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Abstract

Motivation: Genomic scanning approaches that detect one locus at a time are subject to many

problems in genome-wide association studies and quantitative trait locus mapping. The problems

include large matrix inversion, over-conservativeness for tests after Bonferroni correction and diffi-

culty in evaluation of the total genetic contribution to a trait’s variance. Targeting these problems,

we take a further step and investigate a multiple locus model that detects all markers simultaneous-

ly in a single model.

Results: We developed a sparse Bayesian learning (SBL) method for quantitative trait locus

mapping and genome-wide association studies. This new method adopts a coordinate descent

algorithm to estimate parameters (marker effects) by updating one parameter at a time conditional

on current values of all other parameters. It uses an L2 type of penalty that allows the method to

handle extremely large sample sizes (>100 000). Simulation studies show that SBL often has higher

statistical powers and the simulated true loci are often detected with extremely small P-values, indi-

cating that SBL is insensitive to stringent thresholds in significance testing.

Availability and implementation: An R package (sbl) is available on the comprehensive R archive

network (CRAN) and https://github.com/MeiyueComputBio/sbl/tree/master/R%20packge.

Contact: shizhong.xu@ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Most economically important traits in crops are quantitative in na-

ture. Detecting marker-trait association is called quantitative trait

locus (QTL) mapping when the population is created through line

crossing experiments or genome-wide association studies (GWAS) if

the population is a randomly collected sample of a natural popula-

tion. In classical QTL mapping procedures, if a locus does not over-

lap with a marker, the numerical codes of the genotypes are inferred

from two markers flanking the locus (defining an interval of the gen-

ome). Effects of QTL outside the interval are captured by co-factors

included in the model, a method called composite interval mapping

(CIM) (Jansen, 1993; Zeng, 1994). The unique feature of CIM is the

inference of genotypes for pseudo markers. As the marker map

becomes increasingly dense, it is redundant to infer genotypes of a

pseudo marker and we may need to skip some markers because there

are too many of them. With high marker density, the statistical tech-

nology used in GWAS has been adopted to QTL mapping. The co-

factor selection step in CIM has been replaced by a polygenic effect

modeled by a kinship matrix inferred from markers of the entire

genome (Xu, 2013). We now have a unified linear mixed model as a

powerful tool for both QTL mapping and GWAS because they share

the same theoretical basis (Yu et al., 2006).

One common feature of the mixed-model QTL mapping and

GWAS is that both detect association of trait with one marker locus

at a time until all loci are detected to complete the analysis.

Technically, the above genome scanning approach uses a single

QTL model. As a result, one often expects to see an island surround-

ing a high peak in a Manhattan plot which is caused by linkage
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disequilibrium (LD). In contrast, the multiple locus model includes

all markers in the same model with effects being estimated simultan-

eously. It drastically eliminates the island, leaving a single peak

standing alone. This single peak is supposed to be better than an is-

land because the signal is cleaner and stronger. This study particu-

larly addresses this issue via Monte Carlo simulation studies. In the

meantime, we developed a novel sparse Bayesian learning (SBL)

method (Tipping, 2001) to perform multiple QTL linkage study and

multiple locus GWAS by including all markers in a single model.

Multiple QTL linkage studies were invented two decades ago

represented by the multiple interval mapping developed by Kao

et al. (1999). Multiple locus GWAS is also available and mainly con-

ducted via Markov chain Monte Carlo (MCMC). Current multiple

marker models that have been applied to QTL mapping and GWAS

include the least absolute shrinkage selection operator (LASSO)

(Tibshirani, 1996), empirical Bayes (Xu, 2007), multi-locus mixed

model (Segura et al., 2012) and Bayes B (Meuwissen et al., 2001).

With the exception of LASSO, the other three methods are slow in

terms of computational speed. LASSO is surprisingly fast for small

and intermediate sample sizes (from �200 to 5000) but can fail for

large sample size with extremely high marker densities. In addition,

the LASSO method implemented by GLMNET/R package does not

provide a mechanism to calculate the standard errors of estimated

effects and thus cannot perform statistical tests for markers. SBL

(Tipping, 2001) is another method similar to LASSO but imple-

mented with an L2 penalty. Theoretically, SBL and empirical Bayes

are the same. Both methods estimate prior variance of each effect

and if the estimated variance is zero, the corresponding estimated ef-

fect is also zero (sparseness). When the tuning parameter favors

sparseness, the prior variance has a very narrow legal space to move,

beyond which the variance is set to zero. This explains why the L2

penalty can also lead to sparseness.

Except multi-locus mixed model, none of the above methods is

capable of dealing with large sample sizes. As the cost of DNA

sequencing becomes increasingly cheaper, a large number of individ-

uals are expected to be sequenced. A sample size of 5000 is consid-

ered typical for GWAS. In this study, we proposed a new SBL

technique that can easily handle 100 000 individuals with a half mil-

lion single nucleotide polymorphism (SNP) markers. Such a large

sample size, although easily handled by a genome scanning ap-

proach (Lippert et al., 2011; Loh et al., 2015; Zhou and Stephens,

2012), has never been reported in QTL mapping and GWAS with a

multiple locus model (Guan and Stephens, 2011; Segura et al., 2012;

Zhou et al., 2013).

2 Materials and methods

2.1 Materials
2.1.1 QTL mapping in inbred rice

The population consists of 210 recombinant inbred lines (RIL) of rice

derived from the cross of two elite inbred varieties, Zhenshan 97 and

Minghui 63. The hybrid of the two varieties, Shanyou 63, underwent

nine generations of selfing via single-seed descent to generate the 210

RILs, which were evaluated in 1997, 1998 and 1999 in two locations

at the Experimental Station of Huazhong Agricultural University in

Wuhan, China. We analyzed two agronomic traits: 1000 grain

weight (KGW) and yield per plant (YD). The genotypes consist of

1619 bins inferred from 270 820 SNPs across 12 chromosomes of the

rice genome. A bin is a synthetic locus covering all markers that share

the same segregation pattern in a complete LD block. We took the

average value of a trait across the four replicates as the original

phenotypic value for each trait. Details of the rice experiment are

provided in the original publication (Yu et al., 2011).

2.1.2 GWAS in hybrid rice

The hybrid population analyzed in this study consists of 1495 hybrid

rice varieties derived from indica�indica (1439), indica�japonica

(18) and japonica�japonica (38) crosses. The original 96-bp paired-

end sequencing reads and phenotype dataset were obtained from

Huang et al. (2015). The genotype datasets were downloaded from

the Rice Haplotype Map Project website (http://www.ncgr.ac.cn/

RiceHap4). We realigned reads against the reference genome of

japonica Nipponbare (MSU Rice Genome Annotation Project

Release 7) and performed SNP calling. After SNP filtration of miss-

ing rate <5% and minor allele frequency <1%, 182 010 SNPs of the

1495 hybrid varieties were randomly selected across the genome for

association analysis. Each hybrid variety was planted in two experi-

mental fields in Hangzhou, China (subtropical and long-day condi-

tion) and Sanya, China (tropical and short-day condition). In this

study, we used the average of phenotypic values collected from the

two locations as the original response variable.

2.2 Hierarchical linear mixed model
Let y be a vector of phenotypic values of a quantitative trait col-

lected from n individuals. Define Zjk as a genotype indicator vari-

able of individual j at marker k with three values, 1, 0 and �1,

representing the three possible genotypes of locus k. The linear

mixed model for y is

y ¼
Xq

l¼1

Xlbl þ
Xm
k¼1

Zkck þ e (1)

where Xl and bl represent the design matrix and the effect for the lth

fixed effect (non-genetic), Zk is a genotype indicator for marker k,

ck is the effect of this marker and e is the residual error with an

assumed e � Nð0; Ir2Þ distribution. The marker effect ck is treated

as a random variable with an assumed Nð0;/2
kÞ distribution, where

/2
k is a prior variance that must be estimated from the data. To con-

trol the sparseness of the model, we assign a hierarchical prior distri-

bution to /2
k, an inverse Chi-squared distribution pð/2

kÞ /
ð/2

kÞ
�ðsþ2Þ=2, where s (degree of freedom) is a hyper parameter. Each

of the fixed effects (bl) and the residual variance (r2) has a default

uniform prior (also called uninformative prior).

2.3 Conditional posterior mode estimation of marker

effects
We adopt a coordinate descent algorithm (Ortega and Rheinboldt,

1970) to estimate one parameter at a time conditional on values of

other parameters. Let us define a new linear mixed model by

yl ¼ y�
Xq

l0 6¼l

Xl0bl0 �
Xm
k¼1

Zkck ¼ Xlbl þ e (2)

which can be interpreted as the phenotypic values adjusted by all

other effects except Xlbl. Such an adjusted phenotypic vector allows

us to obtain the conditional posterior mode estimate of bl using

yl ¼ Xlbl þ e. The simple least squares estimate (posterior mode) of

bl conditional on all other effects is b̂ l ¼ ðXT
l XlÞ�1ðXT

l ylÞ for

l ¼ 1; . . . ; q. Note that this least squares estimation only involves the

inverse of a scalar. When we say conditional on some parameters,

these parameters are treated as known constants. For example, yl is

a function of all parameters except bl, but all other parameters are

assumed to be known and thus the conditional estimate of bl has a

very simple form (Ortega and Rheinboldt, 1970).
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Since ck is a random effect, its estimate is called the best linear

unbiased prediction (BLUP). The conditional BLUP of ck given all

other effects is obtained using the following linear random model

yk ¼ y�
Xq

l¼1

Xlbl �
Xm
k0 6¼k

Zk0ck0 ¼ Zkck þ e (3)

where yk is the phenotypic value adjusted by all effects except Zkck.

The coordinate descent algorithm is an iterative approach where

only one parameter is studied at a time conditional on all other

parameters. In other words, ck is the only parameter in model (3) be-

cause all b’s and other c’s with subscripts not equal to k are treated

as knowns. For this simple model, yk ¼ Zkck þ e, the conditional

variance of yk given ck is varðykjckÞ ¼ varðeÞ ¼ Ir2, the residual vari-

ance. The following equations are derived based on this assumption.

In the next section, we define the variance of yk conditional on all

other parameters except ck by varðykÞ ¼ ZkZT
k /2

k þ Ir2. The BLUP

of ck is simplified using the Woodbury matrix identity (Woodbury,

1950),

ĉk ¼ kkZT
k yk �

k2
kðZT

k ZkÞðZT
k ykÞ

kkZT
k Zk þ 1

(4)

where kk ¼ /2
k=r

2 is the ratio of variance components. The variance

of ĉk is

varðĉkjykÞ ¼ kk � k2
k ZT

k Zk � kk

ðZT
k ZkÞ2

kkZT
k Zk þ 1

 !" #
r2: (5)

The estimated residual variance conditional on all model effects is

r2 ¼
ðy�

Pq
l¼1 Xlb̂ l �

Pm
k¼1 ZkĉkÞTðy�

Pq
l¼1 Xlb̂l �

Pm
k¼1 ZkĉkÞ

n� q�m0

(6)

where

m0 ¼
Xm
k¼1

kk ZT
k Zk �

kkZT
k ZkZT

k Zk

kkZT
k Zk þ 1

 !
(7)

is the effective number of markers (Tipping, 2001; Xu, 2013).

Derivations of the BLUP and their variances along with m0 are pre-

sented in Supplementary File S1.

The BLUP estimates of marker effects depend on kk ¼ /2
k=r

2.

When /2
k is replaced by the estimated value, the estimate is no longer

BLUP; it is called the empirical Bayes estimate. Therefore, we need

to estimate /2
k also from the dataset. The SBL of Tipping (2001)

does not involve bl and ck during the iteration process; rather, it

deals with /2
k (the prior variance of ck) in the process of

optimization.

2.4 Conditional posterior mode estimation of marker

variances
We now derive a simple solution for /2

k. The variance of the random

model given in Equation (3) is varðykÞ ¼ ZkZT
k /2

k þ Ir2. The loga-

rithmic posterior probability of /2
k after incorporating the hyper

parameter is

Lð/2
kÞ ¼ �

1

2
lnðZT

k Zk/
2
k=r

2 þ 1Þ þ
/2

kyT
k ZkZT

k yk

2r4ðZT
k Zk/

2
k=r

2 þ 1Þ

� sþ 2

2
lnð/2

kÞ (8)

where terms irrelevant to /2
k have been ignored. This logarithmic pos-

terior is conditional on all ck0 for k0 6¼ k, while the posterior of Tipping

(2001) is conditional on all /2
k0 for k0 6¼ k. Such a modification results

in the following explicit solution for /2
k. Let sk ¼ ZT

k Zk=r
2 and

hk ¼ ZT
k yk=r2, we get

Lð/2
kÞ ¼ �

1

2
lnðsk/

2
k þ 1Þ þ

/2
kh2

k

2ðsk/
2
k þ 1Þ

� sþ 2

2
lnð/2

kÞ: (9)

Obviously, the global solution is /2
k ¼ 0, but we need a local so-

lution in this case. Setting @Lð/2
kÞ=@/2

k ¼ 0 leads to

�ðsþ 3Þs2
kð/2

kÞ
2 � ½ð2sþ 5Þsk � h2

k�/2
k � ðsþ 2Þ ¼ 0 (10)

which is a quadratic function of /2
k with a local solution (the largest

positive solution) equal to /2
k ¼ ½�b� ðb2 � 4acÞ1=2�=ð2aÞ, where

a ¼ �ðsþ 3Þs2
k, b ¼ h2

k � ð2sþ 5Þsk and c ¼ �ðsþ 2Þ. Detailed der-

ivation of Equation (10) is presented in Supplementary File S1.

Whenever a solution is negative or illegal, we should take the global

solution /2
k ¼ 0, leading to sparseness of the model. Note that we

can use s to control the model sparseness, where �2 � s � 0. When

we set s ¼ �2, the solution is /2
k ¼ ðh2

k � skÞ=s2
k, which represents

the least sparseness. Again, if h2
k < sk, /2

k is set to zero. The sparse-

ness will increase as s increases. We will discuss how to set an opti-

mal value of s in the result section later. The explicit solution for

each /2
k is crucial for the high computational efficiency of our new

SBL. This approach has been applied to variable selection and it is

called iterative conditional mode algorithm (Pungpapong et al.,

2015).

2.5 Summary of the coordinate descent algorithm
The iteration process is summarized as follows.

Step 1: Initialize the following variables, bl ¼ ck ¼ 0 and r2 ¼ 1.

Step 2: Update one bl at a time until all bl’s values have been

updated.

Step 3: Estimate /2
k and thus kk ¼ /2

k=r
2 for all k ¼ 1; . . . ;m.

Step 4: Update ckusing BLUP given in Equation (4) for all

k ¼ 1; . . . ;m.

Step 5: Update r2 based on updated
Pq

l¼1 Xlbl and
Pm

k¼1 Zkck.

Step 6: Repeat steps (2)–(5) until each parameter converges to a

constant.

One important property of the algorithm is that
Pq

l¼1 Xlbl andPm
k¼1 Zkck are updated instantly when an effect (bl or ck) is esti-

mated (instead of waiting until all effects are estimated). Theoretical

computing time complexity of SBL is Oðq3 þ nq2 þmntS þ nqtSÞ
where tS is the number of iterations required for the iterations to

converge. The computational cost can be simplified to Oðnq2 þ
mntSÞ since both m and n are substantially larger than q.

2.6 Simulation
We simulated n ¼ 500 and n ¼ 1000 individuals of an F2 family

generated from the cross of two inbred lines. The total number of

markers for the entire genome (two chromosomes) was m ¼ 2000.

The first chromosome contained 20 QTLs with effects and positions

shown in Figure 1a as well as in Supplementary Table S1. The se-

cond chromosome contained no QTL and this ‘empty’ chromosome

was used to control Type 1 error in a separate QTL mapping study.

The genetic map used in the simulation is provided in

Supplementary File S2. Phenotypes of the n individuals were gener-

ated using y ¼ b0 þ
Pm

k¼1 Xkbk þ e, where b0 ¼ 100 is the intercept,

Xk is the numeric genotype indicator of the marker k, bk is the effect

assigned to that marker and e is the residual error vector following

an Nð0; Ir2Þ distribution with r2 ¼ 10 and r2 ¼ 20, respectively.

Details of individual marker variances and covariance between the
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simulated QTLs are given in Supplementary File S3. When r2 ¼ 10,

the heritability of the simulated trait is H ¼ r2
G=ðr2

G þ r2Þ ¼
0:8559. Contribution from each QTL varies from 0.36–14.39%.

When r2 ¼ 20, the heritability is H ¼ 0:7482 and the contribution

from each QTL varies from 0.32 to 12.58% (Supplementary Table

S1). The two sample sizes combined with the two residual error var-

iances produces a combination of four experimental setups: ð1Þ
ðn;r2Þ ¼ ð500; 10Þ, ð2Þ ðn;r2Þ ¼ ð500; 20Þ, ð3Þ ðn;r2Þ ¼ ð1000; 10Þ
and ð4Þ ðn; r2Þ ¼ ð1000; 20Þ. Under each experimental setup, the

simulation was replicated 100 times. Theoretical background of the

simulation experiments is presented in Supplementary File S4 and a

sample genotype and phenotype data with experimental setup n ¼
500 and r2 ¼ 10 are provided in Supplementary Files S5 and S6.

In consideration of the negative interference from LD pattern

and other intrinsic hidden structure of a real population, we ran-

domly extracted m ¼ 5; 10 and 50k (m is the number of markers

and k ¼ 1000) subset SNPs from the hybrid rice genome (Huang

et al., 2015) keeping the original sample size (n ¼ 1495). The same

20 QTLs introduced earlier were randomly assigned to the entire

genome. Phenotypes of the 1495 hybrids were generated using equa-

tion y ¼ b0 þ
Pm

k¼1 Xkbk þ e described previously with only

e � Nð0; 10Þ.
To understand how the number of causal QTL affects the per-

formance of each method, we fixed the total number of markers at

m ¼ 10k and varied the number of causal SNPs at three levels,

mQTL ¼ 40; 100;160. The positions of the causal SNPs were ran-

domly assigned on the genome. Under each level of mQTL, the simu-

lation was replicated 100 times. For one of the simulated datasets,

we permuted the phenotypes 1000 times to generate a permuted

sample of test statistic, from which an empirical threshold was

calculated.

2.7 Statistical power and Type 1 error
Wald test statistic, Wk ¼ ĉ2

k=varðĉkjykÞ, was used to test the null hy-

pothesis H0 : ck ¼ 0. Under the null model, Wk follows approxi-

mately a Chi-squared distribution with one degree of freedom.

Therefore, the P-value of each marker was calculated as

pk ¼ 1� Prðv2
1 � WkÞ. By approximation, we mean that the

distribution of the random effect Wald test is not known. When the

standard error of the estimated effect is small, we can treat the ran-

dom effect as a ‘fixed effect’ and thus the Wald test can be approxi-

mated by the Chi-squared distribution. In the significance test for the

LASSO method, Lockhart et al. (2014) found that the test statistic

follows an Exp(1) distribution. The nominal probability with

Bonferroni correction for multiple tests, 0:05=m, is used as the

threshold. The power for each simulation experiment is defined as

the proportion of detected QTLs over the total number of simulated

QTLs. Because of LD, markers nearby each simulated QTL are often

detected. Therefore, we reserved a three-marker window around

each QTL. In total, there are mQTL QTL windows covering 3mQTL

markers. If any markers of the triplet were detected, we counted the

triplet as one positive detection. If a marker outside the QTL win-

dows was detected, it was counted as one false positive detection.

The Type 1 error is defined as the proportion of false positives over

the m� 3mQTL markers. The false discovery rate (FDR) is defined as

the proportion of false positives among all detected markers.

2.8 Alternative thresholds of test statistics
In the simulation studies, we also evaluated powers and Type 1

errors empirically using different thresholds of the Wald test. In the

first approach, we picked up the maximum Wald test over all 1000

markers from the second chromosome for each of the 100 replicated

simulation experiments. We then ranked the 100 maximum Wald

tests in ascendant order and chose the 95th percentile as the thresh-

old value (called Threshold-A). In the second approach, we included

all markers in the non-QTL windows of the first chromosome and

all markers in the second chromosome in the pool (a total of 1940

markers). For each of the 100 replicated simulations, we chose the

maximum Wald test over all these markers. The 95th percentile of

the 100 maximum Wald tests was used as the threshold value (called

Threshold-B).

3 Results

3.1 Tuning the hyper parameter s of the SBL method
The inverse Chi-squared distribution assigned to /2

k is pð/2
kÞ /

ð/2
kÞ
�ðsþ2Þ=2, where s � �2. We used the sample data provided by

the GLMNET/R package (Friedman et al., 2010) (the dataset con-

tain 100 observations and 20 variables) to demonstrate how model

sparseness changes with different values of s. Setting s ¼ 61:25, SBL

selects the first non-zero coefficient and more coefficients appear

when s is further decreased (Supplementary Fig. S1a). In the interval

of �2 � s � 0, most coefficients are estimated nearly constantly.

Only one more coefficient emerges within that interval of s and the

estimated value of this extra coefficient is close to 0. Thus �2 �
s � 0 is an optimal interval for tuning s. We extended the original

simulated experiment of ðn;m;r2Þ¼ (1000, 2000, 10) to different

levels of m (m ¼ 2, 10, 50, 100, 300, 500k). We set s as a sequence

of values within ½�2; 0� to fit the model and evaluated the model

predictability using the leave-one-out cross validation on these simu-

lation experiments (Xu, 2017). The optimal tuning parameter takes

the value (between �2 and 0) that produce the highest predictability.

Although there is no direct connection between the predictability

and the statistical power of detection, using predictability as the cri-

terion to tune parameters is commonly practiced in model selection

(Tibshirani, 1996). When m � 10k, the predictability of SBL

decreases as s increases; the predictability is stable when the number

of markers is intermediate 50k � m � 100k; when m � 300k,

larger s results in higher predictability (Supplementary Fig. S2).

Fig. 1. Estimated effects of 1000 simulated markers on the first chromosome

when the sample size is n ¼ 500 and the residual error variance is r2 ¼ 10. (a)

True QTL effects (blue needles); (b) estimated marker effects from SBL (red

dots); (c) estimated marker effects from LASSO (red dots) and (d) estimated

marker effects from EMMA (red dots). (Color version of this figure is available

at Bioinformatics online.)
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Based on our experience, fixing the tuning parameter at s ¼ �1 is an

eclectic solution to handle general cases without performing cross

validation. Therefore, we fixed s ¼ �1 in all subsequent simulation

studies.

3.2 Simulation studies
In the simulation study (the F2 family), we compared the new SBL

method with efficient mixed-model association (EMMA) (Kang

et al., 2008) and LASSO (Tibshirani, 1996). We used the GLMNET/

R package (Friedman et al., 2010) to implement the LASSO method

and estimated the standard errors for estimated marker effects via

two approaches proposed by Ithnin et al. (2017). One (LASSO-A) is

based on the bootstrap method (Efron and Tibshirani, 1994) and

the other (LASSO-B) is an approximate method incorporating

Henderson’s mixed-model equation (Henderson, 1975). For each

method, we used four criteria to test the significance of a marker: (i)

comparing the marker P-value with 0:05=m ¼ 2:5E� 5 (after

Bonferroni correction), (ii) controlling FDR at nominal probability

q ¼ 0:2 (Benjamini and Hochberg, 1995), (iii) comparing the Wald

test with Threshold-A and (iv) comparing the Wald test with

Threshold-B. Criteria (iii) and (iv) are permutation-based methods.

Figure 1 shows the estimated marker effects plotted against gen-

ome locations of the markers under n ¼ 500 and r2 ¼ 10. Estimates

of SBL (Fig. 1b) and LASSO (Fig. 1c) are much closer to the true

effects (Fig. 1a), both being sparse in a sense that most markers have

zero estimated effects. The EMMA method (Fig. 1d), however, is

not sparse and has a substantially noisy background. Similar plots

under other experimental setups are shown in Supplementary

Figures S3–S5.

Figure 2 shows the statistical powers and Type 1 errors of the

four methods under all four experimental setups. Overall, SBL has

the highest power followed by EMMA, LASSO-B and then LASSO-

A. The Bonferroni corrected threshold may be too stringent for

LASSO. The Type 1 error of all four methods is well controlled below

0.008, and the LASSO method even has a Type 1 error ¼0.

Supplementary Figure S6 shows the power and the FDR of the four

methods with 0.2 as the controlled FDR. Statistical powers of all four

methods are increased but the FDR of SBL and EMMA are not well

controlled as expected. When the alternative thresholds (Threshold-A

and Threshold-B) are used, the powers and Type 1 errors for the four

methods are shown in Supplementary Figures S7 and S8, respectively.

For Threshold-A, EMMA often has higher power but is also associ-

ated with much higher Type 1 errors. The three multiple locus meth-

ods have virtually zero Type 1 error. For Threshold-B, the three

multiple locus models have higher powers than EMMA, and the Type

1 errors of all methods are extremely low.

The best way to represent the nature of the four methods is

through the receiver operating characteristic (ROC) curves, which

are illustrated in Figure 3, where the powers of all methods are com-

pared at the same level of Type 1 error. When the Type 1 error is

small, SBL always shows higher power than the other methods in

three of the four experimental setups. The exception occurs in the

situation where n ¼ 500 and r2 ¼ 20. The EMMA method is the

least efficient of the four methods compared. Supplementary Figure

S9 shows the ROC curves comparing powers at the same level of

FDR, which has the same trend as Figure 3.

The ROC curves are much the same for the multiple locus mod-

els in the simulation studies under the four different experimental

setups. We simulated more data with large n and m to further com-

pare the computing time. We ran both methods on the high-

performance computing Linux cluster hosted by the Bioinformatics

Facility at the University of California Riverside. LASSO-A (the

bootstrap version) is still too much for the high-performance com-

puting cluster system, thus we only compared SBL with LASSO-B.

We investigated 13 cases with various n and m combinations as

shown in Supplementary Table S2; it also shows the running time

with one CPU core without parallel computing. When sample size is

intermediate, and the number of markers is large, LASSO-B

Fig. 2. Statistical powers (upper panel) and Type 1 errors (lower panel)

obtained at p ¼ 0:05=m ¼ 2:5E � 5 drawn from 100 replicated simulation

experiments of four methods under four different experimental setups. The

four experimental setups are four combinations of sample size and residual

error variance: (i) n ¼ 500 and r2 ¼ 10; (ii) n ¼ 500 and r2 ¼ 20; (iii) n ¼
1000 and r2 ¼ 10 and (iv) n ¼ 1000 and r2 ¼ 20

Fig. 3. ROC curves of four methods drawn from 100 replicated simulations

under four experimental setups: (a) n ¼ 500 and r2 ¼ 10; (b) n ¼ 500 and

r2 ¼ 20; (c) n ¼ 1000 and r2 ¼ 10 and (d) n ¼ 1000 and r2 ¼ 20
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outcompetes SBL in terms of computational speed. However,

LASSO-B failed to handle sample size 100k when m � 50k. When

the sample size is 5k but the number of markers is 500k, LASSO

also failed due to memory problem. However, under the situations

where LASSO failed, SBL remained feasible and completed the ana-

lysis within a reasonable time frame.

The second simulation study was performed using the hybrid

rice genotypes. We were able to apply the LD score regression tech-

nique (Bulik-Sullivan et al., 2015) on these datasets so that the SBL

can be compared with BOLT-LMM (Loh et al., 2015). We also

compared the new method with another multiple locus model called

BSLMM (Zhou et al., 2013). We converted our data into the PLINK

format (Purcell et al., 2007) because the BSLMM program takes in-

put data with that format. The BSLMM method is a Bayesian

method implemented via the MCMC sampling algorithm. The total

length of the chain was 50 000 iterations, the burn-in period was

20 000 iterations and thereafter the chain was thinned by deleting 9

out of 10 iterations. We extracted m¼ (5, 10, 50k) markers from

the hybrid rice genome and assigned mQTL ¼ 100 causal markers

(QTLs) randomly on the genome. Because the BSLMM program

provides a posterior inclusion probability (PIP) to each marker ra-

ther than the P-value, we performed 1000 permutations to find the

empirical threshold of PIP for valid comparison among SBL, BOLT-

LMM and BSLMM. The maximum PIPs from the 1000 permuta-

tions were ranked in ascending order and the 95th percentile was

used as cutoff criterion for BSLMM. For SBL and BOLT-LMM, we

ranked 1000 minimum P-values and chose the fifth percentile as the

significance criterion. Under the empirical thresholds obtained

by the same approach, SBL appears to have lower powers than

BOLT-LMM and BSLMM but the FDRs are well controlled, while

BOLT-LMM and BSLMM do not control the FDR properly

(Supplementary Table S3). We also fixed the number of markers at

m ¼ 10k and varied mQTL ¼ ð40;100; 160Þ to evaluate the effect of

causal QTL number on the power. Supplementary Table S4 shows

the power comparison of the three methods. Again, although

BOLT-LMM and BSLMM have higher power than SBL, they do not

control the FDR properly.

Since there are big differences in FDR for the three methods, we

then compared the powers of the three methods under the same false

positive sequence. Supplementary Figure S10 shows the ROC curve

comparison when m ¼ ð5;10;50kÞ under the same number of causal

QTLs (mQTL ¼ 100). In the cases of m ¼ ð5k; 10kÞ, SBL and

BSLMM are more powerful than BOLT-LMM. When m ¼ 50k, the

statistical power of BOLT-LMM surpasses the powers of SBL and

BSLMM after the Type 1 error rate is >0.003 and 0.004, respective-

ly. When we fixed m ¼ 10k but varied mQTL ¼ ð40; 100;160Þ, it

appears that larger number of causal QTLs favors the SBL method

because the power of SBL increases as more QTLs are included, and

BOLT-LMM is the least powerful method in this case

(Supplementary Fig. S11). We believe that the overall high power of

SBL and BSLMM over BOLT-LMM is due to the multiple locus

model and the sparseness of the model implemented by both

methods.

Computing time of SBL, LASSOs, EMMA, BOLT-LMM and

BSLMM with programs’ default setting on the second simulation

study is provided in Supplementary Table S5. SBL and LASSO-B are

very fast, taking about 10 min for populations with 1500 individuals

and 200 000 markers. However, BSLMM is very slow due to the

length of MCMC samplings. We also compared the maximum mem-

ory usages of various methods under comparison (Supplementary

Fig. S12). As expected, single locus methods (EMMA and BOLT-

LMM) use less memory compared to the multiple locus methods

(SBL, LASSO-A, LASSO-B and BSLMM). Among the four multiple

locus methods, SBL requires the least memory. The BSLMM appears

to be the most powerful method, but it is also the slowest method.

3.3 Mapping QTL for KGW in rice with a RIL population
Four methods (SBL, LASSO-A, LASSO-B and EMMA) were used to

map QTL for KGW in the RIL population of rice. s ¼ 0 was used in

SBL for sparse model fitting. Since we took the average value of a

trait collected from four replicates as the phenotypic value of each

trait, the intercept was the only fixed effect included in the model.

SBL and EMMA detected a known QTL on chromosome 3 (GS3)

and another known QTL on chromosome 5 (GW5/qSW5). GW5/

qSW5 was also identified by LASSO-B (Table 1). The � log 10ðpÞ
test statistics were plotted against the genome location

(Supplementary Fig. S13). No significant QTL was detected by

LASSO-A, perhaps due to the very stringent criterion after

Bonferroni correction. In this plot, a peak in LASSO-A is found cor-

responding to GW5/qSW5 but that peak does not pass the thresh-

old. In addition to the two known QTLs, SBL detected nine

additional QTLs (Table 1). Among the 11 QTLs detected by SBL,

kgw1.6, kgw1.33, kgw3.16, kgw3.28, kgw5.5 and kgw9.19 are

consistent with the QTLs detected by Yu et al. (2011). The kgw3.16

QTL is mapped to a region defined by an interval (15.597–

16.914 Mb) on chromosome 3 that contains GS3, which is a well-

studied QTL to control grain length (GL) (Fan et al., 2006). All

three methods identified kgw5.5 that is accurately mapped to the

interval defined by 4.776–5.376 Mb on chromosome 5, which con-

tains gene GW5/qSW5 that is known to control grain width (Weng

et al., 2008). The BOLT-LMM method was not used here because

we do not have the reference LD information of the RIL population

required by the method.

We further investigated the associations between markers and

the yield trait. The SBL method detected five QTLs, but none of the

remaining three methods detected any QTLs (Supplementary Figure

S14 and Table S6). Among these five QTLs, yd1.33 overlaps with

kgw1.33. A significant QTL yd7.8 is mapped to the interval brack-

eted by 8.407–8.756 Mb on chromosome 7 with p ¼ 3:33E� 15

and the genetic position is 54.008 cM. The physical position of

yd7.8 corresponds to the peak of EMMA, though the EMMA peak

does not pass the threshold. This QTL (yd7.8) was also identified by

Yu (Yu et al., 2011) and the mapping interval contains Ghd7 (Xue

et al., 2008), a major QTL to control the number of grains per

Table 1. Significant QTLs identified by SBL, LASSO-B and EMMA

for KGW of rice from the RIL population

Method QTL

name

Chromosome Interval (Mb) Position

(cM)

P-value

SBL kgw1.6 1 6.232–6.272 36.06 3.77E-22

kgw1.33 1 32.718–33.285 145.255 7.85E-16

kgw3.16 3 15.597–16.914 93.752 1.28E-37

kgw3.28 3 28.511–28.598 131.88 2.88E-17

kgw5.5 5 4.776–5.376 29.709 3.95E-52

kgw5.25 5 25.281–25.902 102.386 4.72E-06

kgw6.1 6 1.366–1.514 5.819 3.15E-06

kgw6.12 6 12.49–13.724 68.453 2.71E-20

kgw7.8 7 7.595–8.407 52.253 3.19E-07

kgw9.19 9 19.805–20.063 86.333 1.87E-21

kgw11.9 11 9.031–9.294 53.036 6.89E-12

LASSO-B kgw5.5 5 4.776–5.376 29.709 9.02E-31

EMMA kgw3.16 3 15.597–16.914 93.752 1.57E-05

kgw5.5 5 4.776–5.376 29.709 1.04E-12
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panicle as well as a pleiotropic QTL that affects yield, heading date

and plant height.

3.4 GWAS for GL in hybrid rice
All six methods of GWAS (SBL, LASSO-A, LASSO-B, EMMA,

BOLT-LMM and BSLMM) were compared for the hybrid rice popu-

lation. We set the hyper parameter s ¼ 0 in the SBL method to fit a

sparser model for this dense marker dataset. The Manhattan plots for

GL are shown in Figure 4 for all methods, where we arbitrarily trun-

cated any markers with � log 10ðpÞ >15 to �log10(p)¼15 to improve

the visibility of the plots. For BSLMM, the PIP of each SNP instead of

� log 10ðpÞ was plotted against the genome. A total of 123 markers

were significant, where 15 of them were detected by SBL

(Supplementary File S7), two by LASSO-A, zero by LASSO-B, 94 by

EMMA, six by BOLT-LMM and six by BSLMM. We matched the

significant SNPs within 100 kb (both upstream and downstream) of

known genes that have been cloned and experimentally validated to

control GL. Only one known gene, GS3 (Fan et al., 2006), had been

detected by SBL, EMMA and BOLT-LMM with Bonferroni corrected

threshold p¼2.75E � 7 and by BSLMM with a predetermined nom-

inal probability of 1 � a¼0.95.

We further permuted the phenotypes of GL 1000 times to con-

struct a null distribution of the statistic to find the empirical thresh-

old for each method. The minimum P-value from 1000

permutations were ranked in ascending order and the fifth percentile

of the 1000 minimum P-values was used as the empirical threshold.

For BSLMM, the maximum PIP from the 1000 permutations was

ranked and we chose the 95th percentile as the cutoff criterion. The

new criterion for SBL was p ¼ 0:000106 and the same 15 SNPs

were detected, including the known gene GS3. We did not conduct

permutations for LASSO-A because the bootstrap step along with

the permutations would take excessively long time to finish.

LASSO-B had a new genome-wide threshold of p ¼ 0:01444 and a

significant SNP was identified with this new threshold. This SNP

overlapped with the cloned QTL GS3. EMMA detected five add-

itional SNPs with the new threshold p ¼ 3:86E� 7 and none of the

five SNPs matched any known gene for GL. The new threshold of

BOLT-LMM happened to be p ¼ 6:40E� 8 (lower than the previ-

ous threshold). With the new threshold, BOLT-LMM identified four

SNPs in total, all overlapping with the known gene GS3 (within

6100 kb). The empirical criterion for BSLMM had dropped to 1�
a ¼ 0:1866667 and 13 additional SNPs were detected with this

threshold. However, none of these SNPs overlapped with any

known genes that control GL. The large difference between the typ-

ical significance level and the empirical threshold indicates that 1�
a ¼ 0:95 maybe too stringent for BSLMM.

We also detected associations of markers with panicle number

(PN) and panicle length (PL) for the rice hybrid population. For PN,

the SBL method detected 19 associated markers, LASSO-A detected

one marker, EMMA detected two markers, BOLT-LMM detected

19 markers (Supplementary Fig. S15). No markers were identified

by LASSO-B and BSLMM for PN. Among the 19 markers detected

by SBL, two of them overlapped with identified genes Cga1

(Hudson et al., 2013) and OscpSRP43 (Lv et al., 2015), respectively

(Supplementary File S7). One out of the 19 markers identified by

BOLT-LMM matched a known gene associated with PN, called

FUWA (Chen et al., 2015). The SBL method identified 18 significant

SNPs associated with PL (Supplementary Fig. S16). One known

gene was detected, OsDET1 (Zang et al., 2016) (Supplementary File

S7). LASSO-A only detected one marker without matching any

known gene and no marker was identified by LASSO-B. Among 81

SNPs detected by EMMA, four SNPs matched known genes that af-

fect the PL trait, including CCP1 (Yan et al., 2015), AVB (Ma et al.,

2017), RLS3 (Lin et al., 2016) and MRG702 (Jin et al., 2015).

BOLT-LMM and BSLMM detected five and one significant markers

associated with PL, respectively, and none of them overlapped with

any known genes.

4 Discussion

Statistical methods for QTL mapping and GWAS have long been

studied separately. The two technologies are designed for dealing

with different types of populations and marker densities. As the

rapid advancement of molecular technology, genotyping high dens-

ity markers has been feasible for almost all species and marker dens-

ity can be very high even for linkage mapping populations. From

Fig. 4. Manhattan plots for GL of the hybrid rice varieties obtained from six meth-

ods: (a) SBL, (b) LASSO-A, (c) LASSO-B, (d) EMMA, (e) BOLT-LMM and (f)

BSLMM. The red dashed lines indicate the genome-wide threshold

� log 10ð0:05=182010Þ ¼ 6:56 for SBL, LASSO-A, LASSO-B, EMMA and BOLT-

LMM, while the threshold of PIP is 1� a ¼ 0:95 for BSLMM. The solid gray lines

indicate the empirical threshold generated from 1000 permutations for SBL

(� log 10ð0:000106Þ ¼ 3:97), LASSO-B (� log 10ð0:01444Þ ¼ 1:84), EMMA

(� log 10ð3:86E � 7Þ ¼ 6:41), BOLT-LMM (� log 10ð6:4E � 8Þ ¼ 7:19) and BSLMM

(1� a ¼ 0:1866667). The annotated SNPs overlap with a known gene, GS3, that

controls GL. (Color version of this figure is available at Bioinformatics online.)
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this point of view, the two areas have been merged. In QTL map-

ping, genetic background is captured via CIM by fitting co-factors

(Jansen, 1993; Zeng, 1994), while in GWAS, the polygenic back-

ground is modeled via a kinship matrix inferred from genome-wide

markers (Zhou and Stephens, 2012). With the multiple locus model,

genetic background control is no longer needed because all markers

are fitted to the model in a simultaneous manner. Therefore, QTL

mapping and GWAS can be technically performed using the same

technology. There are two types of relatedness among individuals:

population structure and cryptic relatedness. The multiple marker

model (replacing polygenic control) has removed the cryptic related-

ness, but the population structure remains. To incorporate popula-

tion structure into the SBL model, we simply modified the fixed

effect component of the model. For example, if the first two princi-

pal components are used to control the population structure, we

only need to add two more columns to the design matrix of the fixed

effects; no additional work is needed.

The biggest challenge for the multiple locus model is the high

dimensionality of the genotype data. It is difficult to fit the number of

model effects that are hundreds or even thousands times larger than

n, although the large m is neither a problem for interval mapping and

CIM, nor for the classical mixed-model GWAS. The limiting factor in

the classical mixed-model GWAS is n because performing eigen-

decomposition for a kinship matrix is daunting and even prohibited

when n is very large. The FaST-LMM method (Lippert et al., 2011)

can handle n ¼ 100k within a reasonable time frame, it is a single

marker scanning approach. The proposed SBL does not involve any

large matrix calculation, and thus the sample size issue is not a threat.

Our simulation studies show that the SBL program took only about

6 h to analyze a dataset with n ¼ 100k and m ¼ 100k, while LASSO

failed to handle such a large dataset (see Supplementary Table S2). A

legitimate question is whether there is a limit of m for the SBL method

to handle. The answer is – a larger n allows the model to handle a

larger m. In the current GWAS populations, several millions of

markers are common, but the n may only be in the order of thousands

at most. For this type of data, an immediate solution is to divide the

entire genome evenly into a number of LD blocks and select one

marker per block for analysis. An alternative, and perhaps a better,

approach is to treat each LD block as a bin and use a binned genotype

to represent the LD block as suggested by Xu (2013).

A special characteristic of the classical mixed-model GWAS is

the ‘island’ phenomenon, caused by LD, around each peak in the

Manhattan plot. The multiple locus model eliminates large area of

the ‘island’ and leaves only an isolated peak (a ‘lighthouse’) because

each estimated effect is conditional on other effects being fitted in

the model. When the effect of the peaked marker is included in the

model, the effects of neighboring markers will disappear. This be-

havior of the multiple locus model is supposed to be a good charac-

teristic, but it often triggers alarms in people who do not understand

the difference between single locus models and multiple locus mod-

els. The simulation experiments presented in this study serve the

very purpose of convincing readers to trust the isolated peaks of the

multiple locus model GWAS.

Overall, the BSLMM program (Zhou et al., 2013) appears to be

more powerful than all methods compared (including SBL), but it is

also the slowest method. For example, BSLMM took more than 9 h

to complete a GWAS for m ¼ 5k markers with a sample size

n ¼ 1495, but SBL took only 18 s (see Supplementary Table S5).

The high computational time for BSLMM may not be a problem if

we only analyze just a few agronomic traits. However, QTL map-

ping and GWAS are being applied to thousands of metabolomic

traits (Gong et al., 2013; Wen et al., 2014), thousands of phenomic

traits (Yang et al., 2014) and tens of thousands of expression traits

(Wang et al., 2014). It is hard to convince an investigator to run

BSLMM for eQTL mapping for 20 000 transcriptomic traits while

much faster programs are available.

We now discuss some theoretical basis of the SBL method. The

term of SBL was first seen in Tipping (2001). He treated regression

coefficients of a linear model as variables following their own distri-

butions. When the regression coefficients are considered as parame-

ters, each coefficient-specific normal distribution becomes a prior

distribution. As a result, the method belongs to the Bayesian family.

The variance of each normal prior is then estimated from the data

(empirical Bayes). From a penalized regression point of view, the

method implements an L2 penalty, which is not sparse (Hoerl and

Kennard, 1970; Zou and Hastie, 2005). However, Tipping (2001)

used a special Gamma prior for the inverse of the variance in the

normal prior to allow the estimated variance to have some mass at

zero (sparseness). This technique is different from the spike-and-slab

type of prior (Ishwaran and Rao, 2005; Johnstone and Silverman,

2004), which is a mixture of two distributions. Tipping (2001) method

updates one variance component at a time conditional on variance

components of all other effects and the model effects per se never occur

in the model. As a result, the method is computationally demanding.

The empirical Bayes method of Xu (2007) for mapping epistatic effects

essentially uses an algorithm very similar to Tipping (2001).

There are three major differences between this method and

Tipping’s RVM. (i) Tipping’s RVM is a kernel-based prediction

method, where the original feature matrix (n � m) is used to con-

struct a kernel matrix (n � n) (n is the sample size and m is the num-

ber of markers). Tipping’s prediction model fits the kernel with a

maximum of n regression coefficients but our model deals with m

regression coefficients. Tipping’s method is not suitable for associ-

ation studies but only for prediction. Therefore, we cannot compare

Tipping’s RVM with our SBL. We borrowed the term ‘sparse

Bayesian learning’ from Tipping because both are Bayesian

approaches, and both can be sparse (variable selection). (ii) Tipping’s

RVM directly maximizes the predictability by estimating the prior

variance of each regression coefficient (regression coefficients are only

produced once after all variances are estimated and the iteration pro-

cess converges), while our method estimates the prior variance and

the regression coefficient simultaneously for each marker so that the

model is very simple when estimating one regression coefficient and

its variance conditional on the regression coefficients of all other

markers. (iii) Tipping takes the inverse of variance as the parameter

and assigns a Gamma distribution to this parameter, while we take

the variance as the parameter and assign the variance an inverse Chi-

squared distribution. Tipping’s RVM involves two hyper parameters

(a, b) and our method involves only one hyper parameter (s).

When conditional on the posterior modes of all other effects, the

model for the current variance is extremely simple because all other

effects are treated as known quantities and subtracted from the

observed y vector. This explains the high computational efficiency

of the proposed SBL in this paper. This approach has been taken in

statistics for variable selection by Johnstone and Silverman (2004)

and recently by Pungpapong et al. (2015) who called the method an

iterative conditional mode algorithm. A theoretical justification for

replacing the term ‘conditional on variances’ by the term ‘condition-

al on modes’ can be found in Equation (4.4) of Mackay (1992).
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