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Abstract

Motivation: Complex diseases often involve a wide spectrum of phenotypic traits. Better under-

standing of the biological mechanisms relevant to each trait promotes understanding of the

etiology of the disease and the potential for targeted and effective treatment plans. There have

been many efforts towards omics data integration and network reconstruction, but limited work

has examined the incorporation of relevant (quantitative) phenotypic traits.

Results: We propose a novel technique, sparse multiple canonical correlation network analysis

(SmCCNet), for integrating multiple omics data types along with a quantitative phenotype of inter-

est, and for constructing multi-omics networks that are specific to the phenotype. As a case study,

we focus on miRNA–mRNA networks. Through simulations, we demonstrate that SmCCNet has

better overall prediction performance compared to popular gene expression network construction

and integration approaches under realistic settings. Applying SmCCNet to studies on chronic ob-

structive pulmonary disease (COPD) and breast cancer, we found enrichment of known relevant

pathways (e.g. the Cadherin pathway for COPD and the interferon-gamma signaling pathway for

breast cancer) as well as less known omics features that may be important to the diseases.

Although those applications focus on miRNA–mRNA co-expression networks, SmCCNet is applic-

able to a variety of omics and other data types. It can also be easily generalized to incorporate

multiple quantitative phenotype simultaneously. The versatility of SmCCNet suggests great poten-

tial of the approach in many areas.

Availability and implementation: The SmCCNet algorithm is written in R, and is freely available on

the web at https://cran.r-project.org/web/packages/SmCCNet/index.html.
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1 Introduction

With the development of high-throughput technologies and reduc-

tion in costs, different quantitative omics measurements on the

same subjects are becoming more common (Hasin et al., 2017). For

example, there are large consortia such as the Genotype-Tissue

Expression project and The Cancer Genome Atlas (TCGA) to study

regulation and human disease. To study complex traits within these

studies and others, there may be a variety of available omics meas-

urements, such as gene expression, methylation and metabolite

abundance. By combining two omics data types with phenotype in-

formation, one may find more complex and subtle relationships

with the traits, outcomes or disease of interest. Prediction methods

are useful for identifying the most informative features among the

omics studies that are predictive of the phenotype. Network-based

methods are complementary approaches that allow for the discovery

of integrated networks for gene regulation, metabolism and other

processes that influence an individual phenotype.

Research in single omics networks is often based on co-

expression of RNA expression levels of protein-coding genes

(Saelens et al., 2018). One popular expression-based network recon-

struction method is weighted gene co-expression network analysis

(WGCNA) (Langfelder and Horvath, 2008). It was originally

designed for microarray expression measurements. More recently, it

has been extended for sequencing expression data, as well as other

data, such as proteomic and metabolomic (DiLeo et al., 2011;

Langfelder et al., 2016; Shirasaki et al., 2012; Zhang et al., 2013).

While WGCNA has gained popularity, it was originally designed for

a single data type. However, WGCNA has recently been extended

for integrating multiple data types (Mamdani et al., 2015), by first

constructing relevant homogeneous networks in parallel and then

combining the separate networks. However, it is not clear how to

best combine networks based on different data types. Other integra-

tive extensions include incorporating additional omics data to iden-

tify candidate regulators of gene-expression modules (Bonnet et al.,

2015) or integrating different expression datasets (e.g. mRNA and

non-coding RNA) (Li et al., 2017; Miao et al., 2016).

Another popular expression-based network reconstruction ap-

proach is modeling gene interactions with Gaussian graphical mod-

els (GGMs) (Dobra et al., 2004). Under the assumption of

multivariate normality of gene expression data, the GGM uses the

inverse of the gene covariance matrix as a measure for gene associa-

tions. Since the GGM does not naturally integrate multiple data

types, similar to WGCNA, it is also less used in recovering multi-

omics networks. Other common methods for gene network recon-

struction include (probabilistic) boolean network, (dynamic)

Bayesian networks, ordinary differential equations and neural net-

works (Chai et al., 2014). While each of those methods has its own

strength, such as the ability to integrate prior knowledge, to handle

time-series expression data or to capture nonlinear interactions, all

of those methods are not easily scalable (Chai et al., 2014). It is

worth noting that none of above methods is designed for building

multi-omics networks with a priori information about a (quantita-

tive) phenotype.

Multi-omics analysis methods, reviewed in Huang et al. (2017),

can primarily be categorized into supervised or unsupervised

approaches. Within those categories, the goal of supervised (or pre-

dictive) methods is often to develop a parsimonious model to predict

the outcome of interest, which tends to prioritize prediction per-

formance over interpretability for understanding the complex under-

lying biological processes. While many of these methods may

consider interactions about omics features, network inference across

data types is not the primarily goal (Boulesteix et al., 2017; Broom

et al., 2012; Chaudhary et al., 2018; Kim et al., 2013), or is only

considered as a final step with a small set of features found with in-

dependent analyses of each omics type (Acharjee et al., 2016).

Furthermore, some methods focus on binary phenotypes (e.g. dis-

ease versus control) and may not be generalizable to continuous phe-

notypes (Oliveira et al., 2018). For unsupervised methods,

phenotypes are not considered in the process of identifying features

of interest, and primarily integrate data for the purpose of clustering

omics features or samples in an unsupervised way (Lock et al., 2013;

Mo et al., 2013; Wang et al., 2014). Other supervised or unsuper-

vised methods incorporate known pathways or protein/genetic inter-

action information, but are limited by the quality and comprehen-

siveness of this available information (Vaske et al., 2010). But are

limited by the quality and comprehensiveness of this available infor-

mation. In summary, unsupervised omics integration methods do

not consider phenotypes a priori, while many supervised methods

do not consider interactions between omics features.

We propose a canonical correlation analysis (CCA) based ap-

proach, sparse multiple canonical correlation network discovery

(SmCCNet), that simultaneously integrates multiple omics profiles

and phenotype information to build interpretable networks that

model the underlying mechanisms. First introduced by Hotelling

(1936), CCA investigates the relatedness between two sets of varia-

bles. There have been many applications in biology and medicine in

the last decade, including pharmacogenomics (Chalise et al., 2012),

microbiome investigations (Chen et al., 2013), cancer studies

(Larson et al., 2014), medical image analysis (Lin et al., 2014;

Vounou et al., 2010) and biomarker discovery (Rousu et al., 2013;

Waaijenborg et al., 2008). Almost all of these focused on extending

CCA to high-dimensional data and integrating two data types.

Witten and Tibshirani (2009) proposed an extension to incorporate

phenotype data, but focused on categorical traits. They also pro-

posed another CCA extension for integrating more than two quanti-

tative data types in the same work, but they did not recommend it

for incorporating phenotypes (Witten and Tibshirani, 2009). Other

CCA methods are less automated for network inference (Rohart

et al., 2017).

To our knowledge, there have not been any CCA extensions spe-

cifically designed for integrating genomic data and quantitative

traits for the purpose of deriving phenotype-specific multi-omics

networks in a robust and automated manner. Our proposed method

can be used to integrate three or more quantitative data types simul-

taneously. It is particularly suitable for incorporating information

from quantitative traits. We add a subsampling scheme (Wang et al.,

2015) to avoid specifying the number of subnetworks a priori.

We motivate the use of SmCCNet by focusing on the identification

of miRNA–mRNA networks. miRNAs typically negatively regulate

gene expression through mRNA degradation and/or translation re-

pression, subsequently controlling many cellular mechanisms.

Modeling miRNA–mRNA networks not only helps to better under-

stand the underlying biological mechanism, but also enables the

identification of therapeutic targets at the miRNA level.

2 Materials and methods

2.1 CCA and sparse CCA
CCA is a set correlation-based method that has been widely used for

data integration. Unlike pairwise correlation between members of

each set, CCA measures the relatedness of two sets of features simul-

taneously. Canonical correlation is the maximum correlation of some
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linear combinations of the members from each set. Using modified

notation from Witten et al. (2009), given two data matrices X1, X2

(e.g. miRNA and mRNA expression levels measured on n subjects),

each with dimension n� p1 and n� p2 (e.g. p1 miRNA features and

p2 mRNA features), respectively, their canonical correlation can be

expressed as CorðX1w1;X2w2Þ ¼ wT
1 XT

1 X2w2. The vectors w1 2
R

p1 ;w2 2 R
p2 are the canonical weights and are defined as

ðw1;w2Þ ¼ arg max
~w1 ; ~w2

~wT
1 XT

1 X2 ~w2;

subject to ~wT
1 XT

1 X1 ~w1 ¼ ~wT
2 XT

2 X2 ~w2 ¼ 1:

(1)

If it is assumed that both columns of X1, X2 have been standar-

dized to have mean 0 and standard deviation 1, and the covariance

matrix of the features is diagonal, the constraint above is reduced to

k ~w1k2 ¼ k ~w2k2 ¼ 1. In practice, because not all features (e.g.

miRNAs or mRNAs) contribute to the true canonical correlations,

and for computational feasibility, we impose sparsity to the canonic-

al weights by adding convex penalty functions P1ð�Þ;P2ð�Þ to

Equation (1). The canonical weights for sparse CCA (SCCA) are

ðw1;w2Þ ¼ arg max
~w1 ; ~w2

~wT
1 XT

1 X2 ~w2;

subject to k ~wsk2 ¼ 1;Psð ~wsÞ � cs; s ¼ 1; 2;

(2)

where c1, c2 are the pre-selected sparse penalty constants. The least

absolute shrinkage and selection operation (LASSO) penalty has been

shown to be an effective choice for the penalties P1ð�Þ;P2ð�Þ in many

settings (Witten et al., 2009). Under LASSO, the penalties P1ð�Þ;P2ð�Þ
are the ‘1-norm function k ~w1k1 and k ~w2k1. Under the ‘1-norm, the

range considered for cs, which controls the amount of sparsity, is

½1; ffiffiffiffiffi

ps
p �, where ps is the number of features in Xs; s ¼ 1; 2:

2.2 Sparse multiple CCA
Suppose that besides X1, X2, we have also a phenotype of interest Y

that has been measured for the same n subjects. As mentioned earlier,

it is beneficial to investigate the biological mechanism that is specific to

such a phenotype. One way to incorporate such information is to pri-

oritize omics features (e.g. miRNA and mRNA) based on their individ-

ual correlation with the phenotype. Witten and Tibshirani referred to

this as a semi-supervised version of SCCA (SsCCA) and demonstrated

with categorical data that SsCCA is more sufficient in feature selection

than the traditional SCCA method (Witten and Tibshirani, 2009).

Another way to take phenotype into account is treating it as the

third data type and extending the objective function (2). For a single

phenotype Y, the new objective becomes the sum of three pairwise

set correlations:

ðw1;w2Þ ¼ arg max
~w1 ; ~w2

ða ~wT
1 XT

1 X2 ~w2 þ b ~wT
1 XT

1 Y þ c ~wT
2 XT

2 YÞ

subject to k ~wsk2 ¼ 1;Psð ~wsÞ � cs; s ¼ 1;2:

(3)

The unweighted version (i.e. a ¼ b ¼ c), is a special case of sparse

multiple CCA (SmCCA) introduced in Witten and Tibshirani

(2009). SmCCA can be used to integrate three or more data types

simultaneously. The weighted version (i.e. a, b, c are not all equal),

can be particularly useful when the phenotype Y has a weaker cor-

relation with omics data compared to correlation between omics

data, e.g. X1 and X2. The weights can be used to prioritize correla-

tions with the phenotype data rather than between omics data types.

SsCCA does not consider these types of weights, as omics features

are prioritized separately by the phenotype as a first step and the

phenotype is not part of the objective function [Equation (2)].

2.3 SmCCNet
The SmCCNet framework combines SmCCA and a feature subsam-

pling scheme to create robust network construction (Fig. 1). Step I of

the SmCCNet algorithm is to identify the best penalty parameters

(Fig. 1). These parameters c1, c2 control the proportion of omics fea-

tures with non-zero canonical weights, in other words the sparsity

level of selected features. We choose those parameters through a

K-fold cross validation (CV) (see Supplementary Section S1.1) with

prediction error on the pseudo canonical correlation [Supplementary

Equation (S1)]. Step II generates robust canonical weights through

SmCCA. Those weights indicate which features contribute the most

to the set correlation. For each randomly subsampled data, a relation-

ship matrix A is constructed based on the canonical weights u ¼
ðw1;w2Þ as following A ¼ ju� uj, where Aij ¼ jui � ujj;8i; j 2
f1; . . . ; p1 þ p2g. The ijth entry Aij measures the relatedness of the ith

and jth features. Taking the average over all such A matrices, and

rescaling it to have a maximum relatedness of 1, we arrive at a simi-

larity matrix �A that describes the connections of omics features taking

into account the phenotype correlation. In Step III, using the complete

linkage method, a hierarchical tree can be constructed based on

1� �A. We apply a liberal height threshold (�1) to the hierarchical

tree and trim off singletons and clades with only one data type.

The intent of this step is to narrow our focus to miRNA–mRNA rela-

tionships. The remaining clades are used to construct relevant subnet-

works (Fig. 1). We will refer to the resulting subnetworks as full

modules. To focus on the stronger network connections, we apply an

edge threshold d to the similarity matrix, and remove all edges with

weights less than d. Subsequently, the network nodes (features) with-

out any edge are also removed. We will refer to the post-edge-cut net-

works as trimmed modules.

Fig. 1. SmCCNet work flow overview. X1, X2 and Y indicate mRNA

expression levels, miRNA expression levels and phenotype measurements,

respectively. Step I: Identify the best penalty pair through a K-fold CV.

Step II: Randomly subsample (omics) features without replacement,

apply SmCCA with the chosen penalties and compute a feature relationship

matrix for each subset. Repeat the process many times and define the similar-

ity matrix to be the average of all feature relationship matrices. Step III:

Apply a hierarchical tree cut to the similarity matrix to find the multi-omics

networks
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2.4 Simulations
We use simulations to assess how SmCCNet and other methods are

able to recover known relationships in the data. For the simulations,

we consider three data types: miRNA and mRNA expression levels,

and one continuous phenotype (Pheno). The goal is to simulate

miRNA–mRNA networks that are specific to Pheno. Since miRNAs

are small non-coding RNAs that bind mRNAs and typically pro-

mote transcript degradation or repress translation, the mediation

based simulations assumes the following relationship:

miRNAs! mRNA! Pheno: (4)

The key simulation parameters and settings are described in

Supplementary Section S1.2.

To create realistic simulations, we generated background data

without any feature–phenotype associations using two real multi-

omics datasets by independently permuting subjects and feature

order within each omics dataset. The first multi-omics dataset came

from a large recombinant inbred mouse panel that had been bred

from reciprocal crosses between the Inbred Long Sleep(ILS) and

Inbred Short Sleep (ISS) strains, called the ILSXISS (LXS) panel (n ¼
57 strains, i.e. subjects). The second multi-omics dataset came from

TCGA breast invasive carcinoma project (n ¼ 358 subjects). The

LXS- and the TCGA-based backgrounds represent small and large

sample size scenarios, respectively. See Supplementary Section S1.3

for more details on the two background datasets. Starting with a

background dataset, if an mRNA was simulated to be targeted by a

miRNA, its expression was replaced by the value generated using

Supplementary Equation (S2). The trait value Pheno was generated

using Supplementary Equation (S3). Note that the background data-

set determined sample size (n) and total feature numbers (p1, p2).

With each background dataset, we considered four scenarios to

compare method performance:

I. Naı̈ve: following Equation (4), 2 groups of 1 miRNA ! 5

mRNAs! Pheno.

II. Realistic: similar to Case I, but with 2 out of 5 mRNAs !
Pheno.

III. MoreGroup: similar to Case II, increase the group number G to 5.

IV. Noisy: similar to Case II, increase the mRNA variance r2
1.

The simulation parameter values are listed in Supplementary Table

S1. For each case, we used a 5-fold CV for determining the LASSO

penalties (Fig. 1, Step I). Wang et al. (2015) argued that the subsam-

pling proportion level is not critical and suggested 70% for genes.

Since the number of miRNAs is much smaller, we chose the subsam-

pling proportions to be 70% and 90% for mRNA and miRNA, re-

spectively. The subsampling procedure (Fig. 1, Step II) was repeated

1000 times. For each simulation case, we applied not only SmCCNet,

but also two competing methods: WGCNA and SsCCA (see

Supplementary Section S1.5).

2.5 Chronic obstructive pulmonary disease data
These data were generated as part of the COPDGene Study, which is a

multicenter genetic epidemiology study to identify genetic factors asso-

ciated with chronic obstructive pulmonary disease (COPD) (Regan

et al., 2011). The miRNA and mRNA high-throughput sequencing

data were from peripheral blood samples. Details on the RNA extrac-

tion, expression quantification, filtering and normalization can be

found in Supplement Section S2.1. The final dataset consisted of 414

miRNA and 5001 mRNA, in 27 subjects. Based on the Global

Initiative for Obstructive Lung Disease (GOLD) criteria, the samples

include 13 controls (current and former smoker without COPD) and

14 cases (9 severe cases with GOLD 3 and 5 very severe cases with

GOLD 4). There were two quantitative phenotypes of interest: forced

expiratory volume during the first second as a percent of the predicted

normal based on gender, age, ethnicity and height (FEV1pp), and chest

computed tomography scan detected extent of emphysema (percent

emphysema), which was measured by the percentage of lung voxels

below �950 Hounsfield units. FEV1pp reflects the severity of airflow

limitation or airflow obstruction. It is a commonly used measurement

of lung function in COPD. Emphysema is characterized by destruction

of the air sacs in lungs (alveoli). Due to high skewness, we applied a

log-transformation to the percent emphysema measurements.

We applied SmCCNet to miRNA and mRNA data with pheno-

types, FEV1pp and percent emphysema. The sparse penalty parame-

ters c1, c2 were chosen through a 4-fold CV (Fig. 1, Step I), due to

the small number of subjects. The subsampling procedure was

repeated 1000 times (Fig. 1, Step II). The proportions of miRNA

and mRNA features subsampled were 90% and 70%, respectively.

The unweighted version of SmCCNet [Equation (3)] was used since

the correlations between omics features and the correlations be-

tween phenotypes and omics features are in a similar range.

2.6 TCGA breast cancer
These data were obtained from the TCGA breast invasive carcinoma

project and the only quantitative phenotype with sufficient number

of subjects was survival time. To demonstrate SmCCNet on this

public dataset, we chose to focus on the 80 female deceased subjects

with positive response to estrogen and progesterone, who had both

miRNA and mRNA expression data. The phenotypic trait of interest

was overall survival months. Details on the filtering and normaliza-

tion can be found in Supplement Section S2.2. Unlike the COPD

data, the range for the feature–phenotype correlations is much

smaller than the range for between-feature correlations. To priori-

tize the feature–phenotype correlations, we applied the weighted

version of SmCCA [Equation (3)] in the SmCCNet method, and set

the weights a ¼ 1; b ¼ c ¼ 10. The sparse penalties were chosen

through a 5-fold CV (Fig. 1, Step I). The subsampling procedure was

repeated 1000 times (Fig. 1, Step II). The proportions of miRNA

and mRNA features subsampled were 90% and 70%, respectively.

To evaluate results for the COPD and TCGA data, we assess

how each identified module is correlated with the phenotype by ei-

ther (i) calculating the correlation of the phenotype with the first

principal component (PC1) of the matrix of mRNA and miRNA in

the module or (ii) calculating the correlation between the phenotype

and each individual miRNA or mRNA in the module separately.

3 Results

3.1 Simulations
The four simulation cases, Naı̈ve (I), Realistic (II), MoreGroup (III) and

Noisy (IV), allow us to compare methods under different scenarios. For

each simulation, we examine the miRNAs and mRNAs in the final

modules and compare them with underlying truth for prediction suc-

cess. The performance of the simulations is measured by the area under

the curve (AUC) of the precision–recall curve (Table 1). For the LXS-

based simulations, SmCCNet has the best performance, SsCCA follows

and WGCNA performs the worst. In one Naı̈ve (I) case, WGCNA fails

to identify any Pheno-related multi-omics networks. The corresponding

AUC is recorded as 0. As the complexity of the underlying structure

increases [from Naı̈ve (I) to Noisy (IV)], the performance of all three

methods follows a decreasing trend and the advantage of SmCCNet

over the other two methods generally becomes more pronounced. For
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the TCGA-based simulations, all three methods show similarly strong

performance for the Naı̈ve (I) and Realistic (II) cases, indicating the

benefit of large sample size. In the TCGA MoreGoup (III) case,

WGCNA out-performs the two CCA-based methods. In additional sim-

ulations (not shown here), we observed that even with the LXS back-

ground, with larger number of phenotype-related groups (e.g. 10) is

assumed, WGCNA performs the best. For the TCGA Noisy (IV) case,

WGCNA fails to identify any Pheno-related multi-omics network for

any of the 10 simulations. As the relationship between the miRNA and

mRNA becomes noisier (IVa to IVc), SmCCNet has an advantage over

ScCCA. In summary, as module complexity increases WGCNA shows

significant decreased AUC compared to the other methods. SmCCNet

and SsCCA are similar for some scenarios but SmCCNet has improved

performance over SsCCA with smaller or noisier datasets.

Additional simulations (not shown here) investigate more naı̈ve

cases [no additional groups following Supplementary Equation (S4)]

and complex cases with smaller noise (e.g. r1;r2). We see that

SmCCNet, SsCCA and WGCNA all had high AUC for the scenario

of smaller noise. This indicates that all three methods provide accur-

ate results when the signal to noise ratio is high.

3.2 COPD application
We applied SmCCNet to 414 miRNA and 5001 mRNA from the

COPDGene study with phenotype FEV1pp. The optimal mRNA and

miRNA penalty parameters are (25.44, 2.51) (Fig. 2a), which favor

multi-omics modules (include both miRNAs and mRNAs) with few

miRNAs and many mRNAs. The FEV1pp results include 12 con-

nected miRNA–mRNA modules before filtering the network edges by

the strength of relatedness. The number of miRNA and mRNA within

each of those modules range from 1 to 12 and from 8 to 1182, re-

spectively. The miRNA/mRNA ratio ranges from 0.010 to 0.143,

indicating that the number of mRNAs is always more than miRNAs.

In the 12 full modules, we identify 14 694 negative connections be-

tween miRNA and mRNA. Out of those connections, 147 miRNA–

mRNA targets have been validated and 988 additional miRNA–

mRNA targets have been predicted using MultiMir Version 1.1.0 (Ru

et al., 2014). Compared to SsCCA, SmCCNet identified a higher per-

centage of predicted and validated miRNA–mRNA target pairs

(Supplement Section S3.1). For each module, we computed its correl-

ation with FEV1pp through the first PC1 (Fig. 2b). Modules 2, 3, 6, 8

and 10 have a strong correlation (P-value<0.05). Furthermore, there

Table 1. Simulation performance comparison

Median AUC (interquartile range)

SmCCNet SsCCA WGCNA

LXS I 0.968 (0.798, 0.997) 0.791 (0.738, 0.986)** 0.749 (0.749, 0.999)**

II 0.967 (0.731, 0.993) 0.743 (0.725, 0.993)*** 0.748 (0.748, 0.749)**

III 0.804 (0.776, 0.885) 0.691 (0.654, 0.783)* 0.697 (0.622, 0.770)*

IV 0.793 (0.727, 0.872) 0.761 (0.708, 0.810)** 0.499 (0.499, 0.645)*

TCGA I 0.999 (0.992, 1.000) 0.999 (0.996, 1.000) 1.000 (0.999, 1.000)**

II 0.999 (0.999, 0.999) 0.999 (0.999, 0.999) 0.999 (0.999, 0.999)

III 0.927(0.914, 0.979) 0.949 (0.927, 0.979) 0.996 (0.996, 0.997)**

IVa 0.983 (0.960, 0.999) 0.971 (0.899, 0.985) 0 (0, 0)

IVb 0.917 (0.876, 0.996) 0.849 (0.760, 0.937)** 0 (0, 0)

IVc 0.910 (0.870, 0.987) 0.838 (0.750, 0.900)*** 0 (0, 0)

Note: The performance is recorded by the AUC of the precision–recall curve for Cases I, Naı̈ve; II, Realistic; III, MoreGroup; IV, Noisy. For TCGA, we explore

increasing variances r1 for the Noisy scenario, which are labeled a, b, c (Supplementary Table S1). There are 30 repeated simulations for each LXS scenario and

10 replicates for TCGA scenarios. The median and the interquartile range of AUCs are compared. An AUC value of 0 corresponds to no Pheno-relevant multi-

omics networks identified. Pairwise Wilcoxon test has been applied to compare SsCCA and WGCNA AUC results to SmCCNet.

*P-value < 0.001.

**0.001 � P-value < 0.05.

***0.05 � P-value < 0.10.

Fig. 2. FEV1pp results. (a) Total prediction error contour. The x- and y-axes indicate LASSO penalties considered for mRNA and miRNA, respectively. Blue to yel-

low scale indicates increasing of total prediction error. (b) Correlations with FEV1pp for full (top) and trimmed (bottom) modules. The mRNAs are circles and the

miRNAs are triangles. All features excluded in identified modules are grouped as Module 0. Heatmap indicates module–trait correlations (with P-values in paren-

theses). (c) Trimmed module network. Negative edge is in red; positive edges are in gray. Width of the network edges indicates the connection strength. Yellow

nodes with purple labels are miRNAs; magenta nodes with green labels are mRNAs. Node size corresponds to the number of edges connections
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is a wide spread of pairwise correlation values for the individual fea-

tures in the 12 modules. All the modules with low correlations with

FEV1pp (P-value > 0.1) include relatively many miRNA and mRNA

features with very small individual correlations with the phenotype

(around 0). However, the modules with higher correlation with the

phenotype still contain some features with low individual correlation

with the phenotype. This demonstrates the SmCCNet advantage of

keeping features that might be missed by a pairwise search.

To better visualize the top (strongest) connections in the modules,

we applied the absolute edge threshold value 0.1. Only Module 2 con-

tains edge connections stronger than 0.1. Post edge trimming, 10

miRNAs and 97 genes remain. The module–trait correlation has

improved from 0.52 to 0.69 (P-value ¼ 6e-05). Most individual

miRNA or mRNA with weak feature–trait correlations are dropped

(Fig. 2b). Yet, some features with moderate individual correlations

with the phenotype are also removed. This suggests that applying a

moderate network edge threshold helps to remove noise. In the top

identified FEV1pp-related miRNA–mRNA subnetwork (trimmed

Module 2), miR-4433b-5p is a hub, connected to all 97 genes and 10

miRNAs (Fig. 2c). miR-4433b-5p has been recently identified as a bio-

marker for multidrug-resistance tuberculosis (Wang et al., 2016a). It

shows a strong network connection to miR-186-5p, which has been

found to be upregulated in COPD patients in the Li ethnic population

(Ding et al., 2017). The hub, miR-4433b-5p, has also a moderate con-

nection to miR-223-3p, which controls the expression of histone deace-

tylase 2, a recently identified axis in COPD (Sundar et al., 2018).

Levels of miR-223 are induced by interleukin-1b and tumor necrosis

factor-a. It is known to be upregulated and inversely correlated with

HDAC2 expression in COPD subjects and it is associated with airway

obstruction, which suggests that miR-223-3p could contribute to air-

way inflammation (Maes et al., 2016). Other known COPD-related

miRNAs that are identified include let-7d, miR-150-3p and miR-3620-

3p (Christenson et al., 2013; Wang et al., 2016b).

For both trimmed and untrimmed FEV1pp networks, we found

marginal enrichment of the Cadherin pathway (unadjusted P-value <

0.05) using the PANTHER Classification System Version 13.1 with

PANTHER homo sapiens whole-genome gene list as background data-

set (Mi et al., 2019). The genes in the pathway that are in the trimmed

network include Frizzled Class Receptor 5 (FZD5), Follistatin-like 1

(FSTL1), protocadherin gamma subfamily C 5 (PCDHGDC5) and

protocadherin alpha-5 (PCDHA5), which serve as important compo-

nents in Cadherin and Wnt pathways (MacDonald et al., 2009; Nelson

and Nusse, 2004). Recent evidence demonstrates that there are many

connections among Cadherin, b-Catenin and Wnt pathways (Nelson

and Nusse, 2004). For example, FZD5 protein serves as the receptor

for the Wnt5A ligand to activate the b-Catenin canonical signaling

pathway, which leads to the activation of nuclear accumulation of b-

Catenin and activation of Wnt target genes (Grumolato et al., 2010).

Several studies have demonstrated that aberrant Wnt/Catenin signaling

plays an important role in the development and progression of COPD

(Jiang et al., 2016), where it leads to epithelial-to-mesenchymal transi-

tion, pulmonary fibroblast proliferation and airway remodeling (Shi

et al., 2017). It was also reported that FSTL1 is dysregulated in patients

with pulmonary hypertension related to COPD (Zhang et al., 2017).

Reactivation of Wnt/b-Caternin signaling could lead to airspace en-

largement with a restored alveolar epithelial structure in emphysema

COPD models (Shi et al., 2017).

As another illustration of the method, we applied SmCCNet to a

different phenotype (percent emphysema) but on the same miRNA

and mRNA expression data (Supplement Section S3.2). We identified

two trimmed modules with strong module–trait correlations

(p � 1e� 05). All features in the trimmed modules exhibit moderate

or strong pairwise correlation to percent emphysema (Supplementary

Fig. S3c). One notable miRNA in the resulting networks is miR-150-

3p, which is known to be upregulated with increasing emphysema se-

verity (Christenson et al., 2013). However, there is no pathway enrich-

ment for genes identified in the percent emphysema networks.

3.3 TCGA breast cancer
We also applied SmCCNet to the TCGA breast cancer data with 348

miRNA, 7978 mRNA and uncensored survival time. The CV process

proposed the penalty pair (36.61, 5.13) for mRNA and miRNA, respect-

ively. Before thresholding network edges, there are eight connected

miRNA–mRNA modules. The number of miRNA and mRNA within

each module ranges from 1 to 42 and 5 to 2482, respectively. The ratio

of the number of miRNA to the number of mRNA in a module ranges

from 0.02 to 0.2, indicating that there are more mRNA than miRNA in

each module. In the eight full modules, we find 55 584 negative miRNA–

mRNA connections. Of these, 75 of the miRNA–mRNA targets have

been validated, and 1176 targets have been predicted using MultiMir

(Ru et al., 2014). Out of the eight full modules, only Module 1 shows

strong correlation with survival time (P-value ¼ 0.01, Supplementary

Fig. S4a). The individual correlations of mRNA and miRNA with pheno-

type have a wide range. We found enrichment of five PANTHER path-

ways (unadjusted P-value < 0.05): interferon-gamma signaling pathway

(INFg), ionotropic glutamate receptor pathway (iGluRs), 2-arachidonoy-

glycerol biosynthesis, toll receptor signaling pathway (TLRs) and

thyrotropin-releasing hormone receptor signaling pathway. With pro-

nounced anticancer activity, INFg induces tumor suppressors (Clarke

et al., 2004), blockade of iGluRs has been proposed for cancer treatment

(Ribeiro et al., 2017) and TLRs has also been discussed as a part of effect-

ive breast cancer treatment strategies (La Creis et al., 2013).

To better visualize the top connections, we trimmed the modules

with edge threshold 0.1. Only Module 1 contains edge strengths >0.1.

The individual feature–phenotype correlations for the trimmed module

indicate that many features with weak feature–phenotype correlations

in full Module 1 have been dropped (Supplementary Fig. S4a). The

trimmed Module 1 include 36 miRNAs and 314 genes. The module–

trait correlation for Module 1 has increased from 0.29 to 0.37; the P-

value has improved to 8e-04. The hub, miR-148, connects to all other

349 features in the trimmed module (Supplementary Fig. S4b).

Aberrant hypermethylation has been associated with miR-148 in a ser-

ies of breast cancer specimens (Lehmann et al., 2008). The feature with

second most connections, miR-381, has been linked to metastatic

breast cancer, which is one of the main causes of cancer death in

women (Farré et al., 2018). Out of the 36 miRNAs identified, 29 of

them have been found to be associated with breast cancer tumor

growth and metastasis or survival outcome through a PubMed search

(Al-Khanbashi et al., 2016; Raychaudhuri et al., 2017).

4 Discussion

We presented a novel network approach SmCCNet, for integrating mul-

tiple omics data types with a quantitative phenotypic trait, and construct-

ing phenotype-specific multi-omics networks. To evaluate its

performance, we compared SmCCNet to a popular gene network ana-

lysis approach: WGCNA, and another CCA-based integration method:

SsCCA. Through simulations, we have shown that the SmCCNet

method has the best overall performance under more complex scenarios

(e.g. Noisy). One explanation for why SsCCA has a slightly worse per-

formance than SmCCNet is that SsCCA does not fully utilize the pheno-

type information. It only excludes features with weak correlation with

phenotype, but does not include the magnitude of feature–phenotype
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correlations in the network construction. As for WGCNA, it identifies

miRNA–mRNA modules first, and then relates them to phenotype by

module–trait correlation through the first PC1. A WGCNA module may

include extra features that are not relevant to given phenotype. Its PC1

can be biased by the extra features and result in a small module–trait cor-

relation (P-value > 0.05), in which case the entire module will be

excluded for the final result. As seen in the simulation cases, WGCNA

may fail to identify any phenotype-related multi-omics networks. Our

simulations cover both small (LXS) and large (TCGA) sample size set-

tings. While larger n guarantees higher statistical power, in reality the

number of subjects (sample size) is often restricted by various factors. As

an illustration on real data, we applied our method to both a small

(COPD) and a large dataset (TCGA). Run times on these two datasets

for fixed penalty were <30 min for all methods. WGCNA is notably

faster and not significantly affected by the sample size or features, while

SsCCA and SmCCNet are slower when there is an increase in the sample

size or features, respectively (Supplementary Table S2 and Section S3.4).

Although our method targeted phenotype-related modules, it is

unlikely that all modules identified are related to the phenotype as

suggested by Figure 2b. There are two potential contributors to the

excess modules. If the sparse canonical correlation between the

miRNA and the mRNA groups are very strong but their correlations

with the phenotype are weak, then the algorithm might still keep the

module, since the total canonical correlation could be large. The other

potential reason for excess modules is noise. Some of the network

edge weights are nonzero but close to zero. Setting an edge threshold

is one way to de-noise. It could also be helpful for identifying the

strongest connections in the networks. The SmCCNet algorithm

incorporates phenotype information through SmCCA. The

unweighted SmCCA version [Equation (3), a ¼ b¼c] maximizes the

sum of three pairwise canonical correlations among miRNA, mRNA

and phenotype. In some cases, it may be necessary to prioritize fea-

ture–phenotype correlations. Since the correlation ranges for the sim-

ulations and the COPD application are comparable, we applied the

unweighted version of SmCCNet. The TCGA application, however,

has much weaker feature–phenotype correlations. Therefore, for the

TCGA application, the weighted version [Equation (3)] is more suit-

able for the objective function since it allows increasing the weights

for the canonical correlations that include the phenotypes. The

choices of weights a, b, c should depend on prior knowledge and the

study goal. As a general guideline, we suggest to first check the ranges

of between-omics correlation and feature–phenotype correlation. If

the latter is relatively small, we recommend using the weighted ver-

sion and increasing the values of b and c.

SmCCNet allows the user to include multiple phenotypes, which

may not be available for supervised phenotype prediction methods

(Acharjee et al., 2016; Boulesteix et al., 2017; Broom et al., 2012;

Chaudhary et al., 2018; Kim et al., 2013). Other unsupervised-omics

methods are focused on dimension reduction or subtyping, and not

network inference (Lock et al., 2013; Mo et al., 2013). Furthermore,

SmCCNet is specifically designed for continuous phenotypes. For cat-

egorical variables, we recommend methods such as (McKenzie et al.,

2016; Oliveira et al., 2018; Tesson et al., 2010). Other advantages of

SmCCA include the ability to include more than two omics datasets

by expanding the objective function. With more omics datasets, there

may be the potential to focus on correlations between omics datasets,

with less emphasis on the phenotype–omics correlations due to the in-

crease in the combinations of possible pairs of omics datasets.

However, the user can adjust the weights in Equation (3) to give more

weight to the parts of the objective function that involves the pheno-

type to avoid this potential outcome. Finally, in the COPD results we

reported SmCCNet predictions that overlaps with validated and

predicted target pairs from MultiMir. Not all of our findings are in

the MultiMir databases. This is expected since SmCCNet focuses on

phenotype-specific networks, while the miRNA–mRNA target predic-

tions are phenotype-independent. In addition, the predictions in

MultiMir are based on sequence. The emphasis on phenotype sets our

approach apart from software programs like DIANA-microT

(Paraskevopoulou et al., 2013) and miRDB (Wong and Wang, 2015),

and provides new perspectives to multi-omics network discovery.

5 Conclusions

While there have been many methods for integrating miRNA and

mRNA expression, very few of them incorporate quantitative phenotypes

or construct phenotype-specific gene regulatory networks. We introduce

SmCCNet, a canonical correlation-based network discovery algorithm

that integrates expression data with a quantitative phenotype and reveals

phenotype-specific multi-omics networks. To our knowledge, SmCCNet

is the first application of CCA in constructing phenotype-specific multi-

omics networks. Through simulations we show that our approach out-

performs one of the most popular gene network construction method

and another CCA extension that naturally incorporates phenotype infor-

mation. We applied SmCCNet to a COPD dataset and identify miRNA–

mRNA networks for two phenotypes FEV1pp and percent emphysema.

We also demonstrated the utility of SmCCNet with a public breast cancer

dataset. Although we focus on single phenotype, SmCCNet can be easily

generalized for incorporating multiple-related traits at once. Furthermore,

our applications focused on expression data but are also generalizable to

any other continuous omics features (e.g. metabolomic, proteomic). We

believe that the potential and flexibility of SmCCNet makes it suitable for

many applications in biology and other fields.
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