
Data and text mining

Entrezpy: a Python library to dynamically

interact with the NCBI Entrez databases

Jan P. Buchmann * and Edward C. Holmes

Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and

Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on December 4, 2018; revised on April 29, 2019; editorial decision on April 30, 2019; accepted on May 4, 2019

Abstract

Summary: Entrezpy is a Python library that automates the querying and downloading of

data from the Entrez databases at National Center for Biotechnology Information by interacting

with E-Utilities. Entrezpy implements complex queries by automatically creating E-Utility

parameters from the results obtained that can then be used directly in subsequent queries.

Entrezpy also allows the user to cache and retrieve results locally, implements interactions with

all Entrez databases as part of an analysis pipeline and adjusts parameters within an ongoing

query or using prior results. Entrezpy’s modular design enables it to easily extend and adjust

existing E-Utility functions.

Availability and implementation: Entrezpy is implemented in Python 3 (�3.6) and depends only on

the Python Standard Library. It is available via PyPi (https://pypi.org/project/entrezpy/) and at

https://gitlab.com/ncbipy/entrezpy.git. Entrezpy is licensed under the LGPLv3 and also at http://

entrezpy.readthedocs.io/.

Contact: jan.buchmann@sydney.edu.au

1 Introduction

The increasing availability of biological data has not only resulted in a

multitude of genome sequence data, but also substantial increases in

the amount of accompanying metadata, including phylogenies, sam-

pling conditions and locations and gene ontologies. To use such data

in a biological analysis pipeline a programmatic approach is required

to query and retrieve data from these databases. The National Center

for Biotechnology Information (NCBI) is one of the largest such repo-

sitories and both developed and maintains the Entrez databases that

currently comprise 37 individual databases storing 2.1 billion records

related to the life sciences (NCBI Resource Coordinators, 2016).

NCBI offers two approaches to interact programmatically with

its Entrez databases: (i) E-utilities (http://eutils.ncbi.nlm.nih.gov/)

are a set of tools that allow the user to query and retrieve NCBI data

using specific Uniform Resource Identifiers (URIs). Entrez databases

can be accessed using an URI describing the function and its param-

eter, such as searching a database with a specific term; and (ii)

Entrez Direct—a powerful Perl program that allows ad hoc access to

the NCBI databases through a command line interface (Kans, 2016,

https://www.ncbi.nlm.nih.gov/books/NBK179288). E-Utilities offer

a low-level interface to the Entrez databases via Entrez Direct.

However, Entrez Direct is designed as a command line tool and is

therefore primarily incorporated into analysis pipelines via a Shell,

such as Bash, but not designed as a library. Although Python is in-

creasingly used by biologists, incorporating Entrez Direct into

Python pipelines requires the use of new processes outside Python,

adding an additional layer of complexity.

Herein, we present Entrezpy. To our knowledge, this is the first

Python library to offer the same functionalities as Entrez Direct, but

as a Python library. Existing libraries, such as Biopython (Cock

et al., 2009) or ETE 3 (Huerta-Cepas et al., 2016), offer either a

basic or a very narrow interaction with E-utilities. Biopython does

not handle whole queries, leaving the user to implement the logic to

fetch large requests, while ETE represents a library focusing only on

phylogenetics. In contrast, Entrezpy is specifically designed to inter-

act with E-Utilities. It offers fine grained control on how to

VC The Author(s) 2019. Published by Oxford University Press. 4511

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(21), 2019, 4511–4514

doi: 10.1093/bioinformatics/btz385

Advance Access Publication Date: 11 May 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4511/5488119 by guest on 20 April 2024

http://orcid.org/0000-0002-6842-1229
https://pypi.org/project/entrezpy/
https://gitlab.com/ncbipy/entrezpy.git
http://entrezpy.readthedocs.io/
http://entrezpy.readthedocs.io/
Deleted Text: ,
http://eutils.ncbi.nlm.nih.gov/
Deleted Text: -
https://www.ncbi.nlm.nih.gov/books/NBK179288
https://academic.oup.com/

download data and can cache results locally for quick retrieval. This

allows the querying and downloading data from Entrez databases as

an integral part of an analysis pipeline. Entrezpy automatically con-

figures itself to retrieve large datasets according to the implemented

E-Utility function and limits enforced by NCBI.

Entrezpy includes a helper class, termed Conduit, that facilitates

the creation and execution of query pipelines; that is, several con-

secutive queries that may depend on previous queries with possible

dependencies, and the ability to re-use previously obtained results.

Entrezpy is licensed under the GNU Lesser General Public License

and is packaged in PyPi (https://pypi.org/project/entrezpy/) or can be

obtained from https://gitlab.com/ncbipy/entrezpy. The Entrezpy

source code is documented using Sphinx (http://www.sphinx-doc.

org/en/stable/index.html) and the documentation, including usage

examples, is available at https://entrezpy.readthedocs.io/.

2 Implementation

Data records within an Entrez database are identified by their identi-

fication number. The Entrez documentation refers to this number

interchangeably as either an UID or ID. For the remainder of this

article we will use the term UID to refer to a data record identifica-

tion number. UIDs are unique within an Entrez database but not

across Entrez databases. Entrezpy is a library of Python classes imple-

menting the specific steps required to interact with the E-Utilities.

Querying and downloading data via the E-Utility is achieved by send-

ing queries encoded as an URI for the specific function and the corre-

sponding parameters (Fig. 1). For example, the following URI

searches the nucleotide database for all virus nucleotide sequences and

returns the UIDs identified: https://eutils.ncbi.nlm.nih.gov/entrez/

eutils/esearch.fcgi? db¼nucleotide&term¼viruses[orgn] (Fig. 1A).

The E-Utility returns a response describing the search result. This

includes the number of data records found within the requested data-

base and corresponding UIDs. To fetch the data records, a second E-

Utility URI must be assembled. The following E-utility URI fetches

the first four sequences from the previous query in FASTA format:

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?

db¼nucleotide&id¼1509580163, 1509580026, 1509580024,

1509580022&rettype¼fasta&retmode¼text. ESearch, ELink and

EPost queries can be stored on the Entrez History server (Fig. 1B).

Such queries return a reference as part of the result, consisting of a

WebEnv string and a query_key number. The WebEnv value is not

static and stored only temporarily, while the query_key increments for

each query using the same WebEnv. Together, these values can be

used in subsequent queries to reference a prior query. Using the

History servers can reduce the amount of data to download. For ex-

ample, queries fetching large datasets can store the preceding search

query and thereby prevent the downloading of large numbers of

UIDs. Another use is to combine queries using E-Utilities on the NCBI

severs, such as via Elink queries. NCBI enforces a limit of three

requests per second to E-Utilities. With an NCBI API key, this limit

can be raised to ten requests per second (https://www.ncbi.nlm.nih.

gov/books/NBK25500/). By default, Entrezpy enforces the lower limit,

but if an NCBI API key is used or stored as environmental variable

(see Supplementary Material for details), the upper limit is used.

Entrezpy supports the E-Utilities EFetch, ESearch, ELink,

ESummary and EPost. The E-Utilities ESpell (spelling suggestions),

EInfo (database statistics), ECitMatch (batch citation searching in

PubMed) and EGQuery (global ESearch) are currently not supported

since they can be either assembled using existing functions or have a

very broad usage. Entrezpy is not primarily intended to replace an

NCBI website search, but to run queries for a specific problem. The

Entrezpy functions implemented use the same parameters as those

described in the Entrez manual. NCBI limits query and retrieval sizes.

For example, downloading summaries in JSON format is limited to

500 summaries at a time. In such cases, queries must be split into sev-

eral requests to obtain the whole requested dataset (Fig. 1C). Entrezpy

automates these steps, enabling the easy assembly of complex E-

Utility queries to search the Entrez databases and download datasets.

Entrez History server responses can be used to link queries, analogous

to piping commands on UNIX systems (Fig. 1D). Entrezpy is designed

to analyze the response from each request as soon as it is received,

allowing the implementation of checkpoints when handling large

datasets, for example, whether to resume after aborts or errors. For

the Efetch, Esummary and ESearch functions we added the parameter

req_size that sets the size of requests within a query. We observed that

in some cases connection timeout errors can be solved by setting a

smaller request size for the query. Entrezpy uses no threading by de-

fault to download datasets but can use multithreading.

The class Conduit simplifies the assembly of complex queries

(Fig. 1). Internally, Entrezpy assigns each query and requests a unique

identifier. This allows Entrezpy to cache queries and results, thereby

enabling to access data from an earlier query as parameters for a new

query. We implemented this caching approach in Conduit, in which

all Conduit instances share the same cache and are cleared if the pipe-

line is finished or aborted. In addition, Entrezpy result classes can as-

semble and return parameters that can be used as input parameters

for other Entrezpy functions, such as an Esearch result return input

parameters for Efetch. Together with the ability to cache results, this

allows Entrezpy to create complex queries. In Conduit, such a series

of queries is called a pipeline (Fig. 1E). Queries can be added to a

Conduit pipeline either as parameter or as dependency (Fig. 1E).

A dependency is a query ID from an earlier query and Conduit will

obtain the corresponding parameters from the cache. If query

parameters and a dependency are been passed to a Conduit query,

the parameters overwrite the corresponding parameter obtained

via the dependency.

Entrezpy checks for errors in parameters, during requests and

after receiving the response from NCBI. If erroneous parameter

combinations or values are recognized, Entrezpy aborts. During a

request, Entrezpy checks for connection errors and aborts immedi-

ately if the HTTP error 400 is returned (Bad request). For other con-

nection errors, Entrezpy retries the request ten times with a

randomized waiting time. For timeout errors, Entrezpy increases its

request time in ten steps until the maximum request time of one mi-

nute is exhausted. If an error persists after ten retries the query is

aborted. All Entrezpy aborts return a log message describing the

problem. After receiving the response, Entrezpy checks for error

messages in the NCBI response, for example, Entrez database errors.

These errors trigger a log message, but the request is technically con-

sidered a success and Entrezpy does not abort.

The versatility of Entrezpy is based on the use of virtual func-

tions and modular design. We implemented a default analyzer for all

E-Utilities. However, the default Efetch analyzer is very basic and

prints results to the standard output. This is deliberate, since an

analyzer for an Efetch request is usually the last step in query.

Given the numerous possibilities, databases and formats available,

finalizing and adjusting an appropriate Efetch analyzer is best left

to the pipeline developer. Creating a specific analyzer requires the

implementation of only two virtual functions of the Entrezpy

analyzer base class, specifically the methods to handle errors and

the result. Therefore, a new and highly specific analyzer for a

specific dataset can be written without the need to adjust the whole

request process.

4512 J.P.Buchmann and E.C.Holmes

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4511/5488119 by guest on 20 April 2024

Deleted Text:
https://pypi.org/project/entrezpy/
https://gitlab.com/ncbipy/entrezpy
http://www.sphinx-doc.org/en/stable/index.html
http://www.sphinx-doc.org/en/stable/index.html
https://entrezpy.readthedocs.io/
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=nucleotide&hx0026;term=viruses
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=nucleotide&hx0026;term=viruses
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=nucleotide&hx0026;term=viruses
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=nucleotide&hx0026;term=viruses
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi? db=nucleotide&hx0026;term=viruses
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi? db=nucleotide&hx0026;id=1509580163, 1509580026, 1509580024, 1509580022&hx0026;rettype=fasta&hx0026;retmode=text
Deleted Text:
Deleted Text: 3
Deleted Text: 10
https://www.ncbi.nlm.nih.gov/books/NBK25500/
https://www.ncbi.nlm.nih.gov/books/NBK25500/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz385#supplementary-data
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text: 10
Deleted Text: 10
Deleted Text: 10
Deleted Text:

A

B

C

D

E

Fig. 1. E-Utility examples using two queries to download virus sequences from the Nucleotide Entrez database. (A) E-utility steps without using the Entrez History

server. (B) The E-utility steps when using the Entrez History server. Tables in A and B list the minimum required POST parameter for queries sent to E-Utilities. All

E-Utility functions start with https://eutils.ncbi.nlm.nih.gov/entrez/eutils/. Dashed lines indicate the figurative and not literal interaction between E-Utilities and

Entrez databases. Only three Entrez databases are depicted. Numbers indicate the sequence of steps in the query. (C) Depiction of Entrezpy queries and requests

using a query with nine data records and a request size of 4. The size of the last request is automatically adjusted. All requests within a query are passed to the

same Entrezpy EutilsAnalyzer instance. (D) Resolving the example queries using Entrez-Direct. (E) Resolving the example queries using Conduit

Entrezpy 4513

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4511/5488119 by guest on 20 April 2024

Entrezpy has been designed ‘to do one thing and do it well’. It

enables the querying and downloading data from the Entrez data-

bases, one of the largest life sciences data repositories, while giving a

developer the freedom to easily integrate specific analysis functions.

Funding

This work was supported by an ARC Australian Laureate Fellowship

[FL170100022 to E.C.H.].

Conflict of Interest: none declared.

References

Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for compu-

tational molecular biology and bioinformatics. Bioinformatics, 25,

1422–1423.

Huerta-Cepas,J. et al. (2016) ETE 3: reconstruction, analysis, and visualiza-

tion of phylogenomic data. Mol. Biol. Evol., 33, 1635–1638.

Kans,J. (2016) Entrez Direct: E-utilities on the UNIX Command Line.

National Center for Biotechnology Information, Bethesda, MD, USA.

NCBI Resource Coordinators (2016) Database resources of the National

Center for Biotechnology Information. Nucleic Acids Res., 45, D12–D17.

4514 J.P.Buchmann and E.C.Holmes

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/21/4511/5488119 by guest on 20 April 2024

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ECH is funded
Deleted Text:)
Deleted Text: <italic>s</italic>

