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Abstract

Summary: We present software to characterize and rank potential therapeutic (drug) targets with data

from public databases and present it in a user-friendly format. By understanding potential obstacles to

drug development through the gathering and understanding of this information, combined with robust

approaches to target validation to generate therapeutic hypotheses, this approach may provide high

quality targets, leading the process of drug development to become more efficient and cost-effective.

Availability and implementation: The information we gather on potential targets concerns small-

molecule druggability (ligandability), suitability for large-molecule approaches (e.g. antibodies) or new

modalities (e.g. antisense oligonucleotides, siRNA or PROTAC), feasibility (availability of resources such

as assays and biological knowledge) and potential safety risks (adverse tissue-wise expression, deleteri-

ous phenotypes). This information can be termed ‘tractability’. We provide visualization tools to under-

stand its components. TractaViewer is available from https://github.com/NeilPearson-Lilly/TractaViewer

Contact: pearson_neil@network.lilly.com or collier_david_andrew@lilly.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The wealth of information on disease aetiology from various omics

provides an unprecedented opportunity to use data-driven approaches

to nominate and rank potential drug targets for human disorders

(Oprea et al., 2018). Targets can be identified by genetic association

with disease or disease-associated pathways, interactomes, networks or

systems which identify points of intervention in pathological processes

(Senger et al., 2016). Multiple potential targets can be prioritized at the

preclinical stage on the basis of target validation data, evidence for the

proposed therapeutic hypothesis, molecular druggability, therapeutic

modality and research feasibility, in order to prioritize the investment

of critical resources (Oprea et al., 2018). TractaViewer retrieves

genome-wide information on tractability from public databases to in-

form decisions and identify gaps in our knowledge, in order to increase

efficiency of drug discovery through greater probability of success

(Paul et al., 2010). Other resources currently exist for the assessment of

drug targets, including Pharos (Nguyen et al., 2016) and OpenTargets

(Koscielny et al., 2016). TractaViewer’s automated mining is compli-

mentary to these approaches, allowing users to draw conclusions about

the state of current knowledge and visualize that information to reach

a better understanding of target tractability.

2 Materials and methods

2.1 Target list import and cleanup
Input is supplied as a table or list of genes, identified by HGNC symbol,

Ensembl ID and/or UniProt ID. Missing identifiers are automatically

retrieved and disambiguated via queries to GeneNames (Gray et al.,

2014). Identifiers for homologues in model organisms are acquired

from Ensembl’s BioMart (Kinsella et al, 2011). Genes are also classified

by their biotype (protein coding, RNA etc.) from UniProt.
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2.2 Druggability
2.2.1 Small-molecule ligandability

We retrieve assessments of small-molecule druggability for protein tar-

gets, based on precedent of small-molecule activity (ChEMBL; Target

Central Resource Database), known ligands, structure-based predic-

tions, interactions with drugs from DGIdb (Griffith et al., 2013), and a

broad assessment of evidence (Pharos). Information from patents is not

currently included. Targets with a default of � 40% aligned protein se-

quence identity to any protein with precedent or structural indications

of druggability are classed as potentially small-molecule druggable.

Additionally, members of a druggable gene family may be scored as po-

tentially ligandable. Existing approved drugs developed for a target

(OpenTargets) may suggest repurposing opportunities or a mature tar-

get with limited potential for novelty. Targets with no precedent com-

pounds and no evidence for druggable pockets may instead be classified

as candidates for large molecule (antibody) or new modality

approaches. The criteria for small-molecule druggability assessment are

shown in Supplementary Figure S1.

2.2.2 Antibody targetability

Protein targets for therapeutic molecules (e.g. monoclonal antibodies)

should be bioaccessible; therapeutic hypotheses calling for small-

molecule drugs may also favour bioaccessible targets. We mine subcellu-

lar location data from the Human Protein Atlas (HPA) (Pontén et al.,

2008), membership in cell surface protein classes (e.g. GPCRs), secre-

tome membership, cell surfaceome membership and extracellular matrix

membership. Higher antibody targetability scores are assigned to targets

belonging to any of these classes, with secreted proteins being preferred.

2.2.3 New modalities

Novel therapeutic options are indicated when the target has lower

potential for small-molecule druggability or antibody targetability

(e.g. is intracellular), or is a non-protein class (e.g. microRNA, long

non-coding RNA). This includes instances where suppression of the

protein or RNA species is desired by the therapeutic hypothesis, with

options including antisense oligonucleotides (e.g. ASO, siRNA), anti-

mirs or antagomirs, PROTAC or intrabody degradation, protein syn-

thesis inhibition or gene editing approaches (e.g. CRISPR).

2.3 Potential risks
2.3.1 On-target toxicity

To assess potential on-target toxicity issues, we intersect withdrawn

drugs (ChEMBL) with drug interaction data (DGIdb), producing a

list of withdrawn drugs known to interact with the target.

2.3.2 Tissue expression localization

To mitigate on- and off-target toxicity, target expression restricted

to the disease tissue or a targeted cell population is preferred; in add-

ition, expression should be avoided in critical off-target tissues if

possible—e.g. heart, kidney, liver or reproductive organs. Users may

select target/off-target tissues fitting their therapeutic hypothesis;

e.g. brain-expressed targets with low peripheral expression may be

preferred for neurodegenerative diseases.

We assess expression at the tissue level to score potential off-

target tissue safety hazards. The HPA classifies major tissues into 37

categories of tissue elevation. Target nominations are flagged as po-

tential safety risks if they are tissue-elevated in categories not flagged

as disease-relevant. We deprioritize targets expressed in tissues

marked as conferring a higher risk of clinical toxicity, and give pref-

erence to tissue enhanced or tissue enriched (but not group enriched)

targets in specified target tissues.

We also score targets for disease phenotype association (Human

Phenotype Ontology, Köhler et al., 2016) using toxicity-type

classification from WITHDRAWN (Siramshetty et al., 2015), from

which we map toxicity categories of adverse effects associated with

drug withdrawal to equivalent HPO terms. Genes tagged with these

HPO terms are flagged for potential toxicity issues.

2.3.3 Cancer drivers and essential genes

Targets are checked against lists of known mutated cancer genes

(Lawrence et al., 2014) and mutational cancer driver genes

(Tamborero et al., 2013). We also flag essential genes (genes shown in

CRISPR screens to be essential for survival in cell lines) (Chen et al.,

2017). Both associations indicate potential safety concerns for a target.

3 Results

Upon completion of data mining, data are displayed in a tabbed

table, allowing users to rank and sort targets. Targets are classified

in multiple dimensions, including small-molecule druggability, feasi-

bility and safety. The decision criteria for these ‘bucketing’ processes

are shown in help pages accessible within TractaViewer, and in

Supplementary Figure S1. We provide a Shiny web app to facilitate

a high-level overview of the acquired results.

4 Software availability

TractaViewer is available as source and as a precompiled binary

for Windows (64 bit) at https://github.com/NeilPearson-Lilly/

TractaViewer. At the time of writing, execution is supported on

Windows platforms only; however, Linux support is in development.
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