

the prediction. The average F-score is then the average of the F-

scores for each primary sequence.

In our pseudocode for Algorithm 1, three subroutines are used:

foldðx; hÞ; DG
� ðp; hÞ, and fscoreðp; p0Þ. The foldðx; hÞ function

applies a folding algorithm to the sequence in x subject to a param-

eter vector h, returning a folded structure. As explained, DG
� ðp; hÞ

computes the free energy change of a sequence–structure pair subject

to an energy model parameter vector h, returning the free energy

change. The fscoreðp; p0Þ function computes the F-score of p0 given

that p contains the true structure. The fold function could imple-

ment one of the algorithms of Ward et al. (2017). Similarly, the im-

plementation of DG
�

could decompose a structure into its features

and score them in O(n) time for a sequence of n nucleotides (Sloma

and Mathews, 2016). This can be improved on, however.

Algorithm 1. A description of the basic IBF algorithm

h an arbitrary initial parameter vector

S a set of sequence� structure pairs to optimize on

S0  fg
loop

S0  S0 [ ffoldðx; hÞ : ðx; yÞ 2 Sg
nexth h
bestscore �1
for all h0 2 candidate parameter vectors do

score 0

for all p 2 S do

predictedp p

predictede DG
� ðp; h0Þ

for all p0 2 S0jp0 corresponds to p do

e DG
� ðp0; h0Þ

if e � predictede then

predictede e

predictedp p0

end if

end for

score scoreþ fscoreðp; predictedpÞ
end for

score score
jSj

if score > bestscore then

bestscore score

nexth h0

end if

end for

if nexth ¼ h then return h
end if

h nexth
end loop
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2.2.3 Optimizing the IBF algorithm

There is an important optimization to the DG
�

function we can

achieve. We only vary the multi-loop parameters, and this allows us

to optimize DG
� ðp; hÞ to O(m) where m is the number of multi-

loops in a structure. In practice, we found m to be small. The max-

imum number of multi-loops for any structure in our training set is

9, and the average is 1.2.

This speed-up is achieved largely through pre-computation.

Features not related to the multi-loop parameters never change free-

energy score. Thus, when we first add a sequence–structure pair p to

either S or S0, we compute the free energy change of p with no free-

energy change contribution, called the multi-loop-free DG
�
. We also

keep account of all multi-loop features for p. Luckily, for the models

we consider, this is a constant amount of information for each

multi-loop. For example, the logarithmic model requires only that

we store the number of branches and unpaired nucleotides for each

multi-loop. Now, when computing DG
� ðp; hÞ, we compute the free-

energy change for the saved multi-loop features of p subject to h,

and then sum this with the multi-loop free DG
�
. This allows compu-

tation of DGðp; hÞ in O(1) per multi-loop.

Another major optimization comes from parallelization. Note

that the loop over all candidate parameter vectors is finding the

maximum score parameter vector, which can be done efficiently in

parallel (Cook et al., 1986). Likewise, folding all the elements of S,

which is the first operation done in each iteration of the outer-loop,

can be done in parallel. In short, each iteration of our algorithm is

embarrassingly parallel.

2.2.4 Seeding of structures

We found that our parameter optimization algorithm was sensitive

to the initial arbitrary choice of h. To make the training more con-

sistent, we seed S0 with random structures by randomly selecting five

parameter vectors (h1; h2; . . . ; h5) from the space of all thermo-

dynamically plausible parameter vectors and filling S0 with the fold-

ing results subject to these vectors. Five was empirically found to be

sufficient. This appears to smooth out the optimization space so that

the best parameter set is usually found.

2.2.5 Separating RNA families

There are families of related RNA such as tRNAs or 5S ribosomal

RNAs. RNAs within a family have similar structures because they

are orthologs. This can be a problem during training. Consider a

training set containing 100 tRNAs, and 10 5S rRNAs. If we naively

run a parameter optimization algorithm, it will over-fit to tRNA-

like structures, since there are more of these in the training set. To

deal with this effect, we modify our IBF algorithm to take the final

score of a parameter vector to be the average of family averages.

2.3 Experiments
2.3.1 Folding algorithms and source code

The algorithms for folding RNAs under the multi-loop models are

described by Ward et al. (2017). Implementations of these algorithms,

the source code for the IBF algorithm, and all our datasets are available

at https://github.com/maxhwardg/advanced_multiloops.

2.3.2 Parameter training evaluation

We used the IBF algorithm for parameter optimization on the linear,

logarithmic, the AN models. The algorithm was implemented using

the Cþþ11 standard using RNA structure 5.8 (Reuter and

Mathews, 2010) for free energy change functions. We divided the

dataset in some subsets for training and validation.

Each model was trained using the IBF algorithm until conver-

gence. We used a thermodynamically reasonable range of parame-

ters for each model, summarized in Supplementary Tables S1–S3.

We include in the Results the final trained parameters and their per-

formance on the validation dataset.

Figure 2 shows the progress of the IBF algorithm on an example

case. Converge of parameters can be observed.

2.3.3 F-score

We use F-score as the measure of the quality of RNA secondary

structure prediction. F-score is the harmonic mean of sensitivity

(also called recall) and positive predictive value (PPV; also called

precision). Sensitivity, s, is the fraction of known pairs correctly pre-

dicted and PPV, p, is the fraction of predicted pair in the known

structure.git F-score is 2sp
sþp. This is a widely used measure of perform-

ance (Lorenz et al., 2011; Rivas, 2013). For a predicted pair to be

considered correct, we required an exact match in position of the 5’

and 3’ nucleotides in the pair. Statistical significance was determined

using a paired t-test as implemented by the SciPy library.

2.3.4 Dataset

We required a training set of known sequence–structure pairs. For

this purpose, we started with the ‘ArchiveII’ database available at

http://rna.urmc.rochester.edu/pub/archiveII.tar.gz (Sloma and

Mathews, 2016). We modified this database by replacing the set of

tRNAs with those from RNAstralign (https://rna.urmc.rochester.

edu/pub/RNAStralign.tar.gz) (Tan et al., 2017), which include heli-

ces in the variable loop. Duplicate primary sequences and sequence–

structure pairs with missing structural information, were removed

from the resulting dataset. The final dataset is available at https://

github.com/maxhwardg/advanced_multiloops, and comprises 9821

RNAs. It includes tRNAs (Jühling et al., 2009), Signal Recognition

Particle (SRP) RNAs (Gorodkin et al., 2001), telomerase RNAs

(Griffiths-Jones et al., 2005), 5S rRNAs (Szymanski et al., 2000),

16 s rRNAs, 23 s rRNAs (Andronescu et al., 2008; Cannone et al.,

Fig. 2. The IBF algorithm converges to good parameters. This plots the pro-

gress of the IBF algorithm training to the linear model parameters using the

complete dataset for scoring. The x-axis is the number of iterations. The red

line indicates the F-score as a percentage. The values for the best parameters

(comprising of A, B and C from Supplementary Table S1) are also shown. The

blue line shows A in kcal/mol. The green line shows B in kcal/mol. The purple

line shows C in kcal/mol
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2002), tmRNAs (Zwieb et al., 2003), Group I (Andronescu et al.,

2008; Cannone et al., 2002) and II Introns (Michel et al., 1989) and

RNase P RNAs (Brown, 1999).

2.3.5 Training and validation data

For training, we used two datasets. We call these the large training

set, and the small training set. The large training set comprises

tRNAs, SRP RNAs, Telomerase RNAs, 5S rRNAs, 16S rRNAs and

23S rRNAs. The large training set contains 2100 RNA sequence–

structure pairs. The small training set contained tRNAs, SRP RNAs,

and 5S rRNAs whose length was no >300 nt. The small training set

contains 1949 sequence–structure pairs. We have both a large and

small dataset for training because the AN model folding algorithm is

slower [with complexity of Oðn5Þ for n nucleotides (Ward et al.,

2017)], and we had to avoid longer RNA sequences when training

it. The large training set was used to train the linear and logarithmic

models, whose folding algorithm time complexities are Oðn3Þ and

Oðn4Þ, respectively (Ward et al., 2017).

For validation, we use a similar division of our data. We had a

complete set that includes all RNAs in our dataset. RNase P RNA,

Groups I and II introns, and tmRNAs are in the complete validation

set but not in the large training set. We also had a small set for valid-

ation that includes only RNAs whose length was no >300 nt. 16S

and 23S rRNAs, RNase P RNA, Group I Introns and tmRNAs are

in the small validation set but not in the small training set.

The complete set was use for validation of the linear and loga-

rithmic models. The small set was used for validation of the AN

model. To ensure we can determine the validity of our results, we

left out families from training so they can be used for comparison.

We opted to do this rather than training on all families and exclud-

ing RNAs from each family as a validation set. RNAs from the same

family have similar structures, and we aim to avoid the issues this

might cause with validation (Lu et al., 2009; Rivas et al., 2011).

3 Results

3.1 Linear regression
Linear regression was used on a set of 89 available optical melting

measurements (Diamond et al., 2001; Hill and Schroeder, 2017; Liu

et al., 2011; Mathews and Turner, 2002) to fit multi-branch param-

eters for the linear model (Zuker and Sankoff, 1984), the logarith-

mic model (Jacobson and Stockmayer, 1950) and the AN model

(Aalberts and Nandagopal, 2010). In total 74 of the measurements

were used to derive 2004 nearest neighbor model (Mathews et al.,

2004) and 14 are more recent. For the AN model (Equation 3), a

and b were not fit because they are distances measured in crystal

structures. The offset (C) value accommodates how close the loop

ends need to be for the loop to close. It is the mean of the residuals,

which were calculated as the difference between the experimental

value and the predicted value using the AN model.

3.2 Found parameters and folding accuracy
The parameters we found using the IBF algorithm and linear regres-

sion are summarized in Table 1. These parameters were used to fold

RNAs to test accuracy. The accuracy results are summarized in

Tables 2 and 3 and Figure 3. Since the existing linear model parame-

ters (Equation 1) are the benchmark that other models should im-

prove upon, these tables compare models and parameters to them.

We shall also make this comparison when explaining the results.

The parameters for linear regression to the linear and logarith-

mic models were tested using the complete dataset. These can be

found in Table 2. The fit parameters for the linear model appear to

be worse than the existing parameters with statistical significance (P

< 0.05) for three families (23S and 5S rRNAs, and tRNAs), but sig-

nificantly better for two (RNase P RNAs and tmRNAs). The linear

regression parameters for the logarithmic model, however, were not

significantly better for any family, and significantly worse for four

families (16S and 23S rRNAs, RNase P RNAs and tmRNAs). The

existing literature parameters for the logarithmic model

(Equation 2) were also tested. These were significantly better for

two families (5S rRNAs and SRP RNAs), but significantly worse for

three (RNase P RNAs, tRNAs and tmRNAs). Our new fit parame-

ters for the linear model, the fit parameters for the logarithmic

model, and the existing parameters for the logarithmic model appear

worse than the existing parameters for the linear model.

The IBF parameters for the linear and logarithmic models were

trained using tRNAs, SRP RNAs, telomerase RNAs, 5S rRNAs, 16S

rRNAs and 23S rRNAs. Therefore we focus on RNase P RNAs,

Groups I and II Introns and tmRNAs in comparing parameters

found using IBF. The linear model parameters found using IBF were

significantly better (P < 0.05) for RNase P RNAs. Interestingly,

some families used for training were a little worse with significance

(5S rRNAs, telomerase and SRP RNAs); this appears to be balanced

by a large significant improvement to tRNAs. The IBF parameters

for the logarithmic model were not significantly better for any fam-

ily they were not trained on, and they are worse with statistical sig-

nificance for RNase P RNAs and tmRNAs. For families they were

trained on, again there is a large significant improvement in the per-

formance of tRNAs. Overall, it appears that the IBF parameters for

the linear model are comparable to the existing linear model, and

the IBF parameters for the logarithmic model are worse.

A smaller dataset was used for the AN model. The folding results

using this dataset can be found in Table 3. The existing parameters

for the AN model (Equation 3) were significantly (P < 0.05) worse

for RNase P RNAs, SRP RNAs and tRNAs, and were not better for

any family. The parameters found using linear regression were sig-

nificantly worse for RNase P RNAs, Group I Introns and tRNAs,

but were significantly better for SRP RNAs. The AN model

Table 1. The parameter sets for multi-loop models including the lin-

ear model (Equation 1), the logarithmic model (Equation 2) and the

Aalberts & Nandagopal model (Equation 3)

Existing Regression IBF

Linear model

Initiation 9.3 12.3 6 1.1 9.4

Branch �0.6 �0.9 6 0.3 �0.9

Unpaired 0.0 �0.1 6 0.1 0.0

Logarithmic model

Initiation 10.1 12.3 6 1.1 13.0

Branch cost �0.3 �0.9 6 0.3 �0.6

Unpaired cost �0.3 �0.2 6 0.1 �0.7

Logarithm coefficient 1.1 3.5 6 2.7 1.8

Pivot to logarithmic 6 nt 8 nt 7 nt

AN model

a-length 6.2 Å 6.2 Å 2.9 Å

b-length 15 Å 15 Å 15 Å

Offset (C) 0 2.28 6 1.38 1.6

Note: Comprises existing parameters from the literature (Aalberts and

Nandagopal, 2010; Mathews and Turner, 2002; Mathews et al., 1999), he

parameters we found using linear regression, and parameters we found using

IBF. All values are in kcal/mol unless otherwise specified. The a- and b-length

parameters were not fit using linear regression
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parameters were trained using IBF on SRPs, tRNAs and 5S rRNAs.

They were not better for any family, and were actually significantly

worse for some families they were trained on (tRNAs and 5S

rRNAs). Overall, it appears as though no parameter set for the AN

model is better than the linear model using existing parameters.

4 Discussion

We found that none of the parameters we tried were clearly better

than the existing parameters for the linear model. In fact, many of

the parameters we found are noticeably worse, the AN model par-

ameter we found in particular. We believe that this constitutes evi-

dence that the logarithmic and AN models are not better than the

linear model. This implies that they should not be used to calculate

free energy change. This additionally means that the models based

in polymer theory do not outperform a heuristic. One possible rea-

son for this is that polymer models are designed to account for the

entropy of loop closure, but multi-branch loops demonstrate sub-

stantial enthalpies for loop closure (Lu et al., 2006) that complicate

the estimation of loop free energy change.

Our results echo our previous findings. In 2017, we tested these

models using their existing parameters, and also applied rudimen-

tary parameter optimization to the same models (Ward et al., 2017).

Though we have used much more comprehensive methods for find-

ing parameters, our results are similar. This reinforces the conclu-

sion that the existing linear model is the best available for secondary

structure prediction.

Interestingly, the parameters we found using IBF for the linear

model were similar to the existing parameters. In addition, they are

almost identical to the parameters found previously by optimization

(Mathews et al., 2004; Mathews and Turner, 2002). We believe that

this may be evidence that the current linear model parameters are

nearly optimal, at least for the current full nearest neighbor param-

eter model.

The linear model parameters found using linear regression did

not outperform existing linear model parameters. There are several

possible explanations. One possible reason is that there are not

enough optical melting experiments to derive the nearest neighbor

parameters and the linear model is over-fitted. The available dataset

of multi-branch loop optical melting experiments contains only

three- and four-way branching multi-loops. Additionally, most

loops are closed with the same helices. This dataset does not repre-

sent the large space of possible multi-loop structures. Furthermore, a

multi-loop that was designed to closely mimic the sequence of the 5S

rRNA multi-loop was substantially more stable than other studied

sequences (Diamond et al., 2001), suggesting that the features that

stabilize native multi-branch loops are specific and not well modeled

Table 2. Average F-score of optimized model parameters on the complete validation dataset

(16S rRNAs) (23S rRNAs) (5S rRNAs) RNase

P RNAs

Grp. I

Introns

Grp. II

Introns

(SRP RNAs) (tRNAs) (Telomerase

RNAs)

tmRNAs Average

Existing linear 0.518 0.669 0.599 0.529 0.483 0.255 0.594 0.710 0.465 0.405 0.523

IBF linear 0.521 0.675 0.587 0.542 0.477 0.267 0.571 0.742 0.451 0.409 0.524

LR linear 0.502 0.633 0.573 0.539 0.474 0.300 0.593 0.690 0.459 0.436 0.520

Existing logarithmic 0.515 0.667 0.618 0.502 0.479 0.248 0.602 0.688 0.463 0.387 0.517

IBF logarithmic 0.514 0.680 0.604 0.513 0.468 0.256 0.591 0.746 0.471 0.392 0.524

LR logarithmic 0.481 0.592 0.595 0.483 0.465 0.249 0.595 0.713 0.460 0.368 0.500

Number of RNAs 88 30 1283 454 98 11 928 6430 37 462 9821

Note: Larger F-scores are better predictions. Statistically significant advantages over the existing linear model are in bold, while significant losses are in italic.

Results using parameters determined using linear regression (LR), IBF, and the existing parameters are included. RNA families used for training are denoted by

parentheses. Averages of family averages are included in the last column. The t-test P-values can be found in Supplementary Table S4.

Table 3. Average F-score of trained model parameters on the small validation dataset

16S rRNAs 23S rRNAs (5S rRNAs) RNase P RNAs Grp. I Introns (SRP RNAs) (tRNAs) tmRNAs Average

Existing linear 0.630 0.834 0.599 0.513 0.505 0.597 0.710 0.470 0.607

Existing Aalberts & Nandagopal 0.611 0.722 0.599 0.480 0.492 0.580 0.694 0.449 0.578

IBF Aalberts & Nandagopal 0.606 0.724 0.592 0.491 0.482 0.596 0.705 0.467 0.583

LR Aalberts & Nandagopal 0.623 0.667 0.602 0.464 0.463 0.608 0.626 0.444 0.562

Number of RNAs 29 5 1283 111 21 767 6430 10 8656

Note: Larger F-scores are better predictions. Statistically significant advantages over the existing linear model are in bold, while significant losses are in italic.

Results using parameters determined using linear regression (LR), IBF, and the existing parameters are included. RNA families used for training are denoted by

parentheses. Averages of family averages are included in the last column. The t-test P-values can be found in Supplementary Table S5.

Fig. 3. The average F-score percentages of parameter sets for the linear, loga-

rithmic and Aalberts & Nandagopal models. The left panel depicts averages

using the complete validation dataset. The right panel depicts averages using

the small validation set. The average is an average of family averages. More

data can be found in Tables 2 and 3

4304 M.Ward et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4298/5421512 by guest on 09 April 2024

Deleted Text: ,
Deleted Text: 3
Deleted Text: way
Deleted Text: 4
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz222#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz222#supplementary-data


by the simple, sequence-independent functions we currently use.

Another important reason is possible non-nearest neighbor phenom-

ena. The linear regression model does not provide any information

for non-nearest neighbor phenomena.

5 Conclusion

We hypothesize that there do not exist parameters for the linear,

logarithmic or AN models that are notably superior to the existing

linear model parameters when used with the current parameters

assigned to the rest of the nearest neighbor model. As can be seen by

our results, the prediction performance of folding algorithms is

influenced greatly by the scoring of multi-loops. Thus, we propose

that a significant increase in folding algorithm accuracy may come

from a new model of multi-loop free energy change. We put this for-

ward as the next step in improving our current thermodynamic

model of RNA secondary structure. One possible route to improving

the multi-loop model is to build from the model of Mathews and

Turner (2002), which penalizes the average asymmetry of branches

in a multi-loop. This might be a better model of RNA free energy

change, and should be investigated as we have investigated the loga-

rithmic and AN models by implementing and testing folding

algorithms.
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